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An optimal control problem for a linear system with a small parameter in the derivatives and
with an integral performance index is considered. The initial and the final states are fixed, the feasible
controls belong to a convex and compact set. The convergence properties of the optimal! performance
are studied.

1. Introduction

Consider the following optimal control problem:
minimize the functional

Ty Chu)=[f(x@,y @, u@),.1)d e

subject to the constraints
x=A; (t) x+A4, (t) y+B; 1) u(2),

. @
Ay=A; (t) x+A, () y+B, ) u (),
x(0)=x" x(T)=x"; : (3a)
y(©@=y°, y(D=y', ' (3b)
u(-)eU={u(-)eL,(R,(0,7),u(t)e VR ae.1€(0,7T)}, (C))

where x (1) € R™, y (t) € R", the final time T is fixed, 4 is a “‘small” positive scalar,
which represents the singular perturbation. Assuming that A (¢z) exists, for A=0
the system (2) becomes

x=Ao (t) x+Bo (t) u(?), (5a)
y(O)=—A47"() (45 (1) x () +B, (1) u (1)), ~ (5b)
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where Ag=A, — A, A7* A5, By=B;— A, A;' B,. The so-called reduced problem will
have the form: minimize (1) subject to (3a), (4) and (5).

Recently, the order reduction of control systems is extensively studied, because
it is connected with the simplification of system models, cf. e.g. [1], [2]. The present
paper is related to the results of [3], where a similar problem but with unconstrained
controls and a stiictly convex functional is analysed.

2. Convergence

The main result of this Section, given in Theorem 1 is obtained under the follow-
ing conditions:

(i) The components of the matrices 4,, 4,, B; are in L, (0, T), and the com-
ponents of Az, Ay, B, are in C [0, T']. The eigenvalues of the matrix 4, (¢) have
negative real parts for all z€ [0, T'].

(ii) The set V is convex and compact. :

(iti) The function f is continuous, the functional J is lower semicontinuous in
the uniform topology for x and in the weak L, topology for (y, u) (for sufficient
conditions see [4]).

(iv) Let P be the attainable set for the system (5a) and

+oo

R= f exp (4, (T) 5) B, (T) Vs,

where the integral of the multifunction is in the sense of Aumann,
Then x'eIntP, y'+A; ' (T) As(T) x* € Int R. ®)

Observe that from (i) the set R is well-defined convex and compact set. The sets P
and R have nonempty interiors if, for example Int V# 0, the system (5a) is controllable
and the pair (44 (T), B, (T)) satisfies the Kalman rank condition.

“ By a standard argument, cf. e.g. [4], there exists an optimal control @, () for
the reduced problem. Moreover, from Lemma 1 in [6] we conclude that for small A
the target point (x!, y') belongs to the attainable set of the system (2), hence there
exists an optimal control #, (- ) for the perturbed problem. In the sequel it is as-
sumed that A is sufficiently small. By w (g, ), we denote the modulus of the con-
tinuity of the function g () in Ly (0, 7).

We present first an auxiliar result, which, however, turns out to be of independent
interest.

LemMMA 1: Consider the reduced system (53). There exist numbers e,>0 and
co>0 such that for every e€(0,8) and x.,x, € R", |x.—x'|<e, |x—x!|<eg,
if the feasible control u; (-) drives the state to x,, then there exists a feasible control
u, (), which drives the state to x.,, such that the set

M,={te[0,T], u, (t)#u, (1)}
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m+1
consists of no more than m+1 intervals AL, ..., A™**, meas |_) 4<c, &. Moreover
i=1 .
7 ’
o (u,, ), <o (U, d);+co & ©)

for §€(0, €].

Proof: Since x! € Int P there exists a simplex ScP such that x! € Int S. Each
of the vertices x; of S can be reached by a feasible control u,(-). Let u” () be
a piecewice constant approximation of u,(-) with a step length 4. Obviously, the
corresponding final state x" converges to x,. Then for some sufficiently small but
fixed 4 the point x* belongs to the interior of the simplex S" with vertices x!. By the
representation theorem, there exists &, >0 such that if |[x—x'|<eg,, then x is a con-
vex combination of x!. Hence, each x, belonging to the &;-neighbourhood of x!,
can be reached by means of a convex combination of m+1 piecewise constant
controls. We proved that there exists a ¢;-neighbourhood of x*, each point of which
can be reached by a control of variation, bounded uniformly in this &,-neighbourhood.

Let S™ be the unit sphere in R™, and let ¢, € (0, &;) be fixed. There exists >0
" such that for every ¢ € (0, g,), x € R™, |[x—x'|<e, and [ € S™ the point x+ o/ satisfies
|x+al—x'|<e;. Let e€(0,&), x.€ R™, x, € R™, |x,—x'|<e, |x, —x'|<e be ar-
bitrarily chosen, and let the feasible control u,(-) correspond to x,. For given
/e S™ one can choose a control u, () € ¥V of bounded variation (uniformly in the
go-neighbourhood of x') which drives the state of (5a) to x,+ «l. Denoting Au, (- )=
=u, (*)—u,(+) we have ;

< i
, J 0T, 0) Bo () duy (1) de=al,
[0}
where ¢ (¢, 7) is the fundamental matrix solution of (5a) normalized at t=7. Hence
I .
[ 1% (T, £) Bo (¢) duy (¢) dt=x, (7)
(0]

where * denotes the transposition. Let d=min {3 (T+1) /o, 1}. We show that
there exists an .interval 4;c[0, T'] such that meas 4;<d and

f I* ¢ (T, t) By (t) duy (t) de=3¢.

4

®

Let 44, ..., 4, be a covering of [0, T'] such that ‘meas 4,;<6, p=[T|o]+1. If (8)
does not hold for each 4; then

3(T+1)e

1 T
f I* ¢ (T, t) By (¢) duy (¢) dt <3pe<3 (?+ 1) 8<-——5—m
0

a<o,

which contradicts (7). Introduce the control

()= u, (t) for te[0, TIN42,
P lu (1) for te A2,
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Obviously u; (+) € U and the corresponding final state x] from (5a) satisfies
' I* (x2—x0) =36 )
Define the set
Q.=co{x;e R" Il S"}.

From (9) it follows that for each /e S™

sup /* (x—x;)>3£. (10)
XER,
We shall prove that
B,={xeR", |x—x,|<2e}cQ,. (11)

Assume that there exists X € B, such that ¥ ¢ Q,. Since Q, is convex, by the separa-
tion theorem there exists /€ S™ such that
Fexclen, - Yxefr.
Then
sup I* (x—x)<I* (x—x,)
xR,

and, taking advantage of (10), we obtain
Bel* (R—x)<|%—x,| <2e.

This contradiction gives us (11). Thus, since x, € B,, then x. € Q,. By the repre-
sentation theorem x, can be reached by means of a control #. (), being a convex
combination of m+1 controls from the set {u; (+), /€ S™}. The function du (-)=
=u, (+)—u, (-)differs from zero on a union of no more than m+ 1 intervals 4% with
full measure less than (m+1) 0<3e (m+1) (T+1)/e.. On each interval 47 the variation
of du(-) is bounded by a constant, which depends on &, only. By the known es-
timate @ (g, )L, (0, < yV% g () for y € [0, B], we conclude that there exists a con-
stant K such that o (4u, §), <ke. Taking co=max {k, 3 (m+1) (T+1)/e} we com-
plete the proof.

Observe that the above result is valid without any controllability conditions,
i.e. the interior of the attainable set P can be replaced by its relative interior. More-
over, the boundedness of ¥ is not used.

Denote by %, (+) the optimal state and by J, the optimal performance for the
reduced problem. Let $, () be determined by £, (-) and &, (-) from (5b). The
optimal solution of the perturbed problem is denoted by (£, (), 5, (), @, (+))
and J,.

THEOREM 1.

lim J,=J,

A0

Proof: Let the sequence {4}, lim 1,=0, be arbitrarily chosen. Define the set
k—=+ o0

K={(x,y)e R"*", xeP,ye —A;' (T) As (T) x+R}.
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From (iv) it follows that (x!, y') € Int K, hence for ¢>0 sufficiently small there
exists a simplex G={(x’, ), ..., (x, y2)}, p=m+n+1, such that G K, |xI—x'| <s,
i=1,..,p, and for some d>0 {(x,y) e R™*", |x—x'|<de, |y—y'|<de}=G.
Using Lemma 1 we conclude that there exist controls # (-)e V,i=1, ..., p, such
that the corresponding states of (5a) satisfy x (T)=x., i=1, ..., p, and u! (¢)=d, (¢)
for a.e. t€ [0, TINM, where meas M!<co ¢, i=1, ...,p. On the other hand there
exist functions v} (+), 2! (t) e V for a.e. 1€ [0, +o0), i=1, ..., p, such that
+ 00

Yi=—=A;1 (T) A5 (T) x:+f exp (Ag (T) 5) B, (T) v} (s) ds
0

for i=1, ..., p. Let the sequence {p,} satisfy lim ¢,=0, lim ¢, /4=+o0, ¢;>0,
k— + o0 k— + o0
k=1, 2, ..., Define the control

[ue' () for te[0, T— g,
i (t)=

T—t
-vfz( ) for te[T—¢, T,
A

and let (% (), 7 (*)) be the corresponding state in (2) for A, In Lemma 1 of [6]
it is proved that lim X! (7)=x!and lim j} (7)=y. Then for k sufficiently large

k— + 0 k— + o0

(", ) € co {(% (1), F (D)} -

p
Hence there exist numbers o, ..., «?=>0, > aj=1, such that if @; (- )= 2 b i (-
i= 1

and (xk( ), 7 (+)) correspond to i (+) and A in (2), then, for & sufﬁmently large
£ (D)=x', F(D)=y'.

34
Without loss of generality, let lim ol=0d!, Z al=1. Define @3 (- )= o u;
i=1

k— + o0 i=1
It is clear that @ (z)=1d, (¢) for a.e. £ € [0, T]\U M and @ (+) is pointwise con-

vergent to § (). Let %5 (), 75(*) correspond to 15 (+) from (5a, b). Applying
Lemma 2.1 (iv) from [7] we get that % (- ) converges to % (- ) uniformly in [0, T']
and j; () is strongly L, convergent to j5 (-). Without loss of generality one can
consider {7 (*)} as a pointwise convergent sequence. Since # () and 7 (-) are
uniformly bounded, by Lebesque’s theorem we obtain

lim sup J;, < hm J(xk() R () (C))=T (%5 (1), 76 (), 5 (+)).  (12)

k- + o

Now choose a sequence {¢;}, lim ¢=0. Then % (-) is convergent in measure to
i>+ o

ilo (), hence it can be identified with a pointwise convergent sequence. The tra-
jectory x§ () is uniformly convergent in [G, T'] to £, () and y§ (-) is pointwise
convergent to 7, (+). Hence

lim J (x5 (), 75 (), g (- )) =J. (13)

i-»+ow
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On the other hand one can assume that the sequence of the optimal controls
{@, (-)} is weakly L, convergent to some #, () € U. From Lemma A in [6] we
conclude that the optimal state £, () is uniformly convergent to x, (), which
satisfies (3a) and (5a) for u, (-), and J, () is weakly L, convergent to yo (),
which satisfies (5b) for x, (+) and u, (-). Hence, by (iii)

Jo<I (%0 (*), yo (), o (+))< lim inf J,, . (14)

k—+ o

Combining (12) and (13) and taking into account (14) we conclude that from
every sequence {4} one can extract a subsequence {4,} for which
lim jzl;=jo .
-+

This completes the proof.

3. Estimates

In this section we develop the result from the previous section obtaining an
estimate of the performance convergence rate. We assume that all the conditions (i)
theough (iv) hold and, moreover. '

(v) The components of the matrices 4,, 43, 44, B, are in C; [0, T']. The function
S is Lipschitz continuos with respect to (x, y) uniformly in (u, ¢) € V'x[0, T] for
bounded (x, y).

LEMMA 2. Let u, (*), u; () be feasible controls, (x; (), y, (*)) solves (2) for
u, (*), and (x;' (), y;' () is the solution of (5) for u,’ (- ). There exists a constant
¢y, which does not depend on u, (+) and u,’ () such that

Iz C)=x3" Cllesser (g ()= (e s
2 C)=2" (Il <er (A1l C)=33" () oo+ (3, A);)-
Proof. Let Y(#,7,4) be the fundamental matrix solution of the equation
Ay=A4 (t) y. It is known that there exist constants oo, >0 such that |Y (¢, 7, 2)|<

<ogexp (—o (t—7)/A) for all t,7€[0,T), t=1. Let A, (1) y; (t)=g; (2), g: (1)=0
for t<0. Then

%._6”0]Y(t,z,ﬂ.)(g;.(r)—gx(t))df‘dt<%o jeest '(_” 7)*

T t/A

X]g;.(f)_ga(t)ldfdt<0'0ff e |g; (t—As)—g, ()] ds dt<o, %
0 0

tlA [T[A]+1
x [ e w(gy, A5) ds+0 (D<o D) e (gs (k+1) A1 +0 (W<
(1] k=0
+ o
<00 @ (g1 M1 Y] e (k+1)+0 (M<es (@ (g2 M1 +1).

k=0
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Integrating by parts we have
1 T : rr r’
= f ‘ f y(, 1, A) A, (D) y" (t)dr—y, () ‘ dr<c, (0) (u, ", A +/l).
0 0
Further the proof repeats the arguments in the proof of Lemma 2.1 (iv) from [7].

THEOREM 2: There exists a constant ¢ such that
—c (Ao @y, D)<= Jo<c (A+ o (o, 2)1). (15)

Proof. Although the proof, in principle, goes paralelly to the proof of Theorem
1, it differs from that in several important details. Therefore we present here the
complete proof. i

Choose vectors &; € R™ |E|=1, i=0, ..., m, such that 0 e Intco (&;);. There
exists «>0 such that for every & € R™, i=0, ..., m, |;—¢&,|<«, one has 0 € co (§),.
Let x?=x!+¢&;, i=0, ..., m, where ¢>0. From the choice of &, it follows that if
|#i—x}|<oe then x'eco(X:);,. Analogically, let #n;eR", [g;]=1,;=0,..,m,
0 elIntco (n,);, and y;=y'+dp;. For sufficiently small ¢ and d we have (x%, y,) €
€ Int K. There exists >0 such that if |77;,—#,/<p, j=0, ..., n, then 0 € co (77;). Thus,
if |7;—y;|<pd, then y* € co (j;);. Using Lemma 1, for sufficiently small ¢ we choose
a control u(+), which drives the state of (5a) from x° to x}, and which differs from
o (+) on a set of measure c,é. Since y;€ —A;* (T) A5 (T) X2+ R, there exists
a measurable function v{;(-),v};(¥) €V, t€[0, +c0) such that

+

yi=—A7T) A5 (T) Xi+ [ exp (4a (T) 5) B, (T) 05, (s) ds.

For small A define the control
us () for t [0, T—04)
ﬁ?j (t )=

T—t
vfj( 7 ) for te [T—04,T1],

where 61 is arbitrarily chosen. If (%7, (+), 7;,(+)) is the corresponding trajectory
of (3) then, applying Lemma 2 we have

1%}, (T)—x}|<ec; 0+1) 4,

where the constant ¢; does not depend on ¢, 6 and A. Using this estimate we get

| T—t
‘[fexp (A4 (T)T)Aa (T) %}, (1) dt=—A;" (T) 45 (T) %}, (T) +
0

T It T—s
+ 471 (T) exp (A4 (T)—I) AT 8 (T)—-foexp (A4 ()= )dsx
xds (T) £, (¢) di= —:)4;01 (1) 4 (T) x+h (6,2,  (16)
where 4 (0, 2)<c, (6+1) A. Denote by j},(-) the solution of the equation
Ay=As (T) % (t)+ A4 (T) y+B, (T) i3, (1), y (0)=)°.
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As in Lemma 1 from [6] one can prove that |§}, (T)— 7, (T)|<6,, where 6, does
not depend on @}, (-) and lim ,=0. Using (16) we have

A-0

7’
|75 (1) =y, <0 +175;(T)—y,| <03+ 00 GXP(—U“) o+

1 —t
|~y A7 (T) s D R +h G D+ feXp(A4(T) )

Pl T—t
xB, (T) %, ( )dt|+} 7/ exp (A4 (T) T) B, (T) u: (¢) dtl -

<Op+es (A+0+e )<y (O)+09 (),
where lim y(0)=0, lim ¢ (1)=0, y(+) does not depend on ¢ and 4 and ¢ (+)

60—+ o0 A->+ o
does not depend on & and 0. Fix @ such that y (8)<fd/2. Then for each ¢ and A
satisfying

¢ (B+1) A<ae, o (N)<Bd20, ' 17

we have x! € co (%}, (T)); for each j=0, ..., m. This means that there exist a;;=>0,

2 =1, such that x'= 2 oy X (T). I ;,:Z oy 7, (T), then |y;—y,1<pd,
i=0

i=0 i=0

hence one can choose f;>0, Z B;=1, so that y'= > B, y;. Finally, we get that

Jj=0

(x D 2 2 i By (85,(T), 1, (T)). Then there exists a control uj (- ), which

i=0 j=
is a convex combmatlon of the controls #]; (- ), and which drives the state of (3)

to (x, y1). Moreover, u2 (- ) differs from , (+) on a set of measure O (1+¢). Let ¢
and A be chosen such that e=2¢; (1) A/ec. Then (17) holds and [[u} () — o (* )e=
=0 (). Using Lemma 2 we obtain that the corresponding trajectory (x; (* ). y2 (+))
satisfies [[x; ()= %o (*)=0 () and [y; (-)=Fo (e, =0 (A+a (do, 2),). Since
J<J (%2 (), 72 (), 4 (+)), taking into account the assumption (v) we obtain the
upper estimate in (15).

Now, let x%(-) be the solution of (5a) for #,(:). By Lemma 2 we
have |x§ (T)—x'=0 (J). Applying Lemma 1 we select a feasible control i, (')
driving the system (5a) to x*, such that |jg; (- )=, (* )llL,=0 (1) and w (ﬁl, <
<o (@, A)i+es A I (X, (4), 72 (- )) solves (3) for 7, (- ), then, by Lemma 2" _we have
1% () =22 (=0 ), 171 (+)=31 ()l,=0 (A+ (@, N1)=0 (A+o (u;_, A1)-
Since Jo<J (%, (*), 72 (+), @ (+)), the lower estimate in (15) holds. The proof is
complete.

CoROLLARY 1. Let the function f be differentiable with respect to (x, y, u) and its

derivatives be continuous: the function f, (u, t)=f(£o (),— A7 " () (45 (t) %o () +

+B, (t) u), u, t) be strongly convex with respect to u uniformly in [0, T); the variations
0

of the matrix B, (t) and the function § Jfo (u, t) on [0, T] be bounded uniformly in

ue V. Then J,—Jy<ce A
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Proof. Using the strong convexity .of the Hamiltonian and the maximum
principle as in [8] one can show that the variation of i, () is bounded. Then the
desired estimate follows from (15).

COROLLARY 2: Let f(x,y,u, t)=f (x,u, t)+f, (x, 1)y, where fi (x,u,t) has con-
0 ik
tinuous derivatives i Fs F S e 7% o — f1, and it is strongly convex with respect

to u uniformly in (x, t). The function f, (x, t) is continuously differentiable, A, (*) €&
€C.[0,T] and B, (-) is of bounded variation. Then J,—Jy=cg A\ In A. Moreover,
l:f‘B2=0 then j,q_“'jo)“Cg i.

Proof. Since for small A the point (x!, y!) belongs to the interior of the attainable
set of the perturbed system (e.g.cf. [6]), then the vectors of the boundary values for
the adjoint variables in the maximum principle are bounded for A—0. The estimation
of the adjoint variables leads to the equation

A=A, (1) 2+p, (1), z(T)=q,/A,

where lim sup (]qll-t- max 2 (t)l)< +o0. Its solution has bounded varia-
A0 0<t<T+Alni

tion on the interval [0, 744 In A]. Then, using the strong convexity of the hamil-
tonian in the maximum principle one can get

o (, M) <o (i, /‘L)L1 (0, T+Aln ;.,_2/1 In A, O Mlew< —croAln 4.

We note that there are examples for which the variation of @, (-) is unbounded
for A—0. If B,=0, the adjoint variables which reduce, are not involved in the
maximum principle. In this case the estimate O (1) is exact for the class of problems
considered.
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Pewne zadanie sterowania optymalnego dla ukladu
z osobliwoscia przy ograniczeniach na sterowanie i przy
ustalonym stanie koncowym

Rozwazane jest zadanie sterowania optymalnego dla ukladu liniowego z malym parametrem
przy pochodnych i z catkowym funkcjonatem jakosci. Stan poczatkowy i stan koficowy sa ustalone,
sterowania dopuszczalne sa elementami wypuklego zbioru zwartego. Badana jest zbiezno§é opty-
malnej warto$ci funkcjonatu jakosci w funkcji matego parametru.

HEKOTOPQH 3a/1a4a ONTHMAJBHOIO YIpaBJICHHA VIS CUCTEM
¢ 0COOEHHOCTBHIO NpH OrPAHAYCHHAX N0 YHPABJICHUIO M 3a-
@mcnponanﬂom KOHECYHOM COCTOAHVMI

PaccmarpuBaeTcs 3ajavya ONTHMAJGHOTO YIPABICHWS VIS JTHHEHHOM CHCTEMBI C MAaJbIM
IapaMeTpoM LI NPOM3BOIHBIX W WHTETPAJBHBIM (QYHKIWOHAIOM KadecTBa. HauwampHoe W KO-
HEYHOE COCTOSHUA 3a(DUKCUPOBAHDI, NONYCTUMbIE YIPABICHUS SBIIFOTCS JIEMEHTaMU BBIIYKIOTO
KOMITAKTHOTO MHOXeCTBa. VICCIenyeTcs CXOOMMOCTH ONTHMAJIBHOTO 3HAYCHHS (QYHKUHOHAIA
KadyecTBa B (QYHKIMU Maloro IapamMerpa.




