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An optimal control problem for a linear system with a small parameter in the derivatives and 
with an integral performance index is considered. The initial and the final states are fixed, the feasible 
controls belong to a cpnvex and compact set. The convergence properties of the optimal performance 
are studied. 

1. Introduction 

Consider the following optimal control problem: 
minimize the functional 

T 

J(x( · ),y( · ), u( · ))==: J f(x(t),y(t), u(t), t) dt 
0 

subject to the constraints 

x=A 1 (t) x+ A 2 (t) y+B1 (t) u (t), 

A.y=A3 (t) x+ A4 (t) y+B2 (t) u (t), 

X (0)=x0
, x (T)=x 1

, 

(1) 

(2) 

(3a) 

y (0)=y0 , y (T)=y1 , (3b) 

u(·)eU={u(·)eL00 (Rr,(O,T)),u(t)E VcRr a.e.te(O,T)}, (4) 

where x (t) e Rm, y (t) eR", the final time T is fixed, A. is a "small" positive scalar, 
which represents the singular perturbation. Assuming that A;;: 1 (t) exists, for A.=O 
the systero (2) becomes 

x=A0 (t) x+B0 (t) u (t), 

y (t)= -A;;: 1 (t) (A 3 (t) X (t)+B2 (t) U (t)), 

(Sa) 

(Sb) 
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where A 0 = A 1 - A 2 A:;; 1 A 3 , E 0 =E1 - A 2 A; 1 E2 • The so-called reduced problem will 
have the form: minimize (1) subject to (3a), (4) and (5). 

Recently, the order reduction of control systems is extensively studied, because 
it is connected with the simplification of system models, cf. e.g. [1], [2]. The present 
paper is related to the results of [3], where a similar problem but with unconstrained 
controls and a stlictly convex functional is analysed. 

2. Convergence 

The main result of this Section, given in Theorem 1 is obtained under the follow­
ing conditions: 

(i) The components of the matrices A1 , A 2 , E 1 are in L 1 (0, T), and the com­
ponents of A3 , A4 , E2 are in C [0, T] . The eigenvalues of the matrix A4 (t) have 
negative real parts for all t e [0, T]. 

(ii) The set V is convex and compact. 
(iii) The function f is continuous, the functional J is lower semicontinuous in 

the uniform topology for x and in the weak L 2 topology for (y, u) (for sufficient 
conditions see [4]). 

(iv) Let P be the attainable set for the system (5a) and 

+oo 

R= j exp (A4 (T) s) E2 (T) Vds, 
0 

where the integral of the multifunction is in the sense of Aumann, 

Then x 1 e IntP, y 1 +A; 1 (T) A3 (T) x 1 e Int R. (5) 

.Observe that from (i) the set R is well-defined convex and compact set. The sets P 
and R have nonempty interiors if, for example Int V =I= f/J, the system (5a) is controllable 
and the pair (A4 (T), E2 (T)) satisfies the Kalman rank condition. 

By a standard argument, cf. e.g. [4], there exists an optimal control u0 ( ·) for . 
the reduced problem. Moreover, from Lemma 1 in [6] we conclude that for small A 
the target point (xi, y 1

) belongs to the attainable set of the system (2), hence there 
exists an optimal control u;. ( · ) for the perturbed problem. In the sequel it is as­
sumed that A is sufficiently small. By w (g, t5)1 we denote the modulus of the con­
tinuity of the function g ( · ) in L 1 (0, T). 

We present first an auxiliar result, which, however, turns out to be of independent 
interest. 

LEMMA 1: Consider the reduced system (5a). There exist numbers e0 >0 and 
c0 >0 such that for every e e (0, e0 ) and x:, x:' e Rm, jx:- x 1 j < e, jx:'- x 1 j < e, 
if the feasible control u: ( · ) drives the state to x:, then there exists a feasible · control 
u:' ( · ), which drives the state to x:·, such that the set 
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m+l 

consists of no more than m+ 1 intervals A;, ... , A:+\ meas U A!~c0 e. Moreover 
i= 1 

(6) 

for be (0, e]. 

Proof: Since x1 
E Int P there exists a simplex S c P such that x1 e Int S. Each 

of the vertices x. of Scan be reached by a feasible control u5 ( • ). Let u~ ( · ) be 
a piecewice constant approximation of u. ( ·) with a step length h. Obviously, the 
corresponding final state x~ converges to x •. Then for some sufficiently small but 
fixed h the point x1 belongs to the interior of the simplex s· with vertices X=. By the 
representation theorem, there exists e1 >0 such that if Jx-x1 J<e1 , then xis a con­
vex combination of x=. Hence; each x, belonging to the ecneighbourhood of x\ 
can be reached by means of a convex combination of m+ 1 piecewise constant 
controls. We proved that there exists a e1-neighbourhood of xl, each point of which 
can be reached by a control of variation, bounded uniformly in this e1-neighbourhood. 

Let sm be the unit sphere in Rm, and let eo E (0, el) be fixed. There exists ct.>O 
such that for every e E (0, e0 ), x ER'", Jx-x1 J <e, and I E S'" the point x+ct.l satisfies 
Jx+ d-x1 J <e1 . Let e E (0, e0 ) , x: E Rm, < E Rm, Jx:-x1 l <e, Jx:' -x1 J <E be ar­
bitrarily chosen, and let the feasible control u: ( · ) correspond to x:. For given 
I E S'" one can choose a control u1 ( • ) E V of bounded variation (uniformly in the 
e0-neighbourhood of x 1

) which drives the state of (5a) to x: + e1../. Denoting Lfu1 ( • )= 
= 1-11 ( • ) - u: ( · ) we have . . , • 

T 

I (jJ (T, t) B0 (t) Au1 (t) dt=al, 
0 

where rp (t, -r) is the fundamental matrix solution of (5a) normalized at t=-r. Hence 

T 

I l*rp (T, t)B0 (t) Lfu1 (t) dt=a, 
0 . 

(7) 

where *denotes the transposition. Let o=min{3(T+1)e/ct., 1}. We show that 
there exists an .interval A~ c [0, T]' such that meas L1~ =(o and 

I 1* (jJ (T, t) B 0 (t) Au1 (t) dt~3e. 
' Ll~ 

' 

(8) 

Let L1 1 , ... , Av be a covering of [0, T] such that meas A;::;;o, p=[Tfo]+l. If (8) 
does not hold for each A; then 

r (T ) 3(T+1)e f /* rp (T, t)B0 (t) L1u1 (t) dt<3pe=(3 -y+ 1 e~----;fct.-- ct.~ct., 

which contradicts (7). Introduce the control 

e ( )={u: (t) u1 t ( ) u1 t 

for t e [0, T}"'A~, 
for tEA~. 
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Obviously u~ ( ·) E U and the corresponding final state x: from (Sa) satisfies 

/* (x~- x:);::;:3e. 

Define the set 

Q.=co {x~ ER"', lE S"'} . 

From (9) it follows that for each lE S"' 

I sup /* (x- x:);::;:3e. 

We shall prove that 

(9) 

(10) 

(ll) 

Assume that there exists x E B. such that x ~ Q •. Since Q. is convex, by the separa­
tion theorem there exists lE S"' such that 

l*x~ l*x, Vx E Q •. 

Then 

sup l* (x-x:)~ l* '(x-x:) 

and, taking advantage of (10), we obtain 

3e~l* (x-x:) ~\x-x:\ <2£. 

This contradiction gives us (11). Thus, since x:' E B., then x:' E Q •. By the repre­
sentation theorem x:' can be reached by means of a control u:' ( · ), being a convex 
combination of m+ 1 controls from the set {u; ( · ), lE S"'}. The function Lfu ( · )= 
= u:' ( · ) - u: ( · ) differs from zero on a union of no more than m+ 1 intervals A~ with 
full measure less than (m+ 1) J~ 3e(m + 1) (T + 1)/a. On each interval A~ the variation 
of Au ( ·) is bounded by a constant, which depends on Eo only. By the known es­
timate W (g, y)L, (O,p)~ yV~ g ( ·) for )' E ro, /J), we conclude that there exists a con:­
stant K such that w (Au, o)l ~ke. Taking Co=max {k, 3 (m+ 1) (T+ 1)/a} we com­
plete the proof. 

Observe that the above result is valid without any controllability conditions, 
(e. the interior of the attainable set P can be replaced by its relative interior. More­
over, the boundedness of V is not used. · 

Denote by x0 ( • ) the optimal state and by ] 0 the optimal performance for the 
reduced problem. Let y0 ( ·) be determined by .Y0 ( · ) and u0 ( ·) from (5b). The 
optimal solution of the perturbed problem is denoted by (x"' ( · ), Y;. ( · ), u;. ( · )) 
and 1; .. 

THEOREM 1. 

Proof: Let the sequence {.Ak}, lim .Ak=O, be arbitrarily chosen. Define the set 
k-+ +CO 

K={(x, y) ER"'+", x E P, yE - A4 1 (T) A 3 (T) x+ R}. 
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From (iv) it follows that (xl,y 1) E Int K, hence for s>O sufficiently small there 
exists a simplex G={(x;, y;), ... , (x~, y:)}, p=m+n+ l, such that GcK, lx!-x11 <e, 
i=I, ... ,p, and for some d>O {(x,y)ERm+n, lx-x1 l:::;;de, ly.-y1l:::;;de}cG. 
Using Lemma I we -conclude that there exist controls u! ( ·) E V, i= I, ... , p, such 
that the corresponding states of (Sa) satisfy x (T)=x!, i-=:= I, ... ,p, and u! (t)=u0 (t) 

for a.e. tE [0, T]"""M!, where meas M! :::;;c0 e, i=l, ... ,p. On the other hand there 
exist functions v! ( · ), v! (t) E V for a.e. t E [0, + oo ), i= I, .. . , p, such that 

+eo 

y!= -A;; 1 (T) A3 (T) x!+ J exp (A4 (T) s)B2 (T)v! (s) ds 
0 

for i= I, ... , p. Let the sequence { <Pk f satisfy lim q;k=O, lim q;kfA.k= +oo, q;k>O, 
k-++ co k -+ +oo 

k =I, 2, ... , Define the control 

Iu! (t) 

u!(t)=lv! ( T~t) 
for t E [0, T- q;k), 

for t E [T- q;k, T], 

and let (.X~ ( · ), .:Y! ( · )) be the corresponding state in (2) for A.k. In Lemma 1 of [6] 
it is proved that lim x! (T)=x! and lim .:Y! (T)= Y!· Then for k sufficiently large 

le-++ 00 k-+ + CO 

p p 

Hence there exist numbers rxt, ... , rxf~O, 2; rx!=I , such that if u; ( · )=}; rx! u! ( ·) 
i= 1 1=1 

and ( x~ ( · ), y~ ( · ) ) correspond to u~ ( · ) and A.k in (2), then, for k sufficiently large 

x~ (T)=x\ y~ (T)=y 1
• 

p p 

Without loss of generality, let lim rx~=cx 1 , }; rx1= 1. Define u~ ( · )~ 2; cx1 u! ( · ). 
k--->+oo l=l C=l 

p 

It is clear that u~ (t)=u 0 (t) for a.e. t e [0, T]"""U M! and uz (·)is pointwise con-
l=o 

vergent to u~ ( · ). Let x~ ( · ), y~ ( ·) correspond to u~ ( ·) from (Sa, b). Applying 
Lemma 2.I (iv) from [7] we get that x~ ( · ) converges to x~ ( · ) uniformly in [0, T] 
and .:Y~ ( · ) is strongly L 2 convergent to .:Yt ( · ). Without loss of generality one can 
consider {.:Y! ( · ) } as a pointwise convergent sequence. Since u~ ( · ) and y~ ( · ) are 
uniformly bounded, by Lebe~que's theorem we obtain 

lim sup J-</~ lim J ( x~ ( · ), y~ ( · ), u~ ( · ) )=J ( x~ ( · ), y~ ( · ), u~ ( · )) . (I2) 
k-+ + 00 k-t- + 00 

Now choose a sequence {e;}, lim a1=0. Then ug (·)is convergent in measure to 
(--->+ CO 

u0 ( • ), hence it can be identified with a pointwise convergent sequence. The tra-
jectory xg ( · ) is uniformly convergent in [0, T] to x0 ( • ) and yg ( · ) is pointwise 
convergent to Yo ( · ). Hence 

lim J ( xg ( . ), .Y6 ( . ), U~1 ( • ) ) =1o . (13) 
i-+ +CO 
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On the other hand one can assume that the sequence of the optimal controls 
{u.~.. ( · )} is weakly L2 convergent to some u0 ( ·) E U. From Lemma A in [6) we 
conclude that the optimal state :X;.k ( ·) is uniformly convergent to x0 ( • ), which 
satisfies (3a) and (5a) for u0 ( • ), and Y;.k ( ·) is weakly L2 convergent to y 0 ( • ), 

which satisfies (5b) for x 0 ( • ) and u0 ( • ). Hence, by (iii) 

10 ~] (x0 ( • ), y0 ( • ), u0 ( • ))~ lim inf l;,k. (14) 
k-+ + oo 

Combining (12) and (13) and taking into account (14) we conclude that from 
every sequence {Ak} one can extract a subsequence {A1} for which 

lim 1;.,=10 • 

l-++ oo 

This completes the proof. 

3. Estim!ltes 

In this section we develop the result from the previous section obtaining an 
estimate of the performance convergence rate. We assume that all the conditions (i) 
theough (iv) hold and, moreover. 

(v) The components of the matrices A2 , A 3 , A4 , B2 are !n C1 [0, T]. The function 
f is Lipschitz continuos with respect to (x, y) uniformly in (u, t) E Vx [0, T] for 
bounded (x, y). 

LEMMA 2. Let u~ ( · ), u;.' ( · ) be feasible controls, (x~ ( · ), y~ ( · )) solves (2) for 
u~ (·),and (x~' ( · ), y~' ( · ))is the solution of(5)for u~' (·).There exi~ts a constant 

c1 , which does not depend on u~ ( ·) and u~' ( ·) such that 

l lx~ ( · ) - x;,' ( · )llc~Cl (A+ llu~ ( · ) - u~' ( · )I ILoo), 

IIY;.C)-y~' (·) IIL, ~cl (A+ IIu~(·)-u;.' (·) IIL oo +w(u~',A)l)· 

Proof. Let Y(t, r, A) be the fundamental matrix solution of the equation 
Aj;=A4 (t)y. It is known that there exist constants a0 ,a>0 such that IY(t,r,A)I~ 
::::;a0 exp (-a (t-r)/A) for all t, rE [0, T], t -;? r. Let A4 (t) y~' (t)=g;. (t), g;, (t)=O 
for t<O. Then 

1 T t (j T t · ( t T) 
T J I J Y(t, ~.A) (g;, (r)-g;_ (t)) dr I dt::::;-f J J ~xp . -a ~ x 

0 0 0 0 

T t/.1. 

xlg;, (r)-g;, (t) l drdt~a0 J J e-uslg,~,(t-)s)-g;.(t)ldsdt~a0 x 
0 0 

t/.1. [T/.1.]+1 

x J e-as w{g;,, As) ds+ 0 (A)~a0 }; e-ak w (g.~., (k+ 1) A) 1 + 0 (A)~ 
0 k=O 

+ oo 

~a0 w (g;,, A) 1 }; e-ak (k+ 1)+0 (A)~c2 (w (g;,, A)1 +A). 
k=O 
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Integrating by parts we have 

1 T t 

T J I J Y ( t, r, A) A 4 ( r) y" ( r) dr - y ~ 1 

( t) I dr ~ c 3 ( w ( u ~ 1 

, A) 1 + A) . 
0 0 

Further the proof repeats the arguments in the proof of Lemma 2.1 (iv) from [7]. 

THEOREM 2: There exists a constant c such that 

(15) 

Proof. Although the proof, in principle, goes paralelly to the proof of Theorem 
1, it differs from that in several important details. Therefore we present here the 
complete proof. _ 

Choose vectors ( 1 ERm, l ~ 1 l=l, i=O, ... ,m, such that Oeintco(~1) 1 • There 
exists cx:>O such that for every~~ e Rm, i= O, .:.,m, ~~~-~~~ ~ ex:, one has 0 e co (~;) 1 • 
Let x~=x1 +e~1 , i= O, ... ,m, where e>O. From the choice of~~ it follows that if 
l x~-x~l~cxe then x1 eco(xD1• Analogically, let 171 eRn, 11111= 1,j= O, ... ,m, 
0 E Int co (171) 1, and y1=y1 +d171. For sufficiently small e and d we have (x~, y1) E 

€' Int K. There exists P>O such that ·jf 11]1 -1111 ~p, j = O, ... , n, then 0 E co (1]1). Thus, 
if IJ\-y1 1 ~Pd, then y 1 E co (ji1) 1. Using Lemma 1, for sufficiently small ewe choose 
a control u~ ( • ), which drives the state of (5a) from x 0 to x1, and which differs from 
u0 ( • ) on a set of measure c0 e. Since y 1 e - A:Z 1 (T) A3 (T) x~ + R, there exists 
a measurable function v~1 (·),v~1 (t)e V, te[O, +=)such that 

+oo 

y1= -A4 1 (T) A3 (T) x~+ J exp (A 4 (T) s) B2 (T) v~1 (s) ds. 
0 

For small A define the control 

l
u~ (t) for t E [0, T-OA) 

ut1 (t)= ·(·T-t) 
viJ A for t e [T- 0),, T], 

where 0;;:,1 is arbitrarily chosen. If (xt1 ( • ), ji:1 (·))is the corresponding trajectory 
of (3) then, applying Lemma 2 we have 

lx71 (T)-x~l~c1 (0+ I )A, 

where the constant c1 does not depend on e, 0 and A. Using this estimate we get 

~ J e~p ( A4 (T) T~t) A3 (T) xt1 (t)dt= -A:Z 1 (T) A3 (T) xt (T)+ 
0 . 

( T) 1 r t ( T-s) 
+A4 1 (T)exp A 4 (T)T A 3 (T)xt1 (T)-""f f f exp A4 (T)-A- ds x 

0 0 

xA3 (T) it1 (t)dt= -A4 1 (T) A3 (T) x~+h (0, A), (16) 

where h (0, A) ~c4 (0+ 1) A. Denote by Jlt1 ( ·) the solution of the equation 

A.y=A3 (T) xt1 (t)+A 4 (T) y+B2 (T) ut
1 

(t), y (0)=y0
• 
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As in Lemma 1 from [6] one can prove that I.Yt1 (T)- y;1 (T)I ::s;o;,, where O;. does 
not depend on ut1 ( ·) and lim 0;.=0. Using (16) we have 

:(0;. +c5 (A,+0A+e-u9)'(y (O)+Orp (A), 

where lim y (0)=0, lim ~ (A)=O, y ( ·) does not depend on e and )., and rp ( ·) 
o___, +eo ;.___, + oo 

does not depend one and e. Fix e such that y (0)<f3d/2. Then for each e and)., 
satisfying 

c1 (0+1)A<rxe, rp (A)<f3d/20, (17) 

we have x1 E co (xt1 (T)); for each j=O, .. . ,m. )::his means that there exist rxu'?q, 
m m . m 

.2; rx·u=1, such that x 1 = .2; rx;1 .X;.1 (T). If y1= .2; rxu.Yt1 (T), then ly1-y1/'(/3d, 
t=O i=O i=O 

n n 

hence one can choose f31 ;?:0, .2; /31=1, so that y 1=}; /31 y1• Finally, we get that 
J=O j=O 

m n 

(x1,y1)=.2; .2; rxuf31 (x:1 (T),.Yt1 (T)). Then there exists a control ul(·), which 
i=O j=O 

is a convex combination of the controls ut1 ( • ), and which drives the state of (3) 
to (x\ y 1). Moreover, u~ (·)differs from u0 (·)on a set of measure 0 (A, + e). Let e 
and)., be chosen such thate=2c1 (O:t 1) Ajrx. Then (17) holds and llul ( · ) - 110 ( • )IILoo= 
=0 (A,). Using Lemma·2 we obtain that the corresponding trajectory (x;. ( · ), Y;. ( · )) 
satisfies llx.~.(') - x0 (·)llc= O(J.,) and IIY;.(·)-y0 (')11L,=O(A,+w(i10 ,A)1 ). Since 
1;. '(J ( x;. ( · ), y;. ( · ), u~ ( · ) ), taking into account the assumption (v) we obtain the 
upper estimate in (15). 

Now, let x~ ( ·) be the solution of (5a) for f1;. ( • ). By Lemma 2 we 
have lx~ (T)- x 1

1 = 0 (A,). Applying Lemma 1 we select a feasible control ii;. ( ·) 
driving the system (5a) to x1 , such that llii;. ( · ) - f1;. ( • )IILoo= 0 (A,) and w (ii;., A)1 :( 

'(w (u;., ).,)1 + c5 A,, If (.X;. ( · ), Y;. (·))solves (3) for ii;. (·),then, by Lemma 2:we have 
lli;. (·)-.X;. ( · )llc=O (A,), II.Y;. ( · )-y;. ( · )IIL,=O (J.,+w (ii;., J.,)l)=O (A,+w (u;., J.,)l)· 
Since 10 ~J (x;. ( · ), J;. ( · ), ii;. ( · )), the lower estimate in (15) holds. The proof is 
complete. 

CoROLLARY 1. Let the function f be differentiable with respect to (x, y, u) and its 

derivatives be continuous: the function fo (u, t)=f(x0 (t),-A,:Z 1 (t) (A 3 (t)x0 (t) + 
+ B2 (t) u ), u, t) be strongly convex with respect to u uniformly in [0, T]; the variation~ 

a 
of the matrix B0 (t) and the function ou fo (u, t) on [0, T] be bounded uniformly in 

u E V. Then 1;. -10 '(c6 A. 
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Proof. Using the strong convexity .of the Hamiltonian and the maximum 
principle as in [8] one can show that the variation of u0 ( · ) is bounded. Then the 
desired estimate follows from (15). 

CoROLLARY 2: Let f(x,y, u, t)=/1 (x, u, t)+/2 (x, t)y, where / 1 (x, u, t) has con-
a a a2 

tinuous derivatives -~-Jr. -~-Jr.--;-;- fr. and it is strongly convex with respect 
uX uU uxuu · 

to u uniformly in (x, t). The function f 2 (x, t) is continuously difjerentiable, Ar ( ·) E 

E C1 [0, T] and B1 ( ·) is of bounded variation. Then J;. -10 ??c8 A.ln A. Moreover, 
if B2 =0 then l;.-10 ??-c9 A. 

Proof. Since for small A the point(xl, y1) belongs to the interior of the attainable 
set of the perturbed system (e.g.cf. [6]), then the vectors of the boundary values for 
the adjoint variables in the maximum principle are bounded for A~O. The estimation 
of the adjoint variables leads to the equation 

Az=A4(t)z+p;.(t), z(T)=q;./A, 

where lim sup (lq;.l + max lPJc (t)l)< +=. Its solution has bounded varia-
;.-.o o.;t<;;T+J.lnJ. 

tion on the interval [0, T +A In A]. Then, using the strong convexity of the hamil-
tonian in the maximum principle one can get 

w (u;., A)r ~w lu;., A)L, (o, T+J.tn ;.1 - 2A In Allil;. ( · )IILoo ~- c1 o A ln A. 

We note that there are examples for which the variation of u;. ( ·) is unbounded 
for A~O. If B2 =0, the adjoint variables which reduce, are not involved in the 
maximum principle. In this case the estimate 0 (A) is exact for the class of problems 
considered. 

References 

[I] KoKOTOVIC P. V., O'MALLEY R. E. Jr., SANNUTI P.: Singular perturbation and order reduction 
in control theory. Automatica, 17 (1976) 2. 

(2] KoKOTOVIC P., ALEMONG J.J., \VINFELMAN J. R., CHOW J. H.: Singular perturbation and 
iterative separation of time scales. Automatica, 16 t)980) 23-33. 

(3] DoNTCHEV A. L., GrcEv T. R.: Convex singularly perturbed optimal control problem with 
fixed final state. ControllabJiit:y and convergence. Math. Operationsforsch. Statist., Ser. Opti­
mization, 10 (1979) 3. 

[4] Mop,~:~yxomPI E. Ill.: CymecTByaamr'e onTHMa!lbHbiX ynpaaneJrull:. B c6. CoapeMeiDihre npo-
6neMbi Ma1'eMaTIIKH, pe,~:~. P. B. raMKpeJIH,!I3e, T. 6, MocKBa 1976. 

[5] AuMANN R. J.: Integrals of set valued functions. J. Math. Anal. Appl. 12 (1965) 1-12. 
[6] DoNTCHEV A. L., VELIOV V. M.: Singular perturbatio11 in the problem of Mayer, to appear. 
[7] DoNTCHEV A. T~.: On the order reduction of optimal control systems. Proceedings of the Task 

Force Meeting on Model Validity and Credibility, IIASA, Laxenburg 1980. 
[8] DONTCHEV A. L.: Efficient estimates of the solutions of perturbed control problems. J. Optim. 

Theory and Appl. 36 11981) 1. 

Received, November 1981 



28 A. L. DON'rCHEV, V. M. VELIOV 

Pewne zadanie sterowania optymalnego dla ukladu 
z osobliwoscil! przy ograniczeniach na sterowanie i przy 
ustalonym stanie koncowym 

Rozwaiane jest zadanie sterowania optymalnego dla ukladu liniowego z malym parametrem 
przy pochodnych i z calkowym funkcjonalemjakosci. Stan poczqtkowy i stan koncowy Sq ustalone, 
sterowania dopuszczalne Sq elementami wypuklego zbioru zwartego. Badana jest zbie:i:nosc opty­
malnej wartosci funkcjonalu jakosci w funkcji malego parametru. 

lleKOTOpaH 3a~aqa OOTHManLHOrO yopasneunH ~nH CHCTCM 
c oco6euuocTLIO opu orpauuqeuunx rro yrrpasneuu10 u Ja­

~HKcuposauuoM KOHequoM COCTOHHHH 

PaCCMaTp'!IBaeTC.H 3ap;a'!a OllTHMaJlbilOfO ynpaBJiellHH ,!IJI.H JIIIHeHilO:li: CMCTeMbi C MaJibiM 
napaMeTpOM JJ;Jl.H npoM3BO,!IHbiX M 'lfiiTerpaJlblibiM <!Jyll:KIJ;IIOliaJIOM Ka'leCTBa. Ha'laJlbHOe M KO­
He'!liOe COCTO.HHMH 3a<!JMKCHpOBalibi, .lJ;OllYCTMMbie yrrpaBJieliMJl HBJI.HIOTCH :meMetl'I'aMM BbinyKJIOfO 
KOMIIaKTllOfO MliO:>KeCTBa. Hccrrep;yeTCJ{ CXOJJ;MMOCTh OllTUMaJihliOfO 3lia'IeliUH <!Jya:KW£OHaJia 
Ka'leCTBa B <!Jya:Ku;rrn Marroro napaMeTpa. 


