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The paper concerns an optimal control problem with uncertainity in the state equations. Ne
cessary conditions for a control to be a minmax open-loo\) control are presented. 

1. Introduction 

In the paper we consider an optimal control problem where uncertain, time-vary
ing parameters appear in the state equations. We assume that the nature or an 
opposer may choose values of the uncertain parameters to maximize the cost which 
the controller is attempting to minimize. There is sought a control which a,chives 
the best guarenteed performance; that is, a mim~ax control. We adopt the open-loop 
model; that is, we assume that control functions depend only on time, no feed backs 
are allowed. 

Necessary conditions for a minmax control presented below reduce in the case 
.with no uncertainly to the local maximum principle. Such and similar minmax 
control problems have been considered among others in [1], [2], [6]-[12]. 

2. Problem Formulation · 

Consider the following control system: 

{
X (t)=f(t, X (t), U (t), V (t)) 
X (0)=x0 

(2.1) 

where te [0, 1], the state x(t)eRm, the control u (t)e UcRP, the uncertain pa
rameters v(t)e VcRq. 

We assume that control functions u (t) and uncertain functions v (t) are me
asurable functions defined on the interval [0, 1] and the sets U and V in which 
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they are bound to take values are given compact subsets of euclidean spaces. As
sume moreover that U is convex. Denote by vlt and ...¥, respectively, the sets of 
all control functions and uncertain functions . 

Assume that the right - hand side f: [0, 1] x Rm x Ux V ~R'" of the state equa
tion satisfies the following conditions; 

(A1 ) f( ·, x, u, v) is measurable in t for each fixed (x , u, v) f(t , ·, ·, ·) is continuous 
in (x, u, v) for each fixed t . 

(A2 ) The derivatives j, (t, x , u, ~·), fu (t, x , u, v) exist and are continuous in (x, u, v) 
for each fixed t. 

(A 3 ) For every r > O there exists a function k,(t), k,.(t)e£1 [0, 1], such that: 

lf(t, x1o u, v)-f(t, x2, u, v) J ~k, (t) Jx1 -x2l 

for all t E ro, 1], u E U, V E V and xl, Xz from the ball B (0, r)={x E Rm [lxl~r}. 

(A4 ) There exist functions a (t), b (t) both belonging to L 1 [0, 1] such that: 

I f(t , x, u, v)J ~a ~t) Jxl +b (t) 

for all x e; Rm, u E U, v E V. 
Conditions (A1)-(A4 ) imply that all trajectories of (2.1) are uniformly bounded 
i.e. lie in a ball B (0, f) in Rm. Assume moreo'<er that: 

(A 5) There exists a function l (t) EL; [0, 1j such that : .. 
lfx (t, X , u, v)J ~~ (t), Jfu (t, X , u, v) J ~~ (t) 

for all X E B (0, f), U E U, V E V, t E [0, 1]. 
By V [0, 1] above we denote the space of integrable real functions on [0, 1]. 

Let h: Rm~R be a given locally Lipschitz function. Consider the following 
problem with the terminal cost function h: 

min sup h(xu( · ),v (· )(l)) 
u(•) E,;It v (·) E..V 

:where xu c.), v c.) ( · ) denotes the trajectory of (2.1). Corresponding to the pair u ( · ), 
v ( · ). We seek for a necessary condition for a control u* (t) to be a minmax control; 
that is to satisfy the following relation: 

sup h (X:c·J)v(·) (I))= min sup h (xu( · ), v ( · ) (1)). (2.2) 
v (•)E ..V u( • ) EAI v( • ) E..V 

In other words u* (t) minimizes over the set .A the functional I (u (·))defined for 
all u ( ·) E .A as follows : · 

I(u('))= sup h(xu(· ),v(·)(1)). (2.3) 
. V (·)E .,.V 

Control problems with uncertainities were considered in many papers, some 
of them are quoted at the end. In [1], [6] uncertainity appears in the initial state. 
This case can be transformed to the form (2.1) with the additional condition that 
functions v (t) are constant. Such a problem is essentially easier as uncertainity 
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is finite dimensional. The papers [1], [6] contain necessary conditions for minmax 
controls in this case. Finite dimensional uncertainity is treated also in [2], [12]. 
Uncertanities in the state equation of the form (2.1) are considered in [9] where 
sufficient conditions for minmax controls are given. Necessary conditions for such 
problems are presented in (8] for a linear case and in [7], [10] for nonlinear. The 
conditions in [7], [10] corespond to the maximum principle and are obtained und'er 
additional assumptions. Namely, in [10] there is assumed that a minmax control 
u ( ·) under consideration remains optimal when the problem is convexified in u 

what for minmax problems often does not hold, while in [7], roughly speaking, 
there is assumed that for, u* the solution v* of the corresponding maximization 

' problem is unique. The cost function h is usually assumed to be C1 , while we 
require it to be locally Lipschitz only. 

3. The main theorem 

We start with relaxing the problem in the parameter v. We follow the procedure 
described by Warga in [11]. 

Denote by C (V) the Banach space of continuous real functions defined on V 
and its norm by I · lsup- -

Let !!lJ=ff4 ([0, 1], V; R) denotes the vector space of equivalence classes of func
tions rp: [0, 1] X V--+ R such that rp ( ·, v) is Lebesgue measurable on [O; 1] for each 
v e V rp (t, ·) E C (V) for t e (0, 1] and moreover there exists a function !f1 'P ( ·) e 
E V [0, 1] for which the following inequality holds: 

lrp (t, · )lsup:(!f/'P (t) for t E [0, 1]. 

Two elements rp 1 , rp 2 are identified if rp 1 (t, ·)=rh (t, ·) for almost all t e [0, 1]. 
Then for each rp e !!lJ the function t--+lrp (t, · )lsup is integrable on [0, 1] and 

1 

I rpl&/1= J I rp (t, ·)lsup dt 
0 

is a norm on !!lJ. It can be shown that (ff4, I· 1&11) is a separable Banach space. 
Next, let frm (V) denotes the space of Radon measures on V i.e. dual of C (V). 

For each element v e frm (V) we denote by lvl the variation of v over the set V. 
Take the space 2 of equivalence classes of functions J1: [0, 1]--+frm (V) such that: 

ess sup lf.l (t)l > + oo 
!E[O, 1] 

and moreover for each element c e C (V) the function t--+ J c (v) f.1 (t) (dv) is 
V 

measurable. We identify two elements f.1 1 , f.12 if f.1 1 (t)=f.12 (t) a.e. te [0, 1]. The 
essential supremum is a norm in 2. It can be proved that for each rp e rJ4, f.1 e 2 
the function 

t--+ J rp (t, v) f.1 (t) (dv) 
V 

is integrable 
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The space 2 (cf[ll] Th. IV 1.8.) can be identified with the dual PJJ* where the 
duality is given by: 

1 

(p, cp)= J dt J cp (t, v) p (t) dv for J1 e 2, cp e f!lJ (3.1) 
0 V 

and 
ess sup !p(t)!=!p! 811 .= sup (p. rp). 

tE [0,1] f<t>fe?i,; 1 

The space f!lJ is separable therefore the unit ball in PJJ*~.P · is sequentially compact 
with .respect to the weak star topology. Define the following subset of the unit ball 
which we shall take as our set of relaxed disturbarces: 

!/'={p E .Pip (t) E rpm (v) a.e. t E [0, 1]} 

where rpm (V) denotes the set of Radon probability measures on V. We can identify 
the set JV with the following subset of !/': 

!/',v={p E .Pip (t)=Ov(t) a.e. for some v ( ·) E %} 

where <>v (tJ denotes the Dirac measure at v (t). 

The set !/' is weakly sequentially closed hence weakly sequentially compact 
and !/',v is dense in !/' with respect to the weak star topology ( cf'[11 ]). 

Take p E [!', a control u ( ·) E..# and define the trajectory x ( · )==xll, u ( ·) cor
responding to the pair (p, u) as a solution of the following equation: 

l X (t)==! f(t, X (t), U (t), V) p ( t)(dv) 

X (0)=X0 

(3.2) 

One can check that for each p E !/' the function jll (t, x, u)= J f(t, x, u, v) p (t) (dv) 
satisfies all asumptions (A1)-(A5 ). Moreover we have: v 

J: (!,X, u)= J fx (t, X, u, -u) p (t) (dv), J.: (t, X, u)= J fu (t, X, u, v) p (t) (dv) 
V V 

for x e Rm, u E..#, t E [0, 1]. Hence there exists a unique solution of (3.2) on [0, 1] 
and all trajectories of (3.2) are uniformly bounded. We can assume that they lie in 
the same ball B (0, f). 

If follows from Th.V.6.1. of [11] (as well as from Lemma 1 of the next section) 
that if we take a weakly convergent sequence Jln ~-+ Jlo of elements from [!' then for 
each fixed u ( · ) E ..# the corresponding trajectories xll", u ( • ) converge uniformly 
on [0, 1] to the frajectory xll

0
, u ( ·) This together with the density of !/',v in !/' 

implies that for each u ( · ) E ..# the following equality holds: 

J(u)=sup h(xu,v(1))=maxh(xll,u(l)) (3.3) 

Define for each u E= ..# the set: 

M (u)={p E !/'/h (xll,u (1))=1 (u)}. 
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The cost function h is locally lip~chitz hence it can be d~fferentiated in the Clarke's 

sens. The simbol oh (x) below refers to Clarke's generalized gradient (see [3], [4]). 

By < · , · ) we denote below the usual scalar product, superscript T denotes the 

transposed matrix. 

We can state now our necesary condition for a minmax control. 

THEOREM 1. Let u* E .1/1 satisfies (2.2). Then the following condition holds: · 

1 

min max max J < J J;[ (t, u* (t) , x"•·~' (t) , v) (3.4) 
u( ) <At Il E A/ (u *) CE8h (xu* 1, ( 1)) 0 V 

J.l (t) (dv) lf/11 ,, (t), u (t)- u* (t) < dt=O 

where lf/11 ,, is the solution oj'the following equation: 

lifr11,c (t)=- J f'I (t, u* (t) , xu ., 11 (t) , v) jl (t) (dv) lf/11 ,, (t) 
V ' 

lf/1',, (1)=( ' 
(3.5) 

' 
It is easy to see that in the case when f(t, x , u, v) does not depend on v and h 

is C1 then (3.3), (3.4) reduce to the well-known local maximum principle for the 

optimal control u*. 

4. Proof of .Theorem 1 

Denote by- L oo ([0, 1]; RP) the Banach space of essentially bounded functions 

on [0, 1] taking values in RP. Let ue.l/t,J.lE!/, iieL00 ([0, 1];RP). Denote by 
-

Jx~. 11 ( ·) the solution of the following linear equation : 

l 
Jx~ . 11 (t)= J fx (t, xu, 11 (t), u (t), v) J.l (t) (dv) Jx~. 1, (t) + 

V + J J., (t , X u,lt (t), U (t), v) f.l (t)(dv) ii(t) 
V 

ox~.ll (0)=0 

(4.1) 

We start with the following 

LEMMA 1. Let u, E .1/1 n= 1, 2, ... be a sequence of controls convergent a. e. in lO, 1] 

to a control u0 , J.ln e !/ n= 1, 2, ... a weakly convergent sequence p, ~~ J.lo· Then for 

each ii e L oo ([0, 1]; RP) we have : 

- -
Jx~ •. 11 (t) -t bX~0 , 110 (t) 

uniformly for t E [0, 1]. 

3 
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Proof: Denote X11 ( • )=X11" , 11 " ( • ), X0 ( • )=X110 , 1,
0 

( • ). We have from (2.1) and 
assumptions (A1)-(A4 ): 

t 

lxn (t)-Xo (t)i=[ J (J f(r, xn(-r), un ('r), v) .Un (r)(dv)-
o V 

t 

-J f(r, Xo (r), ~o (r), v) ,Uo (r) (dv)) dr ~ ~If (IJ(r,Xn(7:)U11 (7:),v),un(T)(dv)-
V 0 V 

t 

-J f(t,x0 (~),u .. (r),v),u.(r)(dv))dr [+[J(J f(r,x0 (r),u11 ( ),.v),u.(~)(dv) -
v - 0 V .. 

t 

-J /(r,x0 (r),u0 (r)v),u0 (r)(dv))dr l ~ Jk~(r)lx.(r)-xo(r)I+IZ.(t)l+lr.(t)l 
V 0 

where 
t 

z.. (t)= J J f( r, x 0 (r), .u" (r), v) ,u" (r)(dv)·- J f(r, x 0 (-r), u0 (r), v) .Un (r) (dv) dr 
0 V V 

t 

r.(t)= J jf(r,x0 ,(r),u0 (r),v),u.(r)(dv)- J /(r,x0 (r),u0 (r),v),u0 (r)(dy)dr. 
0 V V . 

We have that r,. (t)-tO for every t 'e [0, 1] because of the weak convergence 

.un~~ llo (see (3.1)). 

All derivatives r11 (t) n= 1, 2, ... are uniformly bounded on [0, 1] by an inte
grable function 2a (t) r+b (t) (see (A4 )). Therefore rn (t) are uniformly bounded 
and equicontinuous functions on [0, 1] thus r11 (t)-tO uniformly forte [0, 1]. In order 

to estimate ln (t) notice that for eachn the function rpn (r)=sup 1/(r, x0 (r),un (<), v)-
, vev 

- f( r, x 0 (r), u0 (r), v )I is measurable since/(<, x, u, ·) is continuous and integrable 

since (A4 ). Moreover: 
t 

iln(t)i~ J rp11 (r)dt. 
0 

Take i such that in (u)-tu0 (i) then from uniform continuity of /(r, x, ·, ·) on 
Ux V we obtain that rp11 (i)-tO. Thus rp 11 (r)-tO a.e. for re [0, 1]. All functions r 

rpn (r) are. uniformly bounded by an integrable function since (A4 ). Therefore ln (t)-tO 

for t e [0, 1] and by the same argument as before we obtain that ln (t)-tO uniformly 

for t e [0, 1]. Denote Cn==='' sup (lrn (t)l + !l" (t)l). We have from Gronwall's in-
equality that: t e [O , ll 

1 

Jk;(r)dr 1 

· lxn(t)-x0 (t)l~Cn+eo Jcnk;(r)dr foreachte[0,1], 
0 

therefore X 11 (t)-tx0 (t) uniformly for t e [0, 1]. 
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In order to prove the second part we put W=B (0, f) x instead of U, w=(x, u) 
instead of u and consider the function: 

g (t, y, w, v)=fx (t, w, v) y+ f,, (t, w, v) u (t) 

instead of f(t, x, u, v). From the first part we have 

Wn (t)=(x" (t), un (t))~w0 (t)=(x0 (t) , ~ 0 (t)) a.e . t e [0, 1] 

The function g satisfies assumptions analogous to (A1)-(A4 ) and we come to the 
conclusion as before. 

We proceed to prove the Theorem. Take an arbitrary element u ( ·) E .A and 
denote ii(t) = u(t)-u*(t). For each se[0,1] the function u.(t)=u(t)+su(t) be
longs to .A since U is convex. The control u* satisfies (2.2) so for each se [0, 1] 
we have: 

max h ( xu,, Jt (1)) -max h ( x,., 1, (1)) 
11 f? s Jt E s 

s 
- - --:;:::0 (4.2) 

Take a sequence sn~o. Choose fln eM (u.J We can assume taking eventually 
a subsequence that fln ~--+ Jlo, Jlo e !/. From Lemma 1 we easily obtain that 
Jlo EM (u*). From (4.~) we deduce the following, inequality: 

h (x,, ·''" (1))-h (x"••~'n (1)) 
n :;;:o for each n= 1, 2, , ... 

Sit 

Applying the mean-value theorem for generalized gradients (see [4]) we obtain 
that there exist for every n= 1, 2, ... a number An E (0, 1) and an element 

such that: 

<(", Xu, •~'n (1)-X" • •~'u (1)) 
" ;;:,0 for each n=1, 2, .... 

Sn 
(4.3) 

Fix an arbitrary f1 e 9, ( E Rm and consider the following function: 

rp~<, C (s)= ((, x,,, ~<(I)) s E [0, I]. 

The function is differentiable for s E (0, 1) and its . right-hand side derivative at 
s=O exists and: 

-
where ox: .. ~< is the solution of ( 4.1 ). 
Applying the mean-value theorem for rp~< , n (s), se [0, sit] we obtain from (4.3) 

I "' I 
that there exists Bn E (0, s.) such that: 
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- - -
From Lemma 1 we have that xu. ,u,. (l)~xu •• uo (1) and 6x~0 , 11" (l)~ox~ •. JLo (1) as 

. n · n 

n~+oo. The sequence (" is bounded since all gradients ah (x) are uniformly 
bounded in a neighbourhood of xu. 110 (1) so we can assume that (n~(0 • By the 
upper semicontinuity of the generalized gradient we deduee that ( 0 e ah ( X 11 •• 110 (1) ). 
Therefore ( 4.4) gives that: · 

(4.5) 

and (o E ah ( xu •• Jlo (1)), flo EM (u*). 

Take VJ1,0
, eo (t) which satisfies the following equation: 

!VIuo,Co (t)= -VJ J: (t, u* (t), xll •. l'o (t), v) flo (t) (dv) w_Jlo,Co _u) . 
-(4.6) 

Vf11o,C0 (l)=(o -

It follows from (4.5) that: 

- Jl d -
>Ill (1) ox" (1))- - ('" (t) <Jx" (t)) > >-0 'I'Jlo,Co ' u.llo - dt 'I'Jlo,Co' Jlo•u• :;.---

0 

~he latter inequality together with (4.6), (4.1) imply that: 

1 

J < J fuT (t, U* ~t), X"•• 110 (t), V) flo (t)(dv) V/110 , Co (t), ii (t)) >dt~O 
0 V 

what completes the proof of Theorem 1. 

5. Suboptimal solutions 
-..._ __ 

Ckearly a minmax control u* for the problem under consideration may not 
exist. The following Theorem 2 concerns the case when there is no minmax solutions. 
Theorem 2 states that close to any suboptimal solution always exists another sub
optimal solution which approximately satisfies the necessary condition of the pre
vious section. Let d=2 max {lul: u e U}. 

THEOREM 2. Let w. eA be such that 

I(w,)'( inf I(u)+e 
uEAt 

Then there exists u. e A such that 

I(u.)~ inf I(u)+e (5.1) 
uE At 

ess sup Ju. (t)-w. (t)/'(ye 
tE[O,l] 

~- - -------------
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and moreover u, satisfies the following condition-: 

1 

max max J<JfJ(t,xu,,JL(t),u.(t),v) x 
llE.At(u,) {E8h(xu, ,u(l))o v 

x11(t)(dv) lflll '· (t), u (t)-u. (t)) ~dt~-v'e · d 

for each u E A where lfl JL, , (t) is defined by (3.5) with u* replaced by u,. 

Proof. The set A is a closed subset of L 00 ([0, 1]; RP) therefore it is a complete 
metric space with the norm of L oo · I (u) is continuous on A since Lemma 1 and 
weak sequential compactess of Y so Ekeland's theorem of (5] may be applied. 
We ded?ce that there exists u. EA satisfying (5.1) and such that: 

I(u)+ y e ess sup iu(t)-u. (t)i ~I(u.) 

for ·each u EA. Take an arbitrary u e .#, define it=u-- u. as befote, and u =u.+sit 
for se [0, 1]. The latter inequality implies that : 

I(u •. )-I(u.) . _ 
~ -1/ed for se:(O,l)]. 

s 

We proceed next as in the proof of Theorem 1. • 

Theorem 1 {as well as Theorem 2) can be restated in the case when his <:;1 with
out using relaxed functions in the following way. Let Sub6 (u) denotes for each 
u e A , o~ O the subset of .;V defined as follows : 

Sub6 (u)=={v E .;V: h (xu, v (l)) ::S:: l(u)+o} 

Assume additionally that the cost function h is of the class C1
• Then Theorem 1 

Lemma 1 and the density of .;V in Y imply easily the following. 

COROLLARY 1: Let u* satisfies (2.2). Then for every 8>0 the following condition 
holds: ' 

1 

min sup J (fur (t, u* (t), xu., vCt), v (t)) lflv (t), u (t)-u* (t)) dt~O 
uE .At vESub8 (u 0) 0 · 

where 

{ 
ljfv (t)=-f: (t, xu., v (t), U* (t), V (t)) lflv (t) 
ljl (l)=h' (xu.,v (1)). · 

Similarly in Theorem 2 the set M (u.) can be replaced by Sub 8 (u.) for every <5>0. 

6. Examples 

Consider the following system on the plane, x=(xh x 2 ) e: R 2
: 

l
xdt)=Xi (t)+u(t)v(t) . 
x 2 (t)=u(t)+v(t) U=V=[-1, 1], te[O, 1] 
X (0)=0 

h (x )=x1 -Xz . 
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First we notice that since V is convex and the parameter v appears in the dynamics 
linearly passing to the set !/ does not give anything new and we can consider ,AI' 

instead of!/. Every of the conditions under consideration which holds for an element 
fJ. e !/ holds for the coresponding v (t)= J VJJ. (t) (dv) e ,AI' as well. 

V 

Take and fix u e .A. We shall determine the set M (u) with the aid of the maximum 
principle. 

I 

The odjoint equation takes the following form: 

{
tiJ1 (t)=O 
tiJ2 (t)= -lf/1 (t), If/ (1)=(1, -1) 

Therefore for each pair u e .A, v e% the adjoint function is the following If/ (t)= 
=(1, - t). Therefore the maximum principle gives that each element of the set 
M (u) is of the following form: 

1
1 if u (t)-t>O 

v(t)= -1 if u(t)-t<O 
arbitraty if u (t)=t 

Theorem 1 gives that if u* e .A is a minmax control then for each u e .41: 

1 

max J (v (t)-t)(u (t)-u* (t)) dt ;;::,O 
vEM (u) 0 

In particular ( 6.1) has to hold for u (t)_= t. Denote 

A 1 ={t: u* (t)-t>O}, A 2 ={t: u* (t)-t<O} 

The condition (6.2) for u (t) = t gives that: 

J (1-t)(t-u* (t))dt+ J (-1-t)(t-u* (t))dt ;;::,O 
A, A 2 

(6.1) 

(6.2) 

But the la~ter inequality holds if and only if both set A1 and A 2 are of the Lebesque 
measure zero. Therefore the only control which can satisfy the condition of Theorem 
1 is u* (t) = t and satisfies indeed as for such u* (t) the set M (u*)=% and (6.2) 

-holds as we can putv(t):=t. The control u* (t)=t is a minmax control really what 
can be checked by the direct analysis of the following expression: 

1 t 1 1 

h(xu,v(l))=j J u(s)+v(s)dsdt+ J u(r)v(r)dr- J u(r)+v(r)dr 
0 0 0 0 

Integrating by parts the double integral we obtain: 

1 

h (xu ,v ~1))= J (u (t)-t)v (t) - tu (t) dt 
0 
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So we see that M (u) consists of the elements satisfying (6.1) and u* (t)=t is the 
only . minmax control as: 

1 1 

I(u)= J lu (t)-tl-tu (t)= J lu (t)-t f-(u (t)-t) t-t 2
): 

0 0 1 1 

~ J lu (t)-tl (l-t)-t 2
):.:.:_ J t 2 =l(u*) 

0 0 

an the latter inequality becomes equality iff u (t)=u* (t). 
The second example shows that the most natural generalization of the strong 

maximum principle does not hold in general for minmax problems. Consider the 
following system: 

{
x=(u-v)2 

X (0)=0 u, V~ [0, 1], X ER, t E (0, 1] 

h (x)= -x 

The condition of Theorem 1 holds here for every u EA since fu=2 (u-v) and 
v (t)=u (t) always belongs to M (u). In fact all u EA are minmax controls. Take 
u* :=0 It is easy to see that M (u*)={v*}, v* :=0, If/* (t)=lf/~:, (t)= -1, where 
(=h' (x)= -1, xu.,v. (t)=x* (t):=O, 

If/* (t)f(t, x* (t), u, v* (t))= -1u2 = -u2 

So we see that the control u*=O maximizes the hamiltonian along x* (t), v* (t) 
instead of minimizing. In the latter example u* satisfies along If/* (t), x* (t) cores
ponding to u*, v* EM (u*) the following equality: 

max If/* (t)f(t, x* (t), u* 'l. )=min max If/* (t)f(t, x* (t), u, v). 
vEV uEU aEV 

This does not hold in general either as shows the following example 

{~(o~:~ xeR, u,ve[-1, 1], h(x)=lxl, u*=O. 
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Warunki konieczne dla minimaksowego zadania sterowania 

Praca dotyczy minimaksowego zadania sterowania z niepewnoscill wystc::puj~Cll w r6wnaniu 
stanu. Podane s~ warunki konieczne na to aby sterowanie bylo minimaksowe w klasie sterowan 
typu open-loop. 

Heo6xo.rt:HMLie ycJioBnH .rt:JIH MHHHMaKcuoii 3a.rt:a'ln 
ynpaBJieHHH. 

B pa6ore paccMarpHBaercSI MHID!MaKCHa Ja)la'la ynpaBnemm c Heonpe,!J.eneHHoCThiO B ypaB
Hemm COCTOSIHHS!. IJpe)1CTaBMeTCSI He06XO,ll.HMbJe YCJTOBHH .z:t:M TOTO 'IT06h! ynpaBJTeRHe HBMJTOCh 
MHID!MaKCHh!M B KJTacce rrporpaMMHhiX ynpaBJTeHHH. · 


