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A simple numerical method for solving nonlinear two-point boundary value problem by using 
an optimization technique is proposed. It is shown that under some assumptions the solution of 
nonlinear problem can be computed by solving an auxiliary optimization problem. Several nu­
merical examples are presented. 

1. Introduction 

In this paper we propose a simple numerical method for solving nonlinear 
two-point boundary- value problems by using an optimization technique. 

Optimization technique was used for example in [1] and in [4] in order to solve 
some nonlinear differential equations. 

In section 2 we formulate a simple nonlinear two-point boundary-value pro­
blem. We prove under some assumptions that the solution of nonlinear problem can 
be obtained by solving an auxiliary optimization problem (P). We define a family of 
finite dimensional optimization problem (Ph) where h is a parameter of approxima-
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tions. For a fixed parameter h>O the problem (Ph) can be solved numerically. We 
proye convergence of the sequence of solutions of problems (Ph) to the solution 
of the problem (P). 

In section 3 we present several numerical examples. In order to solve nonlinear, 
two-point, boundary-value problems numerically we use two approaches. 

First we formulate auxiliary optimization problem, and for a fixed parameter h 
we solve the resulting optimization problem by using the Davidon~Fletcher-Powell 

algorithm of nonlinear programing. 

The second approach consists in solving directly the nonlinear boundary-value 
problem by using Newton's method. 

2. Statement of the problem and approximation 

Let us consider nonlinear two-point boundary value problem 

d [ ( . dy ) dy ] -dt a t,y(t), dt(t) dt(t) +qy(t)=f(t) t E (0, 1) 

y (O)=y (1)=0 

(2.1) 

(2.2) 

where q is a non negative constant and/(·) E U (0, 1) . We assume that there 
exists a unique weak solution ji ( ·) E H6 (0, 1) to (2.1) (2.2). For sufficient conditions 
"of existence and uniqueness of the solution, we refer to [2]. 

It there exist constants rx and M such that 

(
. d- ) 

· · O<rx:(a t, ji (t), ~ (t) :(M for almost all t e: (0, 1) (2.3) 

then the solution ji ( · ) can be computed by solving the following optimization 
problem: 
(P) minimize the cost functional 

1 
1 

[ ( dw ) ]2 J(u)=Tf a t,w(t),dt(t) -u(t) . dt 
0 . 

(2.4) 

over .the set Uact={u (·)la< u (t)~M a.e. in (0,1)} . 
where the function w ( ·) E H 0 (0, 1) satisfies the following linear two-point boundary~ 
-value problem: 

- ~ [u(t) ~~ (t)]+qw(t)=f(t) 

w (O)=w (1)=0 

tE (0, 1) (2.5) 

Indeed, it is easy, to seethat the optimal solution ·u (·)to (P) has the following form 

( 
" a- ) 

u (t)=a t, ji, (t), ; (t) a.e. in (0, 1) (2.7) 
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On the other hand if u* ( ·) is an optimal solution to (P) then J (u*)=O and 

( 
dw* ) 

u* (t)=a t, w* (t), dt (t) , te(O, I) (2.8) 

where w* is the solution to (2.5), (2.6) corresponding to u*, Hence w* is a solution 
to (2.1), (2.2). We assume that the function a(.,.,.) satisfies the following conditions: 
(A1) function a(., 1J, ~): R~R is measurable on the interval (0, 1) for every pair 

(1J, ~) e R2
• 

(A2) function a (t, .,.): R X R ~R is continuous for a .e. t e (0, 1). 

In order to solve the problem (P) numerically, we define a family of finite di­
mensional problems {Ph}, h= 1/n, n= 1, 2, ... 

It can be shown that under some conditions the sequence of optimal solutions 
{uh} of problems (Ph) converges in some sense to the solution u of the problem {P). 

We construct the problems (Ph). Let n ~ 1 be a given integer. Let Vh be the space 
of continuous piecewise linear functions on every subinterval 

[ih, (i+ 1) h], i=O, ... ,n. It is clear that a set of functions {qy1 }~=o is a basis 
in Vh, where 

l -~t+1 te[O,h] 
(/Jo (t) = h ' 

0, otherwise 

[ ~ t+l-i, t e ((i-1) h, ih] 

qy, (t)=j 1 . . 
-ht+1+l, t e (ih, (i+ 1) h] 

( 0, otherwise 

i=1, ... ,n-1 

l ~ - t+1-n, tE((n-l)h,nh] 
(/Jn (f)= • 

0, otherwise 

The problem (Ph) is defined in the following way: 
(Ph): minimize the cost functional 

1 
1 

[ ( dwh ) ]
2 

Jh (uh) = 2 J a (t, wh (t) dt (t) - uh (t) dt 
0 . 

over the set 

(2.9) 

(2.10) 
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where w11 (·) satisfies 

wh ( ·) eVh nH6 (0, 1) 

1 
[ dwh d(/11 · · ] 

1 

J uh (t) dt (t) dt (t)+qwll (t) (/J; (t) dt= J f(t) (/11 (t) dt, V(/11, 

0 . 0 . 

i=l, ... , n-1 (2.11) 

Denote by u11 an optimal solution to the problem (P11). We have the following 
result concerning convergence of the sequence {u11}. 

LEMMA 1 : If there is a convergent subsequence { u11,} c:: { u11} such that 

(H1) u11 , (t)-l-it(t) a.e. in (0, 1) 

then the corresponding sequence {w11,} of solutions to (2.11) converges to the solution 
of (2.1 ), (2.2) i.e. 

w11,_;ji in the norm of H6 (0, 1). . (2.12) 

Proof: We denote by w11 e V11n H~ (0, 1) the unique solution to (2.11) correspond­
ing to u11 (t). It can be shown that assumption (H1) implies [5] the convergence of 
sequence { w11} of solutions to (2.11) i.e. : 

Wh-l-W in H~ (0, 1) strongly (2.13) 

where we H~ (0, 1) satisfies the equation 

d [ dw ] -dt u(t) dt (t) +qw(t)=f(t) a.e. in (0, 1) (2.14) 

Let ji ( ·) be the solution to (2.1), (2.2) and denote by Ct (t' an optimal solution 
to (P) i.e.: 

Ct (t)=a (t, ji (t), : (t)) for a.e. t e (0, 1) (2.15) 

Let {v11} be an arbitrary sequence such that 

vh E Vh, rt.~vh (t)~M a.e. in (0, 1) 

and for h.tO: 

(2.16) 

It can be shown that 

O=lim J 11 (vh)~lim sup Jh (u11,)):lim inf J 11,(u11,)):0 (2.17) 

hence 

h' } 0 h' } 0 h' } 0 

lim J (uh,)=O 
h' }0 
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Le.: 

a.e. in (0, 1) (2.18) 

Combining (2.18) with (2.13) and (HI) we obtain 

a (t, w (t), :; (t) )=u (t) a. e. in (0, I) 

Hence by (2.I4) it follows that w ( ·) satisfies (2.1) (2.2). Let us consider the par­
ticular case of the problem (2.I) (2.2) i.e.: 

-! [a (t, y (t)) ~ (t)]+qy (t)=f(t) a.e. in (0, 1) (2.1)' 

y (O)=y (I)=O (2.2) 

We define the family {P~} of finite dimensional optimization problems in the 
same way as before: 
(P~): minimize the cost functional 

I 1 

Ih(uh)=2 Jra(t,wh(t))-uh(t)]Zdt (2.19) 
0 

over the set (2.10), where wh ( ·) is the solution to (2.11). 
Let uh ( · ) be an optimal solution to the problem (P~) and let { wh} be the cor­

responding solution to (2.1I). It can be shown that assumption (HI) is satisfied. 

LEMMA 2: Assume that the function a (t, f!), t E (0, 1), 17 eR satisfies the same as­
sumptions (AI), (A2) and that there exists the unique solution ji ( · ). to the equation 
(2.1) (2.2). Then when h tends to zero, it follows that 

(2.20) 

Furthermore 

wh~Y in H6 (0, I) strongly (2.2I) 

Proof: There exists a subsequence {uh'}, h' t 0 and an element cp ( ·) E L 00 (0, 1) 
;:,uch that [6] 

<X~ cp (t)~M a.e. in (0, 1) 

and 

(2.22) 

Let us recall that the element wh E Vh n H~ (0, 1) satisfies the integral identity: 

1 

= J f(t) CfJh (t) dt, Vcph e vh n H~ (0, 1) (2.23) 
0 
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Hence we have 

(2.24) 

There exists an element we H6 (0, 1) such that for some subsequence {11\.} 
we obtain 

1vh,-'-W weakly in H~ (0, 1) (2.25) 

We define a sequence {h} c H- 1 (0, 1) where the element fh is the projection of 
the elementfe £2 (0, 1) c H- 1 (0, 1) onto a finite dimensional subspace of H- 1 (0, 1), 

i.e.: 
1 

(fh, rph)= J f(t) rph (t) dt, Vrph E Vh t1 H6 (0, 1) (2.26) 
0 

(2.27) 

By the property of projection we obtain 

h-tf strongly in H- 1 (0, 1) (2.28) 

and by (2.23) we have 

(2.29) 

in the sense of distributions. 
Using (2.22), (2.25), (2.28) and the similar argument as Murat [3] we obtain 

d [ dw J. -dt rp (t) dt (t) +qw (t)=f(t) a.e. in (0, 1) 

On the other hand, by (2.25) we have 

wh" (t)-tw (t) a.e. in (0, 1) 

for some subsequence {h"} of the sequence {h'}. Therefore 

a (t, wh" (t))-ta (t, w (t)) a.e. in (0, 1) 

(2.30) 

(2.31) 

(2.32) 

Using the same argument as in the proof of Lemma 1, it can be shown that 

a (t, wh (t))-uh (!)-tO a.e. in (0, 1) (2.33) 

Cof!:bining (2.33) with (2.32) we obtain 

uh" (t)-ta (t, w (t)) a.e. in (0, 1) (2.34) 

Hence 

rp (t)=a (t, w (t)) a.e. in (0, 1) 

and w=y is the unique solution of (2.1)', (2.2). Thus all the sequences {uh}, 
{!Vh} converge and we obtain (2.20) instead of (2.34). It can be shown that (2.20) 
implies (2.21). 
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3. Numerical examples 

Using the finite dimensional approximations proposed in section 2, we solved 
numerically following four examples. In these examples we set n=20, i.e., h=0.05. 

Example 1 

- ~ r(y2 +0.1) : ]+ y=lO t 4 -20 t 3 + 11 t 2 -t+0.2=f(t) 

y (O)=y (1)=0 

For this example we know the exact solution 

Ftom (2.11) we obtain a linear system of equations 

.A (v) rx.=F 

(3.1) 

(3.2) 

(3.3) 

Here rx.=(rx.r. rx. 2 , ... , rx.19)T, rx.i=wh (ih), v=(v0 , v1 , ••. , v20)T, vi2 =uh (ih)-0.1 
1 

F=(j1,f2 , • •• ,f19)T, /;.= J f(t) rp1 (t) dt, and A (v) is a tridiagonal matrix [au (v)] 
0 

i,j= 1, 2, ... , 19, whose nonzero elements are given by 

aii (v)= 10 (vf_ 1 +vf +v~+ 1) + (12.1/3) 

ai,t+1 (v)=ai+l,i (v)= -10 (vf+vf+l)-(11.95/6) 
(3.4) 

Thus the optimization problem is to seek a value of v which minimizes the cost j 
1 20 

j=c,f=Tch .2; (rx. 1-vY (3.5) 
i=O 

• under the equality constraint (3.3). In (3.5) rx.0 =rx.20 =0 and c is appropriately chosen 
positive constant. To minimize the cost j we used the Davidon-Fletcher-Powell 
method. 

On the other hand, if we apply to (3 .1) the same approximation scheme as stated 
in section 2, we obtain a system of nonlinear equations. 

(3.6) 

We used Newton's method to solve the nonlinear equation (3.6). Let us define the 
equation error E by (3. 7) 

E=max {!81 (rx.)l, !Bz (rx.)l, ... , !819 (rx.)l} (3.7) 
" 

where et (rx.) denotes the i-th component of e (rx.). 
Both the solutions of the optimization problem and the nonlinear equation 3.6 

coincided with the exact solution (3.2). 
Table 1 shows the values of the cost j defined by (3.5) and the equation errorE 

defined by (3. 7) at each iteration and the CPU time for two sets of initial value. 

----------------------------- ---
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--------------------------------------.------------------------------

Table 1 

Computational results for Example 1. 

iteration I 

0 
1 
2 

.. 3 
4 

I CPU time 
(sec) 

Y(t) 

0.3 

0.2 

0.1 

case 1 

0.2100E+03 
0.3593E-02 
0.2037E-05 
0.3093E-08 

-· 

0.83 

0 

0 

0 

0 

0 

0.0 

I 
vi=20, vi 

I 
case 2 Vi=O, i 

.' 
E I E 

-
0.2865E-01 0.1945E-Ol 0.1141E--Ol 
0.1141E-Ol 0.2704E-04 0.7724E-03 
0.7724E-03 0.7231E-06 0.2234E-05 
0.2232E-05 0.2660E-08 0.6659E-07 
0.6566E-07 - -

0.86 0.76 0.69 

o Solution 

• lnit1ol value 

0 0 0 
0 0 

0 0 
0 0 

0 

0 

0 

0 

0 

1.0 

Figure 1. The initial value and the numerical solution for Example 1. 

200 

100 

L-----4>-----.0>------0-
0 2 3 

iteration 

Figure 2. The values of cost versus iteration for Example 1. 
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For the optimization problem the initial value was given as v1=20, i=O, 1, ... , 20 
for the case 1 and v1=0, i=O, 1, ... , 20 for the case 2. 
The initial value et. for Newton's method was given by solving (3.3) 

E 
0,03 

0.01 . 

0 2 3 
it era \ion 

Figure 3. The equation errors versus iteration for Example 1. 

Figure 1 represents the numerical solution of (3 .1) and the initial value of oc for 
the case 1 of Table 1. Figure 2 represents the graph of the cost / versus the number 
of iteration. Figure 3 represents the graph of the equation errorE versus the number 
of iteration. Figures 2 and 3 correspond to the case 1 of Table 1. 

All computations were done by using ACOS System 900 of Osaka University. 

Example 2 

_ _!_[<y2 +0.l) dy]+y=o(t --· ~)=f(t) 
dt dt 4 

y (O)=y (1)=0 (3.8) 

For this example we don't know the exact solution. The solutions of the optimiza­
tion problem and the nonlinear equation (3.6) for this example coincided each other. 

Table 2 shows the values of the cost / and the equation error E at each iteration 
and the CPU time for two sets of initial value as in Example I. 

Figure 4 represents the numerical solution of 3.8 l"nd the initial value of oc for 
the case 1 of Table 2. Figure 5 represents the of the cost / ven.us the number of 
iteration. Figure 6 represents the graph of the equation error E versus the number 
of iteration. Figures 5 and 6 correspond to the case 1 of Table 2. 

Example 3 

- :t (((~r+o.l)~]+y=23t2 -23t+6.2=f(t) y(O)=y(l)=O (3.9) 

For this example we have the same exact solution as (3.2). However we used a method 
of approximation different from the method described in section 2. Namely we_ 

4 

' 

/ 
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Table 2. 

Computational results for Example 2. 

I 

iteration I 
0 
1 
2 
3 
4 
5 
6 
7 

CPU time 
(sec) 

Yl t I 
0,8 

0,4 

case I Vt=20, i 

l 
case 2 Vt=O, i 

I E I E 

0.2100E+03 0.9997E+OO 0.1769E+OO 0.1204E+02 
0.3120E- 01 0.1204E+02 0.6782E-02 0.3354E+Ol 
0.7442E- 02 0.3354E+ Ol 0.7861E-03 0.7238E+OO 
0.2041E- 03 0.7237E+OO 0.3154E-03 0.5540E-01 
0.5595E-05 0.5540E - Ol 0.5370E-04 0.2775E-03 
0.3242E-06 0.2769E-03 0.6207E-06 0.1005E-05 
0.2700E-07 0.1067E-05 0.1706E-07 0.4345E-06 

- 0.7705E-06 - -. 
1.25 1.37 1.30 1.20 

o Solution 

• In itial value 

0 
0 

0 0 
0 

0 0 

0 
0 

0 0 
0 

0 

0 0 

0 . 

0 

0 

0 

• • • I • • • o • • 1 o • • • e • o e o 
00 w 

Figme 4. The initial value and the numerical solution for Example 2. 

2 4 6 
iteration 

Figme 5. The values of cost versus iteration for Example 2. 
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E 
15 

0 2 
i tero t ion 

Figure 6. The equation errors versus iteration for Example 2. 
' 
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approximated control u ( · ) by a piecewise constant function instead of a piecewise 
linear function. Using the approximation, we obtain the system of linear equations. 

C(v) a=F (3.10) 

which correspond to (2.11). Here C (v) is a tridiagonal matrix [Cu (v)], i,j= 
=1, 2, ... , 19, whose nonzero elements are given by 

cii (v)=20 (v;+v;+1)+(12.1/3) } 

Ci,l+l (v)=C1+1, 1 (v)= -20vz+ 1 -(11.95/6) 

v=(v1 , v2 , ••• , v20f, z,i=uh(ih-0)-0.1, 

1 

1X1=w (i h), F=(/1 ,/z, ... ,f1 9f, and ft= J f(t) rpi (t) dt 
0 

The optimization problem is to seek a value of v which minimizes the cost 

(3.11) 

(3.12) 

under the equality constraint (3.10), where tX0 =tX20 =0. To minimize the cost j 
we also used the Davidon-Fletcher-Powell method. 

In the same way as before, applying to (3.9) the same approximation scheme, 
we obtain 

fJ (a)=C (iX) a-F=O (3.13) 

where iX=(iX1 , iX2 , •• . , iX20)T and iX,=(a1-a1 _ 1)/h. We also used Newton's method 
to solve (3.13). Both the solution of the optimization problem and the nonlinear 
equation (3.13) coincided with the exact solution (3.2). 
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Table 3 shows the values of the cost ,I defined by (3.12) and the equation errorE 
defined by (3.7) at each iteratio!J and the CPU time for two sets of initial value. 
For the optimization problem the initial value was given as v;=20, i=l, 2, ... , 10, 
v;= -20, i=Il, 12, ... , 20 for the case 1 and v;=O i=l, 2, ... , 20 for the case 2. 
The initial value rx for Newton's method was given by solving (3.10). 

Figure 7 represents the numerical solution of (3.9) and the initial value of rx 

for the case I Figure 8 represents the graph of the cost ,I versus the number of 

Computational results for Example 3. 

I 
iteration J 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

CPU time 
(sec) 

Y(t) 

0,3 

0,2 

0,1 

0,0 

case 1 

I 

case 2 

I E I 
1 

0.2000E+03 0.2558E+OO 0.3996E+01 
0.3997E+01 0.2422E+03 0.3720E+OO 
0.7782E +OO 0.7172E+02 0.2529E+OO 
0.3033E+OO 0.2120£+02 0.1453E+OO 
0.1112E+OO 0.6218E+01 0.6338E-01 
0.3466£-01 0.1.770E+01 0.3112£-01 
0.1409E-01 0.4297E+OO 0.8469E-02 
0.5814£-02 0.5396£-01 0.2293E-02 
0.2041E--02 0.1045E-02 0.7402E-03 
0.8338£-04 0.7078£-06 0.1133£-03 
0.2416E-04 - 0.2482£-04 
0.2742£-05 0.1521E-05 
0.6974£-06 0.1238E-06 
0.1247£-06 0.2220E-07 
0.2317E-07 -

2.67 1.79 2.66 

I 

o Solut1on 

• ln1tial value 

0 0 0 0 0 

0 0 
0 0 

0 0 

0 0 

0 0 

0 
0 

0 

Table 3. 

E 

0.2424E+03 
0.7177E+02 
0.2121E+02 
0.6222E+01 
0.1768E+Ol 
0.4301E+OO 
0.5402E-02 
0.1047£-02 
0.6109£-06 

--

1.61 

0 

1,0 

Figure 7. The initial value and the numerical solution for Example 3. 
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200 

100 

0 5 10 
iteration 

Figure 8. The values of cost versus iteration for Example 3. 

/ 

E 

0 2 6 8 
ite rat ion 

Figure 9. The equation errors versus iteration for Exampk 3. 

iteration. Figure 9 represents the graph of the equation error E versus the number 
of iteration. Figures 8 and 9 correspond to the case 1 of Table 3. 

Example 4 

-; [((tf+o.I) t]+y=<5(t-: )=f(t) y(O)=y(l)=O (3.14) 

The solutions of the optimization problem and the nonlinear equation (3.13) 
fo1 this example coincided each other. 

Table 4 shows the values of the cost J and the equation error Eat each iteration 
and the CPU time for two sets of initial value as in Example 3. 

Figure 10 represents the numerical solution of (3.14) and the initial value of rt. 
for the case 1 of Table 4. Figure 11 represents the graph of the cost ,f versus the 
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Table 4. 

Computational results for Example 4. 

iteration I case 1 

I 
case 2 

0 0.2000E+03 
1 0.4481E+ Ol 
2 0.6345E+ OO 
3 I 0.6434E-Ol 
4 O.lOSlE-01 
5 0.1478E - 02 
6 0.4083E- 03 
7 0.2142E-03 
8 0.4482E- 04 
9 0.2661E-05 

10 0.1936E- 06 
11 0.9610E- 08 

CPU time 2.16 
(sec) 

Y(t) 

0,3 

0.2 -

0.1 

0.0 

0 

0 

0 

0 

0 

I E I E 

0.9997E+OO 0.4481E+Ol 0.2364E+ 03 
0.2363E+03 0.9964E-Ol 0.6985E-t-02 
0.6984E+02 0.1949E-01 0.2049E+02 
0.2048E+02 0.4167E-02 0.5853E+Ol 
0.5852E+ Ol 0.3425E-·-03 0.1528E+01 
0.1528E+01 0.6819E-04 0.3000E+OO 
0.2999E+ OO 0.3605E-04 0.2768E-01 
0.2767E- 01 0.6811E- 05 0.6118E-03 
0.6114E- 03 0.4084E-06 0.9413E- 06 
0.9424E-06 0.1419E- 07 -

- -

-----
1.79 1.88 1.62 

o Sol ut ion 

• Initial value 

0 

0 

0 

0 

0 

0 

0 
0 

0 
0 

0 
0 

0 
0 

1,0 

Figure 10. The imtial value and the munerical solution for Example 4. 

number of iteration. Figure 12 represents the graph of the equation error E versus 
the number of iteration. Figures 11 and 12 correspond to the case 1 of Table 4. 

REMARK I. Stopping conditions were given by ":'( w-? and E~ w- 6 , respectively. 

REMARK 2. The proper choice of the constant c in (3.5) and (3.12) prompts the 
convergence. The value of c was chosen as 5 to 30 for the above examples. 

REMARK 3. In Example 3, if the initial value v;=20 i=l, 2, ... , 20 is given, the 
Davidon-Fletcher-Powell method gave an local minimum solution. However, if we 
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use the simple gradient method for the first several iterations and the . Davidon­
Flecher-Powell method for later iterations, then we obtained the exact minimum 
solution. 

200 

'----'==-<>----o--<>--·~ 
0 5 10 

iterat1on -
Figure 11. The values of cost versus iteration for Example 4. · 

/ 

E 

6 8 
iteration 

Figure 12. The equation errors versus iteration for Example 4. 

4. Concluding remarks 

We have proposed a simple numerical method for solving nonlinear two-point 
boundary-value problems by using an optimization technique. Corresponding 
finite-dimensional optimization problem is proposed, and the convergence of the 
sequence of solutions of the finite-dimensional optimization problems to the so­
lution of the original two-point boundary-value problem is proved. 

Computational results about four examples are shown. The numerical solutions 
by using the optimization technique and by using Newton's method are compared. 
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Both the methods gave satisfactory results. In Newton's method, if an initial value 
is far from the solution, it happens that the iterative computations do not converge. 
In the optimization method, however, even if an initial value is far away from the 
solution, the iterative computations can reduce the value of the cost function and 
converge to the solution, if we use a simple gradient method for the first several 
iterations and then we switch to a quasi-Newton method, for example to the ~a­
vidon-Fletcher-Powell method. 
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Pewna metoda obliczeniowa dla nieliniowego zagadnienia 
dwubrzegowego. 

Zaproponowano prostq metodtt obliczeniowq dla rozwiqzywania nieliniowego zagadnienia 
dwubrzegowego przez wykorzystanie techniki optymalizacji. W pracy pokazano, :le przy oewnych 
zalozeniach rozwiqzariie nieliniowego zagadnienia dwubrzegqwego moze zostac wyznaczone drogq 
rozwiqzatiia pomocniczego zadania minimalizacji funkcjonalu z ograniczeniami. Podano przy.ldady 
obliczeniowe w kt6rych proponowanq metodtt por6wnano z klasycznq Newtona. 

HeKoTopLrii qncJieHHLiii MeTO,LJ; ,LJ;JIH HeJIHHeiiHoii 
,LJ;ByrpaHnqnoii 3a,LJ;aqu 

Tipe)l;JIO)f(eH npOCTOH '!RCJieHHI>IH MeTO.IJ: !l;Jlll perueHHll }{eJIHHeiiH01i )l;ByrpaHH'!HOH 3a)l;a'!ll: 
nocpe.n;cTBOM n:cnoJih30Bamur onT'HMH3al(lloHHhiX MeTo.n;oB. B pa6oTe noKa3aHo, '!TO nprr He­
KOTOphrx npe.n;nochJJIKax perueHH:e He.rr'HHeiinoii ):\ByrpaHH'!Hoii 3a.n;a'!ll MO)f(eT 6hiTh naii.n;eno 
nyTeM pemeH!m BcnoMoraTCJ!bHoii 3a!l;a'!ll: MI1HMMii3aQHll: IPYliKI.1ROl!ana c orpal!Wielln:HMH. Tipn:­
Be.n;emr '!HCJieHHb!e UpRMCph! B KOTOph!X npe.n;naraeMbiH MeTO!l; cpaBHHBaeTCll C KJiaCCH'!eCKRM 

MeTo.n;oM Hh!oToHa. 


