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A simple numerical method for solving nonlinear two-point boundary value problem by using
an optimization technique is proposed. It is shown that under some assumptions the solution of
nonlinear problem can be computed by solving an auxiliary optimization problem. Several nu-
merical examples are presented.

1. Introduction

In this paper we propose a simple numerical method for solving nonlinear
two-point boundary- value problems by using an optimization technique.

Optimization technique was used for example in [1] and in [4] in order to solve
some nonlinear differential equations.

In section 2 we formulate a simple nonlinear two-point boundary-value pro-
blem. We prove under some assumptions that the solution of nonlinear problem can
be obtained by solving an auxiliary optimization problem (P). We define a family of
finite dimensional optimization problem (P,) where /4 is a parameter of approxima-

*) This research was done as a part of Poland—Japan joint research project on ‘““Numerical
methods of optimization and game theory” which was supported by Polish Academy of Sciences
and Japan Society for Promotion of Science.

**) The paper was prepared during the visit at Osaka University.
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tions. For a fixed parameter 4>0 the problem (P,) can be solved numerically. We
prove convergence of the sequence of solutions of problems (P,) to the solution
of the problem (P).

In section 3 we present several numerical examples. In order to solve nonlinear,
two-point, boundary-value problems numerically we use two approaches.

First we formulate auxiliary optimization problem, and for a fixed parameter 4
we solve the resulting optimization problem by using the DaVIdon—Fletcher——Powell
algorithm of nonlinear programing. '

The second approach consists in solving directly the nonlinear boundary-value
problem by using Newton’s method.

2. Statement of the problem and approximation

Let us consider nonlinear two-point boundary value problem

d
v [ (t y(@®), — (t)) @ (t)]+qy @O=f@® 10,1 @1

¥ (0)=y (1)=0 2.2

where ¢ is a non negative constant and f(-)e€ L?(0,1). We assume that there
exists a unique weak solution j (- ) € H} (0, 1) to (2.1) (2.2). For sufficient conditions
of existence and uniqueness of the solution, we refer to [2].

It there exist constants « and M such that

45 .
O<oc<a(t Filt)s=m (t))<M for almost all z€(0, 1) ] (2.3)
then the solution 7 () can be computed by solving the following optimization

problem:
(P) minimize the cost functional

1 % dw 2 |
J (W)= f [a(t, w (2), —E(t))—u(t)] dt | .4
over the set U,g={u(-)la<u(f)<M a.e. in (0,1)} | |

where the function w (- ) € H, (0, 1) satisfies the following linear two-point boundary-
-value problem: .

d [ dw |
e u(t)—dt—(t)]+qw(t)=f(t) te(0,1) (2.5)

w (0)=w (1)=0 2.6)
Indeed, it is easy, to see that the optimal solution # ( - ) to (P) has the following form

: dy ,
a(f)=a (z‘, Pl 5 (t)) ae in (0,1) @7
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On the other hand if u* (-) is an optimal solution to (P) then J (u*)=0 and

aw*

u* (t)=a (t, w* (1), e (t)), te(0, 1) (2.8)

where w* is the solution to (2.5), (2.6) corresponding to u*, Hence w* is a solution
to (2.1), (2.2). We assume that the function « (.,.,.) satisfies the following conditions:
(Al) function a (., #, £): R>R is measurable on the interval (0, 1) for every pair
(1, &) e R%.

(A2) function a (¢, .,.): RX R—R is continuous for a.e. € (0, 1).

In order to solve the problem (P) numerically, we define a family of finite di-
mensional problems {P,}, h=1/n, n=1,2, ...

It can be shown that under some conditions the sequence of optimal solutions
{,} of problems (P,) converges in some sense to the solution 7 of the problem (P).

We construct the problems (P,). Let n>>1 be a given integer. Let ¥, be the space
of continuous piecewise linear functions on every subinterval

[ih, +1) k], i=0, ..., n. It is clear that a set of functions {¢;}7_, is a basis
in ¥, where !

1
i —t+l, te[0, ]
o=

0, otherwise

1
Sot+l—i,  te(i=1)h, if]

Al 1
?:(0) =t l4i,  te(h (+1) A

0, otherwise

1-

—t+1—n, te((n—1)h,nh]

Pn (t)=‘h 3
0, otherwise

- The problem (P,) is defined in the following way:
(P,): minimize the cost functional

j . dw, T :
I (un) = > f [a ((t, wy (7) o (t))_uh (t)] dt (2.9)

over the set

{w () eVilasu ()<M, te(0, 1)} (2.10)
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where wy, (+) satisfies
wy (1) e VN H; 0, 1)

: dwy  _dp, :
[ s O—= 00— O+an @ o) |de= [ F@) 9. (1) a1, Vo,
(o] . (V]
i=1,..,n-1 2.11)
Denote by #, an optimal solution to the problem (P,). We have the following
result concerning convergence of the sequence {a,}.
LemMA 1: If there is a convergent subsequence {iy,}<{d,} such that
(HD) iy ()= (t)  ae. in (0,1)

then the corresponding sequence {Wy} of solutions to (2.11) converges to the solution
of 2.1), (2.2) i.e.

Ww—J  in the norm of Hj (0,1). 1i212)

Proof: We denote by w;, € ¥, H} (0, 1) the unique solution to (2.11) correspond-
ing to 4 (). It can be shown that assumption (H1) implies [5] the convergence of
sequence {w,} of solutions to (2.11) i.e.:

Wy—w in Hj (0, 1) strongly (2.13)

where we H} (0, 1) satisfies the equation

d dw )
2 [ﬁ ® 3 (t)] +gw(t)=f() ae. in (0,1) 2.149)

Let 7 (-) be the solution to (2.1), (2.2) and denote by 7 (£) an optimal solution
to (P) ie.:

ay »
i(t)=a (t, 7 @), o (t)) for ae. te(0,1) 2.15)
Let {v,} be an arbitrary sequence such that
0, €V, a<<o, ()M ae. in (0,1)

and for 4| 0:

o, (1)—4 () ae.in (0,1) (2.16)
It can be shown that o
0=lim Jh (‘Uh)<ﬁm Sup Jh (u;,:)'}lim inf Jhl. (ﬁhl) >O (2.17)
B0 A} w0

hence

Km J (f,) =0
nio
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1.6
(t Wy (t) Wy (t))—u;l (#)-0 a.e. in (0,1) (2.18)

Combining (2.18) with (2.13) and (H1) we obtain

dw
a(t, w (1), —J(t))=ﬁ(t) a.e. in (0, 1)

Hence by (2.14) it follows that w (-) satisfies (2.1) (2.2). Let us consider the par-
ticular case of the problem (2.1) (2:2) 164

d ;
[ a(t, y(t)) (t)}+qy @O=f(@) a.e.in (0,1) .1y

y 0=y (1)=0 (2.2)
We define the family {P;} of finite dimensional optimization problems in the
same way as before:
(P;): minimize the cost functional

\

1 1
L ()= [ la (t, wi (D)=, () dt (2.19)

over the set (2.10), where wy, (+) is the solution to (2.11).
Let @, (-) be an optimal solution to the problem (P,) and let {#,} be the cor-
responding solution to (2.11). It can be shown that assumption (H1) is satisfied.

LEMMA 2: Assume that the function a(t,#), t€(0, 1), n € R satisfies the same as-
sumptions (A1), (A2) and that there exists the unique solution J (*). to the equation
(2.1) (2.2). Then when h tends to zero, it follows that

i @)—a(t,7®) ae. in 0.1) : (2.20)
Furthermore
W,—y in H} (0, 1) strongly (2.21)

Proof: There exists a subsequence {uy}, 2’| 0 and an element ¢ (-)eL® (0, 1)
such that [6]
: «<o (<M ae in (0,1)
and
1u—1]p (%) -weakly in L*® (0, 1) ‘ 2.22)

Let us recall that the element W, € ¥, N Hj (0, 1) satisfies the integral identity:
-3 dw, do, )

J |t O O (O +a0 () 0u (1) | do=

(]

=[fOm@®a, VoeV,nH;(©0,1) (2.23)
0
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Hence we have
Wallarg 0,1)< Cll fllLe 0,1y VA>0 - (2.24)

There exists an element we H; (0, 1) such that for some subsequence {iy}
we obtain

Wwp—w weakly in H; (0, 1) (2.25)
We define a sequence {f,} = H~1 (0, 1) where the element f;, is the projection of

the element f'e L* (0, 1)c H~* (0, 1) onto a finite dimensional subspace of H~* (0, 1),
ie.:

1
(o ouy=[f@) pu (@) dt,  Vpu€ V0 Hy (0, 1) (2.26)
0
{fww>=0, Vye[V,nH; O ) (2.27)
By the property of projection we obtain
fu—f strongly in H=1 (0, 1) (2.28)

and by (2.23) we have

~

d aw,
fuloy= —E[ah " (r)]+qw,. ® (2.29)

in the sense of distributions.
Using (2.22), (2.25), (2.28) and the similar argument as Murat [3] we obtain

_Tj; [(p ) % (t)}+qw @®=f@#) ae. in (0,1 (2.30)
On the other hand, by (2.25) we hav\e
B ) () | e e (0L T) 2.31)
for some subsequence {4’} of the sequence {4’}. Therefore
a(t,wy (1))—a(t,w(®) ae in (0,1) (2.32)
Using the same argument as in the proof of Lemma 1, it can be shown that
a(t, Wy ()—u, ()-0 ae. in (0,1) (2.33)
Combining (2.33) with (2.32) we obtain 7
' G ()=a(t, w(®)  ae. in ©0,1) 2.34)

Hence

o (@)=a(t,w() ae. in (0,1)

and w=y is the unique solution of (2.1)’, (2.2). Thus all the sequences {Z},
{Wn} converge and we obtain (2.20) instead of (2.34). It can be shown that (2.20)
implies (2.21).
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3. Numerical examples

Using the finite dimensional approximations proposed in section 2, we solved
numerically following four examples. In these examples we set n=20, i.e., #=0.05.

Example 1
d dy
o [(y2+0.1) Il+y=10 t4=20 3+ 11 - +0.2=1 () 3.1
y @)=y ()=0
For this example we know the exact solution
y(O)=—t>+t (3.2)
From (2.11) we obtain a linear system of equations
A @) a=F 3.3)

Here a=(oty, 0z, ... %19)7, =Wy (ih), v=(vg, 9y, ..., v20)T, v7=1 (ih)—0.1
F=(f1, far vor f10)Ts fi= fl f@®) ¢, (1) dt, and 4 (@) is a tridiagonal matrix [a;; (2)]
i,j=1,2,...,19, whose ;onzero elements are given by

a; (v)=10 (v2_, +v?+202, )+ (12.1/3)
@101 @)=0a;41,; (@©)=—10 @3 +92,,)—(11.95/6) G4
Thus the optimization problem is to seek a value of v which minimizes the cost ¢

i) 20
F=cd=7ch Y @u—v) (35

under the equality constraint (3.3). In (3.5) «o=0,,=0 and ¢ is appropriately chosen
positive constant. To minimize the cost ¢ we used the Davidon-Fletcher—Powell
method.

On the other hand, if we apply to (3.1) the same approximation scheme as stated
in section 2, we obtain a system of nonlinear equations.

0 (x)=A & a—F=0, G=(0, aT,O)T. (3.6)

We used Newton’s method to solve the nonlinear equation (3.6). Let us define the
equation error E by (3.7)

E=max {|0; (&), |0, (®)], ..., 1010 (®)|} (3.7

where 0; () denotes the i-th component of @ («).

Both the solutions of the optimization problem and the nonlinear equation 3.6
coincided with the exact solution (3.2).

Table 1 shows the values of the cost ¢ defined by (3.5) and the equation error E
defined by (3.7) at each iteration and the CPU time for two sets of initial value.
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Table 1
Computational results for Example 1.
. . case 1 v; =20, v; case 2 v;=0, i
iteration
| E | E
0 0.2100E+03 | 0.2865E—01 | 0.1945E—01 | 0.1141E—01
1 0.3593E—02 | 0.1141E—01 | 0.2704E—04 | 0.7724E—03
2 0.2037E—05 | 0.7724E—03 | 0.7231E—06 | 0.2234E—05
W3 0.3093E—08 | 0.2232E—05 | 0.2660E—08 | 0.6659E—07
4. — 0.6566E—07 — —
CPU time 0.83 0.86 0.76 0.69
(sec)
Y(t) o Solution
03}
® Initial value
o 0o
o
o) o
02k 7 °
' [o] [s]
(o] o
o o
01+
o )
o o
PO GO [ W SR P |
00 10

Figure 1. The initial value and the numerical solution for Example 1.

J
200
®
100}
A R
0 1 2 3
iteration

Figure 2. The values of cost versus iteration for Example 1.




Numerical solution 49

For the optimization problem the initial value was given as v;=20, 1—0 15 ax3i20
for the case 1 and v;=0, i=0, 1, ..., 20 for the case 2.
The initial value o for Newton’s method was given by solving (3.3)

E
003

001+

& e
3 4
iteration

Figure 3. The equation errors versus iteration for Example 1.

Figure 1 represents the numerical solution of (3.1) and the initial value of o« for
the case 1 of Table 1. Figure 2 represents the graph of the cost ¢ versus the number
of iteration. Figure 3 represents the graph of the equation error E versus the number
of iteration. Figures 2 and 3 correspond to the case 1 of Table 1.

All computations were done by using ACOS System 900 of Osaka University.
Example 2

o ron lermoli—)-
— |0F 0D o Hy=dlt = )=f@)  y @)=y (1)=0 (3-_8)

For this example we don’t know the exact solution. The solutions of the optimiza-
tion problem and the nonlinear equation (3.6) for this example coincided each other.

Table 2 shows the values of the cost ,# and the equation error E at each iteration
and the CPU time for two sets of initial value as in Example 1.

Figure 4 represents the numerical solution of 3.8 end the initial value of « for
the case 1 of Table 2. Figure 5 represents the of the cost g versus the number of
iteration. Figure 6 represents the graph of the equation error E versus the number
of iteration. Figures 5 and 6 correspond to the case 1 of Table 2.

Example 3

() +01) ] o=
7 \\Z +0.1 7 +y=2312-231t+6.2=f(t) y(O)=y (=0 (3.9)

For this example we have the same exact solution as (3.2). However we used a method
of approximation different from the method described in section 2. Namely we

4
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Table 2.
Computational results for Example 2.
. a case 1 v=20, i case 2 v;=0, i
iteration
| E | E
0 » 0.2100E+03 | 0.9997E+400 | 0.1769E-+00 | 0.1204E-02
1 0.3120E—01 | 0.1204E-+02 | 0.6782E—02 | 0.3354E+01
2 0.7442E—02 | 0.3354E--01 | 0.7861E—03 | 0.7238E+-00
3 0.2041E—03 | 0.7237E4-00 | 0.3154E—03 | 0.5540E—01
4 0.5595E—05 | 0.5540E—01 | 0.5370E—04 | 0.2775E—03
5 0.3242E—06 | 0.2769E—03 | 0.6207E—06 | 0.1005E—05
6 0.2700E—07 | 0.1067E—05 | 0.1706E—07 | 0.4345E—06
o 7 — 0.7705E—06 — —
CPU time 1.25 1.37 1.30 1.20
(sec)
Y(t)
08 © Solution
@ Initial value
| o
o
° o
. ©
o o
[o]
04t o
o
o]
o]
o (o]
= o
o
o
o
JJ.J.‘&“-&‘:: —8—0—b—oo—0
00 Y

Figure 4. The initial value and the numerical solution for Example 2.

J

200

100

&

—
2

4
iteration

—b
6

Figure 5. The values of cost versus iteration for Example 2.
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iteration
Figure 6. The equation errors versus iteration for Example 2.
approximated control u (- ) by a piecewise constant function instead of a piecewise
linear function. Using the approximation, we obtain the system of linear equations.
C{@)a=F (3.10)

which correspond to (2.11). Here C (v) is a tridiagonal matrix [Cj; (9)], i, j=
=1, 2, ..., 19, whose nonzero elements are given by

Cu @)=20 (W3 +22, ) +(12.1/3) \

5 f (3.1
Ciiv1 (0)=Ciyy,; (@)=—20v;,,—(11.95/6)
v=(0;, 7y, ...,950)%, ©;=t(ih—0)—0.1,
OC=(061, Ay eeey U~19)T
1
=W (ih), F=(fi,fo s 1) and fi= [ £ (1) 9, (2) dlt
(o]
The optimization problem is to seek a value of » which minimizes the cost
1 o 1 2
F=cf=—ch ; [vi—z“(oci—oci_l)] (3.12)

under the equality constraint (3.10), where oo=0,,=0. To minimize the cost ¢
we also used the Davidon-Fletcher-Powell method.

In the same way as before, applying to (3.9) the same approximation scheme,
we obtain

0 (0)=C (&) o — F=0 (3.13)
where a=(&;, &y, ..., &0)7T and & =(o;—o;_)/h. We also used Newton’s method

to solve (3.13). Both the solution of the optimization problem and the nonlinear
equation (3.13) coincided with the exact solution (3.2).
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Table 3 shows the values of the cost # defined by (3.12) and the equation error £
defined by (3.7) at each iteration and the CPU time for two sets of initial value.
For the optimization problem the initial value was given as v;,=20, i=1, 2, ..., 10,
vy=—20, i=11,12, ..., 20 for the case 1 and v,=0 i=1, 2, ..., 20 for the case 2.
The initial value o« for Newton’s method was given by solving (3.10).

Figure 7 represents the numerical solution of (3.9) and the initial value of «
for the case 1 Figure 8 represents the graph of the cost ¢ versus the number of

Table 3.
Computational results for Example 3.
. . case 1 case 2
iteration
| E | E
0 0.2000E-+03 | 0.2558E--00 0.3996E—|—01 0.2424E+03
1 0.3997E-+01 | 0.2422E+03 | 0.3720E+00 | 0.7177E+02
2 0.7782E+4-00 | 0.7172E+02 | 0.2529E4-00 | 0.2121E+02
3 0.3033E+00 | 0.2120E-+02 | 0.1453E-00 | 0.6222E+01
4 0.1112E-+00 | 0.6218E--01 | 0.6338E—01 | 0.1768E--01
5 0.3466E—01 | 0.1770E4-01 | 0.3112E—01 | 0.4301E+00
6 0.1409E—01 | 0.4297E+-00 | 0.8469E—02 | 0.5402E—02
7 0.5814E—02 | 0.5396E—01 | 0.2293E—02 | 0.1047E—02
8 0.2041E—02 | 0.1045E—02 | 0.7402E—03 | 0.6109E—06
9 0.8338E—04 | 0.7078E—06 | 0.1133E—03 ey
10 0.2416E—04 —_— 0.2482E—04
11 0.2742E—05 0.1521E—05
12 0.6974E—06 0.1238E—06
13 0.1247E—06 0.2220E—07
14 0.2317E—07 —
CPU time 2.67 1.79 2.66 1.61
(sec)
Y(t) o Solution
0'3[_ @ [nitial value
o o = e
o o
02+ ° °
, o .
v o
° o
01
° [o]
s o
09060 ¢ 6 b0 6 b0 06 04dboood
00

10

Figure 7. The initial value and the numerical solution for Example 3.
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o

200ﬁ

100+

0 5 10
iteration

Figure 8. The values of cost versus iteration for Example 3.

200

100~

iteration

Figure 9. The equation errors versus iteration for Example 3.

iteration. Figure 9 represents the graph of the equation error E versus the number
of iteration. Figures 8 and 9 correspond to the case 1 of Table 3.

Example 4

d [[[dy\? 3 i
_717[((3?)+0'1)7f]+3’=5(’”7)=f(0 yO)=y)=0 (3.14)

The solutions of the optimization problem and the nonlinear equation (3.13)
for this example coincided each other.

Table 4 shows the values of the cost J and the equation error E at each iteration
and the CPU time for two sets of initial value as in Example 3.

Figure 10 represents the numerical solution of (3.14) and the initial value of «
for the case 1 of Table 4. Figure 11 represents the graph of the cost ¢ versus the
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Table 4.
Computational results for Examvle 4.
ora case 1 7 case 2
iteration | = =
0 0.2000E-+03 | 0.9997E+-00 | 0.4481E-+01 | 0.2364E+03
1 0.4481E+-01 | 0.2363E+03 | 0.9964E—01 | 0.6985E--02
2 0.6345E+00 | 0.6984E-+02 | 0.1949E—01 | 0.2049E+-02
3 0.6434E—01 | 0.2048E--02 0.4167E—02 | 0.5853E+01
4 0.1081E—01 | 0.5852E+01 | 0.3425E--03 | 0.1528E+01
5 0.1478E—02 | 0.1528E+01 | 0.6819E—04 | 0.3000E+-00
6 0.4083E—03 | 0.2999E-+00 | 0.3605E—04 | 0.2768E—01
7 0.2142E—03 | 0.2767E—01 | 0.6811E—05 | 0.6118E—03
8 0.4482E—04 | 0.6114E—03 | 0.4084E—06 | 0.9413E—06
9 0.2661E—05 | 0.9424E—06 | 0.1419E—07 —
10 0.1936E—06 — —
11 0.9610E—08
CPU time 2.16 1.79 1.88 1.62
(sec)
Y(t)
03+ o Solution
e [nitial value
]
02} °
o [e]
o
[+]
o [e]
o]
01+ & o o
o]
o
o] (o]
(o]
o]
’ [¢)
000603 0 ¢ 0060 b0 00 6000

00 1.0

Figure 10. The initial value and the numerical solution for Example 4.

number of iteration. Figure 12 represents the graph of the equation error E versus
the number of iteration. Figures 11 and 12 correspond to the case 1 of Table 4.

REMARK 1. Stopping conditions were given by #<(10~7 and E< 1075, respectively.

REMARK 2. The proper choice of the constant ¢ in (3.5) and (3.12) prompts the
convergence. The value of ¢ was chosen as 5 to 30 for the above examples.

REMARK 3. In Example 3, if the initial value »,=20 i=1, 2, ..., 20 is given, the
Davidon-Fletcher-Powell method gave an local minimum solution. However, if we
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use the simple gradient method for the first several iterations and the Davidon-
Flecher—Powell method for later iterations, then we obtained the exact minimum
solution.

2009~

6——0—0——0—0—6—_0_
0 5 10
iteration

Figure 11. The values of cost versus iteration for Example 4. -

E

200

100

iteration

Figure 12. The equation errors versus iteration for Example 4.

4. Concluding remarks

We have proposed a simple numerical method for solving nonlinear two-point
boundary-value problems by using an optimization technique. Corresponding
finite-dimensional optimization problem is proposed, and the convergence of the
sequence of solutions of the finite-dimensional optimization problems to the so-
lution of the original two-point boundary-value problem is proved.

Computational results about four examples are shown. The numerical solutions
by using the optimization technique and by using Newton’s method are compared.
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Both the methods gave satisfactory results. In Newton’s method, it an initial value
is far from the solution, it happens that the itecative computations do not converge.
In the optimization method, however, even if an initial value is far away from the
solution, the iterative computations can reduce the value of the cost function and
converge to the solution, if we use a simple gradient method for the first several
iterations and then we switch to a quasi-Newton method, for example to the Da-
vidon-Fletcher-Powell method.
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Pewna metoda obliczeniowa dla nieliniowego zagadnienia
dwubrzegowego.

Zaproponowano prosta metode obliczeniowa dla rozwiazywania nieliniowego zagadnienia
‘dwubrzegowego przez wykorzystanie techniki optymalizacji. W pracy pokazano, ze przy vewnych
zalozeniach rozwigzaiie nieliniowego zagadnienia dwubrzegowego moze zostaé¢ wyznaczone droga
rozwiazania pomocniczego zadania minimalizacji funkcjonalu z ograniczeniami. Podano przyklady
obliczeniowe w ktorych proponowana metode pordéwnano z klasyczna Newtona.

HexoTopwiii 4HCICHHBIE MeTON A HeJHHeHHOH
JBYTPAaHHYHOH 3aJ1aum

TIpemyioxer MpOCTOW YMCIIEHHBIM METOH JJif peleHud HeJmHeliHolM IByrpaHWYHON 3amadd
MOCPEACTBOM HCIOJIbL30BaHKs ONTHMM3ALKOHHBIX MeTOHOB. B pabore ImokasaHo, YTO NpH He-
KOTODBIX TPEMIIOCHIIKAX DEIIeRUe HENUHEHHOW IBYrpaHmYHON 3a7Ja4ll MOXET ObITh HaWIEHO
NyTeM PEIICHHST BCIIOMOTATENILHOM 3amavn MuHUMHU3anmy (yHKIMoHATa ¢ orpanuvenmsvu. Ilpu-
BEIEHBI YHCICHHBIE TPUMEPHI B KOTODBIX IpPEIaraeMbIii METOI CPaBHMBAETCS C KIITACCHYECKUM
metonom HrroToHA.




