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In the paper, a modification of the Newton-Raphson procedure for two-person zero-sum dis-
counted Markov games is proposed and a sufficient condition for its convergence derived. As an ad-
ditional result, a new sufficient condition for convergence of the Newton-Raphson procedure is
obtained. It is also proved that the Van der Wal’s [11] generalized policy iteration method converges
from any starting point.

1. Imtroduction and Notation

Is this paper we deal with computational methods for the two-person zero-sum
discounted Markov game with finite state space and finite action sets. For this
game, a number of algorithms have already appeared in the literature. As regards the
concepts employed, one can distinguish three main approaches: successive approxima-
tion, policy iteration method and modified policy iteration method (a survey of the
existing algorithms with regard to this classification is presented in Section 2). The
last mentioned method is of particular interest, since it requires less computational
effort than the policy iteration technique, and simuiltaneously, it preserves a high
convergence rate. The only algorithm employing this concept was presented by Van
der Wal [11]. This algorithm was obtained by modification of the Hojffman and Karp’s
[3] policy iteration method and its convergence was proved under a certain condition
imposed on a starting point.

Here, we examine two basic algorithms of the modified policy iteration method.
In Section 3, we propose a modification of the Newton-Raphson technique, which
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was first used for the discounted Markov game by Pollatschek and Avi-Itzhak [6], and
derive a condition under which this algorithm converges from any starting point. As
an additional results, we obtain a new condition for convergence of the Newton-Ra-
phson technique, which is less restrictive than the one derived by Pollatschek and
Avi-Itzhak. In Section 4, we prove that Van der Wal’s [11] algorithm converges from
any starting point, thus removing the restriction which was imposed on a starting
point in the original proof of convergence.

Now we specify the game and introduce the notation and the basic results. The
game under consideration may be regarded as a dynamic system with a state space
S={l, ..., N}. At discrete times r=0, 1, ..., the system is observed and its behaviour
is influenced by two players, P, and P,, having opposite aims. For each state i€ §
there exist two sets of available actions, K;={1, ..., k;} for P; and L;={l, ..., [} for
P,. If the system is in state 7 and players P, and P, choose actions k€ K; and I € L;,
respectively, then the first player receives a reward r%' from the second one and the

system proceeds to a new state j with probability pf, where ' p¥i=1 for any i, k,
Jes
and /. The rewards are discounted at a rate f§, 0< <1, that is the unit reward at time

o0
t=n has the value " at time #=0. The total discounted reward is equal to > "R,

n=0

where R, is a reward obtained at time ¢=n. We consider the criterion of a total ex-
pected discounted reward.

The discounted Markov game, as described above, was introduced by Gilette [2],
who noticed that all results obtained by Shapley [1953] for the terminating game

remain valid if the condition: max > p}i<1, determining the terminating game, is
i,k L JES
replaced by: )’ p¥j=1 for any i, &, /, and rewards are discounted at a rate 8, 0<f<1.
Jes

Of particular interest in the discounted Markov game are stationary strategies.
A stationary strategy of P, is a N-tuple f=(f%, ...,f™), where f'=(x}, ...,x}) is
a probability distribution on the action set K such that, whenever state 7 is reached,
action k € K; is chosen with probability x} regardless of the time and history of the
game. In a similar way, we define a stationary strategy of P,, g=(g*, ..., g"), where
&=(y}, ..., ¥} ) is a probability distribution on L,.

Shapley [9] has shown that a solution of the discounted Markov game exists in
the class of stationary strategies and the value of the game, denoted by vz=(v4 (1), ...,
.-» Vg (V)), is the unique solution of the equation

v (i)=max,, min, 2 2 x; (r’f‘ +B 2 oy (j)) , i€S. 48]

kEK; l€Ly JeS
The optimal strategies, denoted by f* and g*, satisfy
W= 3 (s Y o), ies.
keK; leL; JES

Before presenting the main results of this paper, we propose a simple classifica-
tion of the algorithms for the discounted Markov game based on the terminology and
concepts from the Markov decision process.
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2. Algorithms for Discounted Markov Games

Following [11], let us define the operators L ( f, g), U, and U on RY by:
LS00 O)=3 D (s Y piv(), ies;

keK; leL; JjeS

Uyv=max L(f,g)v; Usv=minL(f,g)v;
F

g
Ur=maxmin L(f,g) v,
5o

where max and maxmin are taken componentwise. Under this notation, equation (1)
i

becomes
v=Uv.

In RY, we define a norm of a vector v=(v (1), ..., v (IV)) as the maximum norm, that
is, |[vl=max[v ({)|. The operators defined above have the following properties: ¥

i
(@) L(f,g), U, and are monotone.
(ii)) L (f, &), U, and U are strictly contractive with respect to the maximum norm
in RY with the contraction radius B.

(iii) The fixed point of operator U is equal to v,.
Properties (i) and (ii) can be easily derived. Property (iii) was shown by Shapley [9].

The algorithms for solving the discounted Markov game, that is, for solving the
equation (1), can be classified to the following three groups. For the sake of clarity
of presentation, we show here only the basic algorithms.

©

a) Successive Approximation

Algorithm: for n=1, 2, ..., and for given v, determine
V,,= Uv,,_. 1.

This method is a natural consequence of the properties (ii) and (iii) of the operator U.
The first algorithm in this group was proposed by Shapley [9]. Charnes and Schroeder
[1] supplied this algorithm with bounds based on the contraction radius of U and the
maximum norm of the difference between two successive approximations. Van der
Wal [10] extended the notion of stopping times, suggested by Wessels [13] for Markov
decision processes, into the Markov games and obtained a set of operators {U,: T €
€T} on RY, where T is a set of nonzero transition memoryless stopping times. For
each 1 e T, the operator U, is strictly contractive with a fixed point equal to v, and
yields stationary optimal strategies for P, and P,. In this way Van der Wal obtained
a set of successive approximation algorithms for the discounted Markov game.

1) Among real vectors v, we R, v<w means v(i)<w(i) for each i and v<w means v<w and
v#w. An operator 7 on RY is said to be monotone if for each v, w € RY, with v<w, we have Tv<Tw.
An operator T on the normed space RY is said to be strictly contractive if there is « « € (0, 1) such
that [|Ty—Twl|<«|lv—w|| for all v, we RY,
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At each iteration of this group of algorithms N matrix games, that is N linear pro-
grams, must be solved. The method belongs to the class of iterations in the function
space. It does not utilize the information contained in the strategies obtained in each
iteration.

b) Policy Iteration Method

For each v, € R¥, we define:

X O)={fns1: Us,,, h= Uva},

Y v)={gn+1: Uy, , a=U},
Note that for each (fpi1,8441) €X (W)X Y (v,) a pair (f1,,,gl,,) is a pair of
optimal strategies in a matrix game with entries i+ 3" i} w(j).

Jjes

Algorithm A: for n=1, 2, ..., and for given v, determine
Step 1. (policy improvement step) g,+1 € Y (V)3
Step 2. (value determination step) v, 4+ satisfying: v, 1 =Ug ,  Vn+1.

Algorithm B: for n=1, 2,..., and for given v, determine

Step 1. (fn+1’ gn+1) € X(v,,)x Y(vn);
Step 2. Vys 1 SAtySEYIng: Vo1 =L (fns 1 Ens 1) Vns1-

Both these variants are extensions of Howard’s [4] policy iteration method for Mar-
kov decision processes. Algorithm A was proposed for the average Markov game by
Hoffman and Karp [3]. Rao, Chandrasekaran and Nair [8] proved its convergence for
the discoun.ed Markov game. Algorithm B, known as the Newton-Raphson type
algorithm, was presented by Pollatschek and Avi-Itzhak [6]. Its convergence was
proved under the condition

f<1-—max 2 (max p¥i—min p), ®
i jes k1 k, 1

which is rather too strong to have a practical meaning. It should be mentioned here
that Van der Wal [11] gave a counterexample showing that this algorithm does not
always converage. »

In both vartants of this method, each policy improvement step requires the solu-
tion of N linear programs. In the value determination step, algorithm 4 requires the
solution of a Markov decision process, while algorithm B requires only the solution
of a set of linear equations. Algorithms 4 and B were compared in a number of nu-
merical experiments by Pollatschele and Avi-Itzhak and Rao, Chandrasekaran and
Nair. It occured that the procedure B was far superior to the procedure 4 as regards
the number of iterations and computing time. Both these procedures appeared to be
superior to the standard successive approximation algorithm.
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¢) Motdified Policy Iteration Method

Algorithm A': for n=1, 2,..., and for given v, and m, m>1, determine
Step 1. (policy improvement step) w, 41 =Uv, and g,,, € Y (v,);

Step 2. (value approximation step) v,4 1 =Uj  Way1.

Algorithm B': for n=1, 2,..., and for given v, and m, m>1, determine
Step 1. w1 =Uv, and (fas1, 8us 1) EX () X Y ()3

Step 2. Vay1=L (fus1, &t )" Was1.

In comparison with the previous method, here, the exact solutions of the equations
appearing in the value determination step are replaced by their approximations. In
fact, from property (ii) of the operators U, and L (f, g) it follows that for m_ we
get algorithms 4 and B of the policy iteration method. This idea was employed in
Markov decision processes by Van Nunen [12], Puterman and Shin [7] and Ohno [5].

Algorithm A, was proposed by Van der Wal [11] who also proved its convergence
under the condition: Uv,<v,. In Section 4, we prove that this algorithm converges
from any starting point. Algorithm B’ is examined in Section 3 of this paper.

The computational efforts incurred in Step 1 remain the same as in Step 1 of the
policy iteration method. In Step 2, algorithm A’ requires the solution of mN maxi-
mization problems, while algorithm B’ requires only recurrent computing of the
values

L (f;1+ 15 &a+ l)k Wrt1 =L (f;l-('- 15 8r+ I)L (f;l+1’ gn—!—l)k—l Wnit, k= 1’ e B2

3. Modified Policy Iteration Method: Algorithm B’

In this section we shall prove a sufficient condition for convergence. We need
the following

LemMmA 1. Let A and B be matrices of the same dimension with entries a;; and b,
respectively. Denote by ValC the value of the matrix game with matrix C. Then,

min (@;;—b;;)< Vald — ValB< max (a;;—b;;) .
£y ‘ i J

This property was suggested by Pollatschek and Avi-Itzhak [6]. Its proof is ob-
vious.

TueoreM 1. 4lgorithm B’ converges from any starting point if
1__3/3+ﬁm+1+ﬂm+2>0. (3)
Proof: Let us define numbers #, and &, as

fa=min [Uv, (i) —v, ()],
u=max [Uv, () —a @].
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From the monotonicity of L(:f, g) it follows that

Mn ﬁk e<L (j;H- 1 gn+1)k Uvn—L (f;x+ 15 &n+ I)k vn<§n ﬁk e, k=0’ 1’

where L (fo41, 8a+1)°=1 and e=(l, ..., 1). Using the equality

m

Vpg1— Uvpy= 2 [L (fas 15 8t 1)* UVna—L (fre 15 Zas 1) Vel

k=1
we obtain from (4)

1—pm 1—pm

Hn T? e Vppq1— UV,,<§,, ﬁ

=i -

1-p
In a similar way, using the fact that

Vat1 '_vn=L (f;l+ 1 gn+1)m+l Vo= Vp=
m+ 1

= DV IL (fur1s 8 0 Ya=L (fr 1, 8 1 0,
k=1

we get from (4)

1—pm+1 1—pm+t
g €< Vps1— VuSEn =7

e.

By Lemma 1,
Ubps1 ()= Uvy ()<max B 37 ol (var1 () —va (D)<

k, 1 Jjes
_pm+1 1—pm+t

Smaxﬁzpl:}fn—_i‘%'e(])=fnﬁ_l:_—rv ief,

k1 jes
and

+1

Lol

Now, rewriting the difference Uv,,;—V., 4, as

le+1 (l)" UV,, (i)>ﬂn ﬁ iesS.

UVni1 = Vas 1= UV s — U+ UV =V
and employing the inequalities (5), (6) and (7), we get

1= 1—pm+1
(—ﬂ 1_’: &t lfﬂ n

)e< Uvper +

l—ﬂ""“ 1—pm

'—vu+1<(ﬁ 1~f ¢ P I—B Hn

These inequalities imply
Hav1 =C (1 _ﬁm+1) Hp—C (1 _ﬂm) 6.& »
5u+1< —C (l _ﬂm) HatC (1 _ﬁm+1) é»u

Q)

®

©

O
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where ¢= l_li R Setting #,= —#, and &=, &)Y, we obtain
€n+1<Aén;
where
4[ca=pmy et—pm
Tle=p  e(l—pY)]
Therefore,

Cas 1 SA™ . ®)

The sequence A"t {, converges to zero for any (, if and only if the eigen-values
of the matrix 4, denoted by A, and A,, satisfy the condition: |4,], |A,| <1. We have:
Ay=p""1 and d,=c (2—pfm—pm+Y). It is clear that |[A,|<1 always holds, and that
|4,] <1 if and only if the condition (3) is satisfied.

Hence, the inequality (8) implies: lim sup,., , &,<0, and lim sup,.,, #7,<0. Since
7, = —1, and 1,<&, for every n, we find that

0<lm inf,, , #,<lim sup,., ., #p, lim inf,, , &,<lim sup,., , £,<0.

Therefore lim,, , , [|[Uv,—v,[|=0. Since [[vg— v,l|< [[vg— Uyl + [[Uvy— Vol =||Uvg — U, +
+ UV —vl|< Bllvg—vall + |[Uv,—v,ll and f< 1, this completes the proof. - |
The immediate consequence of Theorem 1 is the following

COROLLARY. The Newton—-Raphson type algorithm (policy iteration metod: algorithm
B) converges from any starting point if

1
ﬁ<—3'. ©)]

This follows from the fact that for m._, , the algorithm considered in this section
becomes the Newton-Raphosn type algorithm. Hence, for m., ,, the condition (3) has
the form: 1—-35>0.

In Van der Wal [11], an example of the discounted Markov game is shown where
the Newton-Raphson procedure does not converge. We shall confine our numerical
experiment to this game only.

1 L wvsl o

Fig. 1. Two-person zero-sum Markov game with two states

The mentioned game is shown in Fig. 1. The game has two states. Both players
have two actions in state 1 and only one in state 2. According to the notation shown
in Fig. 1, whenever state 1 1s reached and players P, and P, choose actions 1 and 2,
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respectively, then P; receives the reward of 6 units from P,, and the system remains
in state 1 with probability 1/3 and moves to state 2 with probability 2/3.

In Table 1, we show the paths of convergence by the algortihm B’ of modified
policy iteration method and by the Newton-Raphson procedure. The convergence
of this procedures in examined for two values of the discountfactor f: 3/4 and 1/4.
Note that in the first case the conditions (3) and (9) are not satisfied. Here we observe
only the behaviour of the seqeunce v, (1), since v, (2)=0 for any n (we assume that
vo=0).

Table 1,
m==00
2 = - gy s
B va (1) m=1 m=2 m m=4 (NR)
vo (1) 0 6 0 0 0
3 v (1) 5,25 6,9375 8,203125 9,152344 12
— v, (1) 8,203125 7,983398 8,000793 8,004104 4
4 vs (1) 8,012655 7,999741 8,000001 12
va (1) 8,000821 4
vo (1) 0 0 0 0 0
1 vy (1) 3,75 3,9375 3,984375 3,996093 4
Z Q@ 3,984375 3,996093 3,999023 3,999755
v (1) 3,999023 3,999755

The example demonstrates that the algorithm B’ of the modified policy iteration
method converges in the case f=3/4, where the Newton—-Raphson procedure oscilla-
tes. But it also occurs (f=1/4), that the Newton-Raphson procedure converges in
one iteration, while its modifications need, in the same case, two or three iterations
to reach a given neighbourhood of the solution.

4. Modified Policy Iteration Method: Algorithm A’

In this section, we show that the algorithm A’ of the modified policy iteration
method converges from any starting point.
First, we prove the following

Lemma 2. Let w, and v, be sequences determined by the algortihm A’'. For every vy and
&> 0 there exists a natural number M such that

Wya1—V,<ee, for all n=M.

Proof: Let &, be a number such that w; —vo<&pe.
From the monotonicity of L (f, g), we get

Uy, wi—U; vo=L(f', ) wi—L(f1,81) vo<L(f', &) w1+
‘ =L (f', g)vo<pEs e
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By induction,
U;nx+1 Wi U’ﬂnl.+1 vo—Uy, vi—vi<p" 1 o e,
This implies
W=V =Uv; —=v; KU, v =V, <"1 g e
By induction,
Wap1— VS B+ &0 e for n=0, 1, ...,

which in view of the fact that 0<f<1, completes the proof. |

THEOREM 2. Algorithm A’ converges from any starting point.
Proof: Choose an arbitrary £>0. By Lemma 2, there exists M such that for n>M
Wpp1—Vn<ce. (10)

From the monotonicity of L ( f, g), we get

Uspos Wat 1= War 1 =L (f', gns 1) Wns1+

=L (fa+158nt 1) 'wSL (S, Gt 1) War1 =L (f', Gns ) a<Pee.
Adding this inequality to (10), we get
Uy, s =<+ €.

By induction,

m—1 l

e |
U'ﬂnu-(-x Wat1 _V,.S ﬁkse< l—ﬁ
k=

ee.

This inequality, and the monotonicity of L (f, g) imply
Va+1— Wnit =U:,,+1 Wris— Ua,,H Va=L(f"', gns1) U’:.:t W1+

~L(foar1s 8t 1) Vas1 SL (S, Gus1) U’:.:i Was1 =L (f", 8at1) ae1<

s——ﬁ—-—eescae, forn>M. (11)

1-8
By Lemma 1,
Wae2— Ui =Uv 1 —Uwp <fPcee.
Moreover, from (11) it follows that
Var2—WpaSCEE.
An addition of the last two inequalities yields

Vapz— UWpi1<(1+ P cee.
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By induction, we obtain

k
Vagra1— U Wy 1< 2 PPcee, for k=0,1, ...,

p=0
which in view of the properties (ii) and (iii) of U, yields

cé

_1:-/? e. ; (12

Lim supy., o Va4x<Vp+

Let us rewrite (10) as follows
Uv,—v,<ce,forn=M.
This inequality, and Lemma 1 imply
U?v,—Uv,<Pee,
and consequently,

Uky,—U*1y,<p*tee, fork=1,2, ...

Hence,
k k
Uky,—v,= 2 (UPv,—UP~1p)< 2 pfrlee,

p=1 p=1

Letting k_, ,,, we obtain
£
Vn>vp o= 1-8 €,

which combined with (12), proves the theorem. B

5. Remarks

In this paper, we have focused our attention on the basic algorithms, avoiding
a discussion of such details as upper and lower bounds on a value of a game and
stopping rules. The discussion of these questions may be found in the references, as
regards the existing algorithms. The algorithm B’ of the modified policy iteration
“method, introduced in this paper, can be supplied with precisely the same upper and
lower bounds as those suggested by Van der Wal [11] for the algorithm A.

Convergence of the algorithms discussed in Sections 3 and 4 is preserved if we
allow the transition probabilities to satisfy the condition ) p}j<1, instead of
JES
2 pfi=1. These algorithms may also be applied to the terminating Markov game.
JeS
In this case, the contraction radius of the operators L (f, g), U, and U is equal te
max ' p}l.

k.l jes



Modified policy iteration ) 91

The example shown in this paper demonstrates that the selection of the parameter
m, which indicates the number of successive approximations employed in Step 2, is of
importance as regards the rate of convergence. In this respect, we are not able to
give justified recommendations. We mention only that the convergence of both al-
gorithms, A’ and B’, is preserved if the parameter m varies with the number of
iteration.

In Section 3, we have derived sufficient conditions for convergence of the policy
iteration method and its modification in the case where 1n Step 2 the operator L (f, &)
has been employed. It can be verified on numerical examples that the condition (9)
is less restrictive than the condition (2), suggested by Pollatschek and Avi-Itzhak,
Nevertheless, ihe restriction on the discountfactor # imposed in (9) seems to be still
too strong. This remark holds good for the condition (3), as well.
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Algorytmy zmodyfikowanej metody iteracji polityk
dla dyskontowych gier Markova

W pracy przedstawiono modyfikacje procedury typu Newtona-Raphsona dla dwuosobowych
gier Markova o sumie zerowej oraz podano warunki wystarczajace zbieznoéci. Otrzymano réwniez
nowy, slabszy warunek wystarczajacy zbiezno$ci procedury typu Newtona-Raphosna oraz poka-
zano, ze algorytm uogdlnionej metody iteracji polityk zaproponowany przez Van der Wala [1978]
jest zbiezny dla dowolnego punktu startowego.

AJIropuTMBI MOHE(HIHPOBARHOI0 METOAA HTEpAIMii NOJHTHK
JUISl Y9eTHBIX MApKOBCKHX HID

B paGore mpencraBnera MomubEKam@sa nponenypsl TEna HeioTona-PaBCoHa [UISI MapKOBCKAX
HID IBYX JIMI C EyJCBOK CYMMOH, a Takxe NPUBEACHB! JOCTATOYHBIC YCIOBHSI CXOOAMOCTH. I1omy-
YEHO TaloKe HOBOE OCiabieHHOe MOCTATOYHOE YCIOBHME CXONMMOCTH npomenypsl Tuna HrroToHa-
Pascorna m noxazamo, 4ro anroputM OGOGINEHHOTO METOAA HTEPaUHii MOMHTHK, IPEIJIOXCHHbBIH
Bannepsanem [1978], cxomaM I mpOHW3BOJIBHON CTAPTOBOM TOYKH.




