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In the paper, a modification of the Newton-Raphson procedure for two-person zero-sum dis­
counted Markov games is proposed and a sufficient condition for its convergence derived. As an ad­
ditional result, a new sufficient condition for convergence . of the Newton-Raphson procedure is 
obtained. It is also proved that the Van der Wal's [ll] generalized policy iteration method converges 
from any starting point. 

1. Introduction and Notation 

Is this paper we deal with computational methods for the two-person zero-sum 
discounted Markov game with finite state space and finite action sets. For this 
game, a number of algorithms have already appeared in the literature. As r~gards the 
concepts employed, one can distinguish three niain approaches: successive approxima­
tion, policy iteration method and modified policy iteration method (a survey of the 
existing algorithms with regard to this classification is presented in Section 2). The 
last mentioned method is of particular interest, since it requires less computational 
effort than the policy iteration technique, and simultaneously, it preserves a high 
convergence rate. The only algorithm employing this concept was presented by Van 
der Wal [11]. This algorithm was obtained by modification ofthe Hoffman and Karp's 
[3] policy iteration method and its convergence was proved under a certain condition 
imposed on a starting point. 

Here, we examine two basic algorithms of the modified policy iteration method. 
In Section 3, we propose a modification of the Newton-Raphson technique, which 
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was first used for the discounted Markov game by Pollats~hek and Avi-Itzhak [6], and 
derive a condition under which this algorithm converges from any starting point. AB 
an additional results, we obtain a new condition for convergence of the Newton-Ra­
phson technique, which is less restrictive than the one derived by Pollatschek and 
4vi-Itzhak. In Section 4, we prove that Van der Wal's [11] algorithm converges from 
any starting point, thus removing the restriction which was imposed on a starting 
point in the original proof of conlergence. 

Now we specify the game and introduce the notation and the basic results. The 
game under consideration may be regarded as a dynamic system with a state space 
S={l, ... ,N}. At discrete times t=O, l, ... , the system is observed and its behaviour 
is influenced by two players, P 1 and P2 , having opposite aims. For each state i E S 
there exist two sets of available actions, K 1 ={1, ... , k1} for P 1 and L1={1, ... , 11} for 
P 2 • If the system is in state i and players P 1 and P 2 choose actions k E K1 and 1 E Lto 
respectively, then the first player receives a reward 1'~ 1 froni the second one and the 
system proceeds to a new state j with probability p~J, where ,2; p~j= 1 for any i, k, 

}ES 

and!. The rewards are discounted at a rate p, O~P< 1, that is the unit reward at time 
00 

t=n has the value P" at time t=O. The total discounted reward is equal to ,2; P" R,., 
n=O 

where R,. is a reward obtained at time t=n. We consider the criterion of a total ex-
pected discounted reward. 

The discounted Markov game, as described above, was introduced by Gilette [2], 
who noticed that all results obtained by Shapley [1953] for the terminating game 
remain valid if the condition: max ,2; p~J< 1, determining the terminating game, is 

I, le, I }ES 

replaced by: ,2; v~J= 1 for any i, k, I, and rewards are discounted at a rate p, 0~ P < 1. 
}ES 

Of particular interest in the discounted Markov game are stationary strategies. 
A stationary strategy of P1 is a N-tuple f=(Jl, ... ,JH), where f'=(xL ... ,x~) is 
a probability distribution on the action set K, such that, whenever state i is reached, 
action k E K 1 is chosen with probability x! regardless of the time and history of the 
game. In a similar way, we define a stationary strategy of P 2 , g = (g1 , ... , gN), where 
g'=(y~, ... , YL) is a probability distribution on L1• 

Shapley [9] has shown that a solution of the discounted Markov game exists in 
the class of stationary strategies and the value of the game, denoted by vp=(vp (1), ... , 
... , v 1 (N) ), is the unique solution of the equation 

v (i)=maxf, min,, ~ ~ x~ y: (r~1 + p ~ o~J v (j)), i E S. (1) 
kEKt IELt }ES 

The optimal strategies, denoted by f* and g*, satisfy 

( ') ~ ~ ., ., ( ·kl p ~ kl ( ')) Vp z = .L.J .L.J xk y 1 r 1 + .L.J p 11 Vp 1 , iE S. 
kEK 1 IEL1 }ES 

Before presenting the main results of this paper, we propose a simple classifica­
tion of the algorithms for the discounted Marko'\' game based on the terminology and 
concepts from the Markov decision process. 
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2. Algorithms for Discounted Markov Games 

Following [11), let us define the operators L (f, g), Ug and U on RN by: 

(L(f,g)v)(i)=}; _2: x!y;(r7'+P _2:p~JvU)), iES; 
kEKt IELt jES 

Ug v=max L (f, g) v; Uf v=min L (f, g) v; 
f g 

Uv=max min L (f, g) v, 
f g 

83 

where max and maxmin are taken componentwise. Under this notation, equation (1) 
I 

becomes 
v=Uv. 

In RN, we define a norm of a vector v=(v (1), ... , v (N)) as the maximum norm, that 
is, llvll=max lv (i)l. The operators defined above have the following properties: 11 

I 

(i) L (f, g), Ug and are monotone. 
(ii) L (f, g), Ug and U are strictly contractive with respect to the maximum norm 

in RN with the contraction radius p. 
(iii) The fixed point of operator U is equal to Vp. 

Properties (i) and (ii) can be easily derived. Property (iii) was shown by Shapley [9]. 
The algorithms for solving the discounted Markov game, that is, for solving the 

equation (1), can be classified to the following three groups. For the sake of clarity 
of presentation, we show here only the basic algorithms. 

a) Successive Approximation 

Algorithm: for n= 1, 2, ... , and for given v0 determine 

v,.= Uv,._ 1 • 

This method is a natural consequence of the properties (ii) and (iii) of the operator U. 
The first algorithm in this group was proposed by Shapley [9]. Char'nes and Schroeder 
(1) supplied this algorithm with bounds based on the contraction radius of U and the 
maximum norm of the difference between two successive approximations. Van der 
Wal [10] extended the notion of stopping times, suggested by Wessels [13] for Markov 
decision processes, into the Markov games and obtained a set of operators { U,: 't E 

E T} on RN, where T is a set of nonzero transition memoryless stopping times. For 
each 't ET, the operator U, is strictly contractive with a fixed point equal to Vp and 
yields stationary optimal strategies for P1 and P2 • In this way Van der Wal obtained 
a set of successive approximation algorithms for the discounted Markov game. 

1) Among real vectors v, we RN, v,;;; w means v (i),;;; w (i) for each i and v < w means v,;;; w and 
vo;6w. An operator Ton RN is said to be monotone if for each v, we RN, with v,;;;w, we have Tv,;;;Tw. 
An operator Ton the normed space RN is said to be strictly contractive if there is ex ex e (0, 1) such 
that I!Tv-Twll,;;;cxl!v-wll for all v, we RN. 
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At each iteration of this group of algorithms N matrix games, that is N linear pro­
grams, must be solved. The method belongs to the class of iterations in the function 
space. It does not utilize the information contained in the strategies obtained in each 
iteration. 

b) Policy Iteration Method 

For each Vn ERN, we define: 

,X(vn)= { fn+1: ufn+l Vn = Uv.}, 

Y(v11) = {gn+l: U9,+1 v. = Uvn}, 
• i . 

Note that for each Un +1>gn+ 1)EX(v11)XY(v.) a pair (/.+ 1 ,g~+ 1) is a pair of 
optimal strategies in a matrix game with entries r~ 1 + f3 ]; v~J vn(j). 

jES 

4Jgorithm A : for n= 1, 2, ... , and for given v0 determine 

Step 1. (policy improvement step) gn+l E Y(vn); 

Step 2. (value determination step) Vn+l satisfying: Vn+l = Pfln+t Vn+1· 

Algorithm B: for n = 1, 2, ... , and for given v0 determine 

Step 1. (f n+I• gn+ 1) E ,X (vn) X Y (v.); 

Step 2. Vn+l satysfying: Vn+l = L (fn+l• gn+l) Vn+l · 

Both these variants are extensions of Howard's [4] policy iteration method for Mar­
kov decision processes. Algorithm A was proposed for the average Markov game by 
Hoffman and Karp [3]. Rao, Chandrasekaran and Nair [8] proved its convergence for 
the discoun,ed Markov game. Algorithm B, known as the Newton-Raphson type 
algorithm, was presented by Pollatschek and Avi-Itzhak [6]. Its convergence was 
proved under the condition 

f3 < 1 - max }; (m.ax p~j-min pm, 
i jES k,l k,l 

(2) 

which is rather too strong to have a practical meaning. It should be mentioned here 
that Van der Wal [11] gave a counterexample showing that this algonthm does not 
always comerage. 

In both vanants of this method, each policy improvement step requires the solu­
tion of N linear programs. In the \alue determination step, algorithm A requires the 
solution of a Markov decision process, while algorithm B requires only the solution 
of a set of linear equations. Algorithms A and B were compared in a number of nu­
merical experiments by Pollatschek and Avi- Itzhak and Rao, Chcmdrasekaran and 
Naif. It occured that t-he procedure B was far superior to the procedure A as regards 
the number of iterations and computing time. Both these procedures appeared to be 
superior to the standard successive approximation algorithm. 
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c) Modified Policy Iteration Method 

Algorithm A': for n= 1, 2, ... , and for given v0 and m, m):l, determine 

Step 1. (policy improvement step) W11 + 1 = .Uvn and g11 + 1 E Y ( vn); 

Step 2. (value approximation step) Vn+1 = u~.+l Wn+1· 

AlgorithmB': for n= 1, 2, ... , and for given v0 and m, m):l, determine 

Step 1. Wn+ 1 = Uv,. and (/ n+ 1> gn+ 1) EX (vn) X y (vn); 

Step 2. Vn+1 =L (fn+l> gn+1)m Wn+1· 

85 

In comparison with the previous method, here, the exact solutions of the equations 
appearing in the value determination step are replaced by their approximations. In 
fact, from property (ii) of the operators U9 and L (f, g) it follows that for m= OCl we 
get algorithms A and B of the policy iteration method. This idea was employed in 
Markov decision processes by Van Nunen [12], Puterman and Shin [7] and Ohno [5]. 

Algorithm A, was proposed by Van der Wal [11] who also proved its convergence 
under the condition: Uv0 ::'(v0 • In Section 4, we prove that this algorithm converges 
from any starting point. Algorithm B' is examined in Section 3 of this paper. 

The computational efforts incurred in Step 1 remain the same as in Step 1. of the 
policy iteration method. In Step 2, algorithm A' requires the solution of mN maxi­
mization problems, while algorithm B' requires only recurrent computing of the 
values 

L (fn+ 1> gn+ 1)k Wr.+ 1 =L (fn+l, Cr.+ 1) L (In+ 1> Cn+ 1y-
1 Wn+ b k= 1, ... ,m. 

3. Modified Policy Iteration Method: Algorithm B' 

In this section we shall prove a sufficient condition for convergence. We need 
the following 

LEMMA 1. Let A and B be matrices of the same dimension with entries au and b;j• 
respectively. Denote by ValC the value of the matrix game with matrix C. Then, 

min (aii-bii):::;; V alA- ValE:::;; max (aii -bii). 
i,j i, j 

This property was suggested by Pollatschek and Avi-ltzhak [6]. Its proof is ob­
vwus. 

THEOREM 1. 1Jgorithm B' converges from any starting voint if 
1-3/J+ pm+1 + pm+2>0. 

Proof: Let us define numbers Yfn and ( 11 as 

Yfn =min [Uvn (i)-vn (i)], 

/ 

(3) 
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From the monotonicity of L(f, g) it follows that 

l'fnfJke~L(fn+l>gn+1)k UV11 -L(fn+1,gn+1)"vn~f.nfJke, k=O, 1, ... , (4) 

where L (fn+ 1, gn+ 1)0= 1 and e=(1, ... , 1). Using the equality 
m 

Vn+1 - Uv"=,}; [L (/,.+1• gn+1)k Uvn-L (fn+t. gn+1l vd]' 
k=1 

we obtain from (4) 

1 - {J'" 1 - fJ"' 
l'fn Pt=p e~vn+l- Uv,.~f,,. fJ l-[J e. 

In a stmllar way, using the fact that 

m+1 
= .2; [L (fn+ 1• gn+ 1)k Vn - L (fn+ 1• gn+ 1)k-1 Vn], 

k= 1 

we get from ( 4) 

By Lemma 1, 

Uv,.+l(i)-Uv,.(i)~max.[J,}; o:J(vn+1(j)-v,.(j))~ 
k,l )ES 

1-pm+l 1-pm+l 
~max fJ ~ p~; e,. 1 - p e (j) = ,,. fJ 1 - fJ 

t,l )ES 

and 

1- fJ"'+l 
Uva+ 1 (i)- Uv,. (i) ~1'/n fJ 

1 
_ fJ , ie S. 

Now, rewritmg the difference UvH 1 -v.,+ 1 as 

and employing the inequalities (5), (6) and (7), we get 

These inequalities imply 

1'fn+1 ~C (1-pm+ 1) '1 11 -C (1-pm) f,,., 

'"+1 ~ -c (1-[Jm) rtn+c (1-pm+1) !;", 

ie S, 

(5) 

(6) 

(7) 
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h - {J S • ' - d ;: - ( ' ;: )T b . w ere c-
1

_ fJ . ettmg 'In- -'In an sn- 'In• <on , we o tam 

where 

Therefore, 

(8) 

The sequence An+ t ( 0 comerges to zero for any ( 0 if and only if the eigen-values 
of the matrix A, denoted by At and -1.2 , satisfy the condition: IJ.tl. IA-2 1 < 1. We have: 
At=pm+t and A.2 =c(2-{Jm-pm+t). It is clear that !A.tl<1 always holds, and that 
IA-2 1 < 1 if and only if the condition (3) is satisfied. 

Hence, the inequahty (8) implies: lim sup,.-+oo c;,.~O, and lim sup,..., 00 11:~0. Since 

n:= -rJ,. and rJ,.~c; .. for every n, we find that 

O~hm infn-+oo n .. ~lim sup,.-+oo rJ,., lim infn->oo c;,.~lim SUPn-+oo c; .. ~o. 

Therefore lim,.-+ 00 IIUv,.- v,.ll =0. Since llv11 - v,.ll~ liv11 - Uv,.ll + IIUv,.- v,.ll = IIUv11 - Uv,.ll + 
+ iiUv,.-v,.ll~fJIIv11 -v,.ll+ IJUv,.-v,.ll and fJ< 1, this completes the proof. • 

The immediate consequence of Theorem 1 is the following 

CoROLLARY. The Newton-Raphson type algorithm (policy iteration metod: algorithm 
B) converges from any starting point if 

(9) 

This follows from the fact that for m_, 00 , the algorithm considered in this section 
becomes the Newton-Raphosn type algorithm. Hence, for m ... 00 the condition (3) has 
the form: 1-3{3>0. 

In Van der Wal [11], an example of the discounted Markov game is shown where 
the Newton-Raphson procedure does not converge. We shall confine our numerical 
experiment to this game only. 

Fig. 1. Two-person zero-sum Markov game with two states 

The mentioned game is shown in Fig. 1. The game has two states. Both players 
have two actions in state 1 and only one in state 2. According to the notation shown 
in Fig. l., whenever state 1 ts reached and players P t and P 2 choose actwns 1 and 2, 
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respectively, then P 1 receives the reward of 6 units from P 2 , and the system remains 
in state 1 with probability 1/3 and moves to state 2 with probability 2/3. 

In Table 1, we show the paths of convergence by the algortihm B' of modified 
policy iteration method and by the Newton-Raphson procedure. The convergence 
of this procedures in examined for two values of the discountfactor /3: 3/4 and 1/4. 
Note that in the first case the conditions (3) and (9) are not satisfied. Here we observe 
only the behaviour of the seqeunce Vn (1), since vn (2) = 0 for any n (we assume that 
Vo = O). 

Table 1. 

1 I I 
I 

I I 
m=oo 

p Vn (1) m=1 m=2 
I 

m=3 m=4 (NR) 

Vo (1) 0 0 I 0 0 0 

3 v, (1) 5,25 6,9375 8,203125 9,152344 12 
- v2 (1) 8,203125 7,983398 8,000793 8,004104 4 
4 

V3 (1) 8,012655 7,999741 8,000001 12 
V4 (I) 8,000821 ! 4 

--
I Vo (1) 0 0 0 0 0 

I 

1 v, (1) 3,75 3,9375 

I 
3,984375 3,996093 4 

- v2 (1) 3,984375 3,996093 3,999023 3,999755 4 
V3 (1) 3,999023 3,999755 

The example demonstrates that the algorithm B' of the modified policy iteration 
method converges in the case /3 =3/4, where the Newton- Raphson procedure oscilla­
tes. But it also occurs (/3= 1/4), that the Newton-Raphson procedure converges in 
one iteration, while its modifications need, in the same case, two or three iterations 
to reach a given neighbourhood of the solution. 

4. Modified Policy Iteration Method: Algorithm A' 

In this section, we show that the algorithm A' of the modified policy iteration 
method converges from any starting point . 

First, we prove the following 

LEMMA 2. Let Wn and vn be sequences determined by the algortihm A'. For ever:v v 0 and 
t > 0 there exists a natural number M such that 

Proof: Let eo be a number such that wl -Vo~c!'oe . 

From the monotonicity of L (f, g), we get 

Uu, W 1 - U0 , v0 = L (j', gl) W1 -L (fl> gl) Vo~L (j', gl) W1 + 
-L (J ', gl) vo~Peo e. 
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By induction, 

um+lw -um+lv -U V -V :;::p•n+l;: e. 
Ill 1 Ill 0 Ill 1 1"' ':.0 

This implies 

By induction, 

which in view of the fact that O~P< 1, completes the proof. •• 
THEOREM 2. Algorithm A' converges from any starting point. 

Proof: Choose an arbitrary e>O. By Lemma 2, there exists M such that for n~M 

(10) 

From the monotonicity of L (f, g), we get 

Ug•+t Wn+l-Wn+l =L (J', gn+l) Wn+l + 
-L (fn+l> g,.+l) v,.~L (J', gn+l) Wn+l -L (J', g,.+l) v,.~pe e. 

Adding this inequality to (10), we get 

Un w"+l -v,.~(l +,8) e e. wa+1 

By induction; 

m-1 1 
u;.:.; Wn+l -v .. ~}; Pkee~ 1'-P ee. 

t=O 

This inequality, and the monotonicity of L (f, g) imply 

By Lemma 1, 

Moreover, from (11) it follows that 

An addit~on of the last two inequalities yields 

v,.+ 2- Uwn+l ~(1 +P) c e e. 
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By induction, we obtain 

" 
Vn+k+ 1 - U" Wn+l ~ .J; PP c e e, for k=O, 1, ... , 

p=O 

which in view of the properties (ii) and (iii) of U, yields 

ce 
Jim $Upk->oo Vn+lt~Vp + 1_ p e · 

Let us rewrite (10) as follows 

Uv,.-V11 ~e e, for n~M. 

This inequality, and Lemma 1 imply 

and consequently, 

U" v,.- u"- 1 Vn~pt- 1 e e, fork= 1, 2, .... 

Hence, 

k " 
Uk Vn-Vn= .2 (UPv,.- up-l v,.)~ .2 pp-l t e, 

p=1 p=1 

Letting k ... 00 , we obtain 

e 
v,.~vp- I-P e, 

which combined with (12), proves the theorem. 

5. Remarks 

(12) 

• 
In this paper, we have focused our attention on the basic algorithms, avoiding 

a discussion . of such details as upper and lower bounds on a value of a game and 
stopping rules. The dis~ussion of these questions may be found in the references, as 
regards the existing algorithms. The algorithm B' of the modified policy iteration 

·method, introduced in this paper, can be supplied with precisely the same upper and 
lower bounds as those suggested by Van der Wal [11] for the algorithm A. 

Convergence of the algorithms discussed in Sections 3 and 4 is preserved if. we 
allow the transition probabilities to satisfy the condition }; v~j~ I, instead of 

jES 

}; o~J = 1. These algorithms may also be applied to the terminating Markov game. 
jES 

In this case, the contraction radius of the operators L (f, g), U11, and U is equal to 
max}; p~;. 
I,Jt,! jE S 
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The example shown in this paper demonstrates that the selection of the parameter 
m, which indicates the number of successive approximations employed in Step 2, is of 
importance as regards the rate of convergence. In this respect, we are not able to 
give justified recommendations. We mention only that the convergence of both al­
gorithms, A' and B', is preserved if the parameter m varies with the number of 
iteration. 

In Section 3, we have derived sufficient conditions for comergence of the policy 
iteration method and its modification m the case where m Step 2 the operator L (f, g) 
has been employed. It can be verified on numerical examples that the conditwn (9) 
is less restnct1ve than the condition (2), suggested by Po/latschek and Avi- ltzhak, 
Nevertheless, Lhe restriction on the discountfactor P imposed in (9) seems to be still 
too strong. This remark holds good for the condition (3), as well. 
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Algorytmy zmodyfikowanej metody iteracji polityk 
dla dyskontowych gier Markova 

K. OHNO, S. ZDRZALKA 

W pracy przedstawiono modyfikacj~ procedury typu Newtona-Raphsona dla dwuosobowych 
gier Markova o sumie zerowej oraz podano warunki wystarczajl!:ce zbie:Znosci. Otrzymano r6wniez 
nowy, slabszy warunek wystarczajltCY zbie:Znosci procedury typu Newtona-Raphosna oraz poka­
zano, ze algorytm uog6lnionej metody iteracji polityk zaproponowany przez Van der Wala [1978] 

jest zbie:Zny dla dowolnego punktu startowego . 

.A.JiropHTMhl MO,lQI4_>8llHpOBaHuOf0 MeTo~a RTepal(llii DOJIIITJIK 
~~H yqeTHbD( MapKOBCKHX urp 

B pa6oTe npe.n;cTanJieHa Mo.n;n<l>HKall;IDI: npon;e.n;ypbr Tlma lliroToHa-PancoHa .n;JUI MapKOBCKIDt 
Brp ;o;syx ~ c HYJICBO:lt CJMMO:lt, a TaiOKe npHBe.n;emr )J;OCTaTO'lllb!e YCJIOBIDI CXO.n;HMOCTH. nony­
'leHO TaiOKe HOBOe OCJia6JieHHoe ,!I;OCTaTO'IHOe JC!IOBHe CXO)J;HMOCTH npon;e.n;ypbi TIUia HbiOTOHa­
PaBCOHa H noKa3aHo, '!TO aJirOPHTM o6o6rn;eHHoro MeTo.n;a meparurn no!IHTHK, npe)J;JlmKeiilii>Iti: 
BaH.n;epBaJieM [1978], CXO.n;HM )J;JUI npOH3BOJibHOi!: CTapTOBOH TO'iKif. 


