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A macroscopic m1thematical model is proposed for description of the growth of an individual 
·polycrystal immersed into the melt cf the same monocomponent substance and placed on an un
dercooled support. The model approxim-:ttely describes the spontaneous exit of the boundary 
layer separating the bulk of the liquid phase from the crystal from its undercooled state, and 
imitates the crystallographic properties of the crystal by consideration of a fixed lattice whose 
every cell represents a . virtual monocrystal able to adjoin to the existing crystal. For the sake of 
simplicity the study is restricted to a two-dimensional (planar) framework. 

1. Introduction 

As fa·r as it is known to the author, the mathematical description of the pattern 
formation in the process of solidification of monocomponent melts or binary 
alloys in non-uniform temperature fields is so far limited to efforts employing 
a linear or non-linear stability theory to the Stefan-like problems, formulated for 
the case of solidification of undercooled melts (Se.kerka, 1968; Wollkind and Se gel, 
1970; Langer, 1980; Wollkind and Notestine, 1981). This approach became the 
most popular after appearance of the Langer's review (1980) where very impressive 
results of computations were presented. 

In what follows we try to introduce an essentially different model for macro
scopic description of the growth of an individual polycrystal, placed on an under
cooled support and immersed into the melt of the same substance being in a non
-uniform temperature field. Our model is based on rather rough and maximally 
simplifying assumptions. Therefore it is far from any adequacy to the real physical 
process. Nevertheless we hope that it may serve as a prototype of a forthcoming 
model better approaching physical reality. 

~------ -- -- -
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Our main assumptions are the following: 
1. The whole region occupied by the melt and the crystal immersed therein may 

be imagined as covered by a fixed system of congruent (both geometrically and 
physically) macroscopic aggregates (cells). These aggregates remain unchanged geo
metrically and Immovable even if the melt moves subject to solidification. 

2. The process of solidification/melting consists in the spontaneous, instanta
neous transformation of the liquid/solid state of these aggregates into the solid/liquid 
state. This transformation is accompanied with an instantaneous release/absorption 
of the relevant latent heat and with a simultaneous increase/decrease of tempera
ture of that aggregate till the thermodynamically equilibrium melting temperature. 

3. This process of the change of the phase state takes place only in a boundary 
layer separating the crystal (melt from the bulk of the liquid) solid phase. 

4. The solid phase is considered as an absolutely rigid continuous body whereas 
the liquid phase as a viscous fluid. 

5. The change of the aggregate state is accompanied with the process of a mo
mentary influx of mass into the solid/liquid phase, this flux resulting due the jump 
of density across the phase interfaces. 

6. According to assumptions 4 and 5, the state of the melt is described by Na
vier-Stokes equations, equation of continuity and by equation of the convective 
heat transfer subordinated to the classical Fourier law. 

7. The thermal state within every aggregate composing the crystal is described 
by the Fourier equation of ·heat transfer in a thermally anisotropic continuous 
body. Conditions of continuity of the temperature and heat fluxes are also valid 
at the boundaries of different cells v/ithin the solid phase of the system as well as 
at the interfaces crystal-melt. 
Since the phase change of any aggregate occures instantaneously, the process of 
the change of the phase state in the system is a discrete one. 
Solution of the relevant boundary value problem must include determining the 
sequence of moments when the described instant~neous phase transition takes place 
in at least one of the aggregates of the system, as well as the evaluation of the tem
perature within both phases, velocity of motion of the liquid phase, and location 
of the phase interfaces and their shape. The content of the paper is as follows. 

Sec. 2 offers an accurate formulation of all assumptions, Sec. 3-derivation of all 
governing equations of the problem in a general case and Sec. 4 remarks concerning 
the relationship between the model proposed and the classical Stefan problem or 
the Stefan problem with a "negative" latent heat. Several conclusive remarks are 
formulated in Sec. 5. 

2. Notations. Geometrical and physical assumptions 

In what follows we consider a monocomponent continuous medium filling a given 
region G of the Euclidean plane R =.., (X, Y) and being in two phase sta,tes: solid 
and liquid. Subregions Gst and Gft of G are occupied at the moment t respectively 
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by the solid and liquid phase. G,t is supposed to be a connected region whereas 
Gft may become disconnected, even if it is connected at the initial moment t = 0. 
In the sequel we use notations C and F for Gst and Gf, respectively, understanding 
by C, F not only the appropriate subregions of G but also the material medium 
filling them. 

Assume that R is covered by an ordered system A of congruent m-sided poly
gons without common points, and such that if a and b are two elements of A and 
their boundaries have common points then these boundaries coincide along a whole 
side of the polygons under consideration, or have only one common point - the 
isolated vertex. 

Let A* be the subset of cells, entering A, which is cut from A by the region G. 
A* consists of a fixed number of cells, whose part crossecting the boundary oG 
may not be complete. At every moment t > O,A '.:' is divided into two parts As and 
Af cut from A* by C and F, respectively':'). Let us denote the cells entering C and 
F by letters c and f provided with the same subscripts which are assigned to them 
in the system A. All cells entering Care called "crystallits" and those entering F
"virtual crystallits". The phase transition of a virtual crystallit into a crystallit is 
designated as .h~c;, and the melting of the crystallit- as c;~h, the coincidence 
of subscripts indicating the geometrical identity of c; and h (i.e., they represent 
the same element of A). Notation a; is used for any element of A if its phase state 
may be not indicated. 

Two boundary layers may be associated with F and C: the boundary layer BF 
consisting of all h such that at least one side of their boundaries belongs to ac, 
and the boundary layer BC, consisting of all c; with at least one side of their bound
aries belonging to oF. Thus BF separates C from the bulk of the liquid phase, and 
BC- separates F from the bulk of the crystal C. Cells j~ or c; having only an iso
lated vertex on the phase interface F n C are considered as not belonging to the 
boundary layer BF or BC, respectively. 

We use two sets of physical assumptions: 

(a 1) The liquid phase of the medium under consideration is a homogeneous, iso
tropic, incompressible fluid of a constant specific heat, density, thermal con
ductivity and viscosity. Hence Navier-Stokes eqm.tions, equation of continuity 
and Fouricr equation of the convective heat transfer must be valid within F. 

(a 2 ) The crystal C is an absolutely rigid solid of a constant density and specific 
heat capacity. 

(a3 ) All crystallits c; may be considered as macroscopic crystallic aggregates with 
a constant tensor of thermal conductivity**). 

*) C and F consist <:f the entire cells only, except for those having common points with o G. 
**) Periods of crystalline lattices are of order of several A for simple substances, 10-20 A 

for complex organic and inorganic matters of several hundreds A for crystals of globular proteins 
and viruses. Taking this into account we may accept as a minimal characteristic size of cells, 
entering the system A, the value of several microns. Such a size is great enough for the use the 
Fourier equation of heat transfer, naturally written for a thermally anisotropic body. 
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(a4 ) All crystallits, composing C, are congruent not only geometrically but with 
respect to their physical properties, too. This, in particular, means that two 
different crystallits c; and ci have the same tensor of thermal conductivity 
if they are congruently connected with c; and ci. 

(a5) Energy of creation of an unit of length of the interface separating crystallit c; 

from the virtual crystallit /; is a constant along every side lu of their bound
aries, this constant possibly varying with P'. Hence the crystallits are aniso
tropic not only respect to their thermal conductivity but with respect to their 
surface properties, too. 

(b1) The process of the phase transition consists in the spontaneous, instantaneous 
transform.{; ~c; or C; ~.(; within BF or respectively within BC. 

(b2) Assuming that the density p,, of the solid phase is greater than pf - corres
ponding to the liquid phase, the transform J:~c; is accompanied with an in " 
stantaneous influx of mass from the bulk of the liqmd phase into the cell c;. 
Analogously, the melting c;~}; is accompanied with efflux of mass from c, 
into the bulk of the liquid phase. It is assumed that this influx/efflux of mass 
is uniformly distributed along the whole boundary separating the anew created 
crystallitjvirtual crystallit from the liquid/solid phase. 

(b3 ) The spontaneous, instantaneous phase transition/; ~c; takes place at the mo
ment t" + 0 if the following conditions hold at the moment t~- 0: 
(C1) Amount of heat to be released in c; at the moment tk+O is not less than 
the amount of heat required for an instantaneous heating j~ from its tempera
ture at t = tk- 0 till the melting temperature 3,, summed with the amount of 
heat needed for creating new interfaces to appear as a result of the transform 
J;~c;. 

The analogous situation occurs for the phase transition C; ~f. 

(C2) The temperature 9f of.{; subject to the transform/; ~c; is not greater 
than the melting temperature 9111 everywhere in/;. 
The analogous situation takes place for the transformation C;~.{;. 
(C3 ) Any excess of the heat amount mentioned in C 1 is instantaneously trans
ferred into all cells/~ and cj being in a contact with ci and not involved at the 
moment tk + 0 into the change of the phase state. 
The analogous situation takes place for the transformation c; ~l. 

3. Governing equations of the problem. The general case 

3.1. Description of the system A of crystallits and virtual crystallits 

Let (x, y) be a rectangular Cartesian coordinate system connected with main 
axes of the ellipse of thermal conductivity of a polygon g, congruent to all elements 
a; of the system A, the longer semiaxes being directed along x-axis. Let A* consist 

*) We assume sides of crystallits c, enumerated in order of left-hand side circuit. 



On math€matical modeUing 9 

of N elements a1, i = 1, 2, ... ,N. Denote by (~k> 1Jk) the axes parallel to the 'ltlain 
axes of thermal conductivity of ak and (o:k, [Jk) coordinates of the center of the re
spective ellips in the («, Y) coordinate system. We assume that systems (x, y), 
(X, Y) and (~., 1Jk) have the same scaling. 

Let equations 

x = o:k+akl ~k+ak21Jk; y = fJk+bkl ~k+bk21Jt, (I) 

transform (~k, Yfk) plane into (x, y) plane, and equations 

(k = o:k+akt x+akz Y; 1Jk = fJk+bkt x+b,.z Y (2) 

define the inverse transform. Assume also that the transform of the (x, y) system 
into (X, Y) is described by the system 

(3) 

Using (1) and (3), one may express (~1" 1Jk) as functions of (X,¥). 
Let, further, 

-11 x--m1 y+p1=0 (lf+mi = I; i=l , 2, ... ,m) (4) 

be the normal equat~on of the i-th side of the boundary og. Then, by the congruency 
of all elements of the system A the normal equation of the i-th side of the boundary 
oak in the coordinate system (~k> 1Jk) is 

(5) 

We may associate with a,ny akc A its environment consisted of all such ele
ments ai,• jk = 1, 2, ... , m of A that every side lki of ak coincides with i-th sioe /h 1 

of aik· 
Equations (1)- (5) permit to determine common points of oak and oah when 

these elements are described in k-th and respectively jk-th coordinate system. 

3.2. Equations of heat, mass and momentum transfer 

It is convenient to use the (X, Y) coordinate system for writing equations of 
heat, mass and momentum transfer in Fat any moment different from those of the 
instantaneous change of the phase state in the boundary layers BF and BC. Denote 
these moments by 

0 < t 1 < t2 < ... < t 11 ••• • (6) 

according to the assumption (a1), equations of momentum, mass and heat 
t ransfer in F are 

dvfjdt+(l jpf ) gradPf= Fr> +vf L1vf, 

div vf= O, for t :rf tk 

Af L1 .9f +Qf=Cf Pf d()f jdt 

with t he conventional notations used. 

------------- -

(7) 
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Now, let c,. be any element belonging to C at the moment t ~ tk, k = 1, 2, .... 
Assuming that there are no sources of heat distributed within the solid phase, we 
find that in the coordinate system ((, IJ,.) 

(8) 

where 

(9) 

is the tensor of thermal conductivity of c,. in ((, IJ,.) - coordinate system and s: de
notes the temperature of c,.. 

Since t ~ tkl k = 1, 2, ... , as it is now supposed, continuity conditions for the 
temperature and fiuxes of heat must be satisfied along every common side I of the 
boundaries of crystallits c,. and cj or of the crystallit c,. and the virtual crystallit jj. 
Let 

(10) 

be the point of I in coordinate systems ((, IJ,.) and ((i> IJ; ), connected with c,. and 
respectively with c1jjj. Denote by .9,~ ((;, IJ;, t) the temperature of a" (u = s, ( ; i = r;j ) 

at the moment t. Then, because of the continuity of temperature, 

.9' ("'0 0 t) - !J/ (;:0 0 t) s -,,.,IJ,., -- u Sj,IJj, (11) 

where u is equal to either s or f dependently on the nature of the element a 11 under 
consideration. 

Continuity conditions for heat fiuxes take the form 

or, respectively, 

Here (a"" fJm ) are direction cosines of the normal to the line I in the m-th coordi
nate system (m = r,j). 

3.3. Conditions satisfied at moments tk, k = l, 2, ... , of the spo11taneous 
phase transition 

Formulate now conditions which have to be satisfied at moments t k, k = 1, 2, . .. 
of the spontaneous change of the phase state;: -?C; (i.e., of the transform of a vir
tual crystallit into a crystallit). Let s be the area of ai EA, y-be the latent heat 
of melting per unit of area (i.e. , the heat per unit of area to be released at the 
process;; -? C; without taking into account the energy of appearance/disappearance 
of new/existing phase interfaces), and Oj be the energy of creation of such an inter
face of unit length along the j-th side of g . (We recall that the element g described 
in subsection 3.1 is congruent to all aggregates of the system A of crystallits and 
virtual crystallits.) 
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Assume that the th~:rmal state of the system is known at the moment t = tk- 0, 
and that at the moment t = tk +0 the transform f~-)-c, takes place. At the moment 
t = tk -0 the boundary of, consists of five parts S 1 , •.. , S 5 (some of them possibly 
empty) where 

S 1 = ~{,nF""-BF 

SzuS3 =of~nBF 

S4uSs = of,nBC 

(14) 

so that the new phase interfaces appear at the moment t = tk + 0 along S 1 , S 3 and 
S 5 , disappear along S4 and remain unchanged along S2 (or being more precise: 
the interfaces liquid-solid are transformed along s2 into interfaces solid-liquid). 
We recall that BF/BC is the boundary layer consisting of virtual crystallitsfcrys
tallits separating the crystal/melt from the bulk of the melt/crystal. Then the 
energy of creation of new phase interfaces at the moment t = tk+O and that of 
disappearance of existing ones is equal to 

111 

q'= };ai(L; +LJ+L7-L~) (15) 
j~l 

where Lj is the total length of :1llj-th sides of crystallits and virtual crystallits enter
ing Si. If Si does not contain j-th sides of crystallits/virtual crystallits, then L5 = 0. 

From the other hand the latent heat of the phase transition of the interior of 
the virtual crystallit /; is equal to*) 

(16) 

We assume that the thermodynamical equilibrium temperature 9111 is a constant 
despite the variability of pressure in the system, so that the change of the latter 
is supposed to be small. 

Thus the total energy to be released at the moment t = t k + 0 is equal to 

111 

q= q"-q' =)15 - };a;(L;+LJ+L7 -L~)+9m (cf-cs) S. (17) 
j~l 

Now, let !:J.f(X, Y, tk -0) be the temperature of j~ at the point (X, Y) in the mo
ment t = tk- 0. Then the amount of heat necessary for heating./~ till the melting 
temperature is equal to 

q* = cf Pf J (!:J.m-:Jf (X, Y, tk-0)) dX dY (18) 
fr 

*) Here y is the latent heat of"an abstract process of solidification which is not accompanied 
with an isothermal jump of the specific heat capacity after an isothermal transition of the liquid 
phase into the solid one. Naturally, the second term on the right hand side of (16) may be 
included into the first one. We recall that c, and c1 are specific heat values per unit of area. 
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By the condition (b3 ) the moment t,. is subordinated to the inequalities 

!).f (X, Y, tk-0) ~ 9111 V (.X, Y) Ej~ 

s: (X, Y, tk+O) = 9111 V (X, Y) E c.' 
(19) 

and 
(20) 

The excess bq = q- q'~ creates an instantaneous flux of heat through the boundary 

(21) 

separating er at the moment t=tk+O from that part of its environment having 
then the temperature at the points of S* less or equal to 9111 . 

Let ii denote the normal to S* outward with respect to Cr at points of s4 and s3, 
and inward at points S4 and S5 • Then we must have 

·-Af 3f,. ls, ns
3 
= (q-q*) (j (t-tk) L - 1 17 (9,.-:J.f) fs, us

3
, (22) 

(/•
1 9; o:j+ /:. 2 ,g; ''i fJJ is. u Ss = (q- q*) 0 (t- tk) L -l 17 (9~~~- 9D is. u Ss , (23) 

assuming that the crystallit ci has boundary side belonging to S4 u Ss and that the 
direction cosines are defined in j-th coordinate system. Here L is the total length 
of sl u s3 u s4 u Ss, 17(X) is the Heaviside's function and b(x) - the Dirac's delta 
distribution. (22) and (23) are written with taking into account that, by assump
tion, t he flux of heat created by the non-zero heat excess (q--q':') is uniformly dis
tributed along the whole interface accessible to this flux. These conditions are, 
naturally, valid everywhere along S* except for edges where the direction of th.:: 
normal ii is not defined. 

We must add conditions determining the mass influx into er being the result 
of the phase transition fr->;Cr. By the assumption (b2 ), this instantaneous mass 
influx is uniformly distributed along S 1 u S3 u Ss. Hence we have 

(24) 

for (X, Y) E sl u s3 u Ss and tk ~ t < tk + 1. 
Recalling that the liquid phase is a viscous fluid and that the solid phase is 

a rigid immobile body, we also fi1id that 

Vfr (X, Y,t) = O (25) 

fo r such (X, Y) and t. Here vf is the tangential component of l;_;. on oc,. 
The analogous conditions must be valid if there also occures the phase tran

sition c,->-cf at the same moment t= tk+O. In this case instead of SI> ... , Ss 
we have to consider boundaries 

s; = oc r n ( C"-._BC) 

s; vs; =oc,nBC 

s: us;= oc, nBF 

(26) 
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so that again the new phase interfaces appear at the moment t ~ tk+O along 
s~ us; us;, disappear: along s: and" remain unchanged (in the sense "explained 
above) along s;. Denoting by L;i the total length of all j-th sides entering S7, we 
obtain instead of (15) *) · · 

Ill 

q*'= '\..,(jJ(L~l+L*3+L':s-L~4) 
_L; - J J J J 

(27} 
i=l 

whereas (16) remains unchanged. The total energy to be accumulated by c, to the 
moment tk-0 is equal to q* defined by (17), where q", q' and.Lj must be respec
tively replaced by q*", q"'' and by L;i. Instead of (18) we now have 

(28) 

Conditions (20), (21) have to be replaced now by 

a; (X, Y, tk -0)?: :J.,,, V (X, Y) E c,.; [)f (X, Y, tk +0) = 8, V (X, Y) Ej, (29) 
and 

q*~q**. 

Further, instead of (2?) and (23) we now have 

-j,f Bfn ls;+st =(q*-qH) L*- 1<5 (t-tk) 1] (,9f-8,) 1s;us: 

and respectively 

(.F s-:~1 aj+),z 9:n
1 

fJj)!stust =(q* --q**) L*- 1 6 (t--tk) 11 (fJ,...::.,9Disiust 

Finally, instead of (24) arid (25), we have 

--- Pf Vfn (X, Y, f) = (Ps- Pf) (L? +L? +L? -L?) J (t- fk), 

vf< (X, Y, t) = 0 

V (X, Y)E S~ +S; +S; ant tk ~ t < tk+l· 

•(30) 

(31) 

(32) 

(33) 

Moments tk, k = 1, 2, ... , are unknown in advance. Therefore computations 
must be organized as follows. 

At t = 0 the state of the system is prescribed. Compute, using conditions (7), 

(8), (I 0)-·{12 *) the distribution of the temperature for t > 0 till the moment t 1 

such that inequalities (19), (20) or (29), (30) start to be valid for at least one 
of elements of BC u BF. If this moment t 1 exists the change of the · phase state takes 
place at t= t1 +0. Use the found state of the systerri at t 1 +0 as a new initial 
state and continue computations. If, however, t 1 does not exist, i.e;, the inequali
ties (19), (20) or (29), (30) are valid nowhere for a 11 t > 0 then the process of the 
phase transition cannot evolve. 

We do not consider here concrete input data. One has only to remember that 
these data must be chosen so that the growth of an individual crystal may take 

*) V<,tlues analogous to q, q" and q' are now marked by*. 
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-------------------------------------------------------------

place, in principle. This means that the temperature less than 9111 must be pre
scribed along the support cooling the crystal (this support is a part of the bound
ary oG) whereas the rest of oG must be maintained under temperature greater than 
that of melting, or heat influx into G must be prescribed along this part of oG. 
The initial temperature within the crystal must be not greater than 911, and within 
the melt not less than 9111 • 

Obviously the problem of the crystal generation may also be considered in the 
case of the region C degenerated at the moment t = 0, so that at this moment all 
the system A consists of virtual crystallits. 

4. Relationship between the model proposed and the classical 
Stefan problem, or the Stefan problem with "negative" latent 
heat 

A natural question arises concerning the possible relationship of our model 
to the classical Stefan problem and to the Stefan problem for a ,,supercooled melt" 
as it is formulated in many papers (See for instance, A. Friedman, 1977; 
Langer, 1980; Ockendon, 1980), i.e. the Stefan problem with a negative latent 
heat. 

In order to give an heuristic answer to this question consider the simplest case 
of a thermally isotropic crystal with a rectangular system of crystallits to which 
correspons the grid 

- X=ml, Y = nh; m,n = ... -2, -1,0, +I , +2, . .. (34) 

Let us consider a virtual crystallit 

{ml<X<(m+l)l; nh< Y<(n+1)1z} (35) 

subject to the phase change at the moment t = tk+O, assuming that 

f={ml<X<(m+l)l; (n+1)h<Y<(n+2)h} (35a) 

belongs to the bulk of the liquid phase and the crystallit 

c = {ml<X<(m+l)l; (n-1) h<Y<nh} (36) 

belongs to BC. For definiteness consider the case when virtual crystallits entering 
BF and contacting f (see (32)) are not involved into the change of the phase state 
at the moment tk+O, when f (see (33)) is transforming into c. Then 

S\={ml<X<(m+1)l; Y=(n+1)h}; 

(37) 
S 3 ={X=ml; nh< Y<(n+1)h}u{X=(m+1)l; nh< Y<(n+l)h}; 

S4 ={ml<X<(m+I) l; Y=nh}. 
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Hence 

L 1 = l; L 2 = 0; L3 = h; 14 = 1; L 5 = 0; s = Th; L = 2l+h (38) 

so that 

q = h (yl-a). (39) 

Here we assume that the energy of creation of the new interfaces is independent 
of their location on the boundary of the appropriate crystallit. At the same time 

(m + l)l (li + l)h 

q* = CtP! J dX J (.9m-.9f(X,Y, tk-O))dY;.::; 
ml nlr 

where (X*, Y*) is some internal point off under consideration. 
Conditions (22), (23) are written assuming that the heat is released instantly 

at the moment of the spontaneous phase transition. Now, in contrast to this as
sumptio , let us accept the assumption that the heat q-q* must be withdrawn 
from the new created crystallit not instantly, but during the time interval (tk, tk+ 1). 

Then, instead of (32) and (23), we may write 

1k+t (m + l)l 

J dt J (),s .9syly= n,. -},! ,9fy l;>= (n + ! ) 11) dX = 

or, using the mean value theorem, 

As .9sy!y= nll-).f .9fyJ )'~ (n+1)11= 

= h(tk+~-tk)- 1 (y1-o-p1 c1 (.9111 -.91)l)/(l+!h). (42) 

Let us point out that h is equal to the displacement of the boundary y = nh 

in direction of its normal during the time interval (t k , tk+ 1). 

Assume now that h ~o· Then clearly 

tk+ 1 ~tk; .9f (X* , Y*, tk-0)~9 .... (43) 

Hence in the limit we obtain 

(44) 

1.e., the condition which only differs ffOm the usual Stefan condition by the 
value of the specific latent heat (per unit area): 

(45) 

then our condition may be formally considered as a simple discretization of the 
classical Stefan condition. However, if 15/l> y then (44) represents t he Stefan con
dition written for the case of a system with a nega t ive latent heat - the case cor
respondmg to the consideration of the undercooled melt in the above quoted papers. 
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Another possibility is 

S2 or S 3 ={X= mi; nh< Y<(n+I)h}, 

S3 or S 2 ={X= (m+1)l; nh< Y<(n+I)h }. 

In this case we have, instead of (44) 

(y- i>/21) nt. =As ,9Sil- ),f 9fn 

so that the condition (45) would be replaced by 

Jl-b/21> 0. 

L. RUBINSTEJIN 

(46) 

(47) 

(48) 

In cases of more complex geometry the effective latent heat may appear to be 
greater than the volume latent heat y, less than it or even negative. For example, 
if A is composed by hexagons, therr the number of appearing and 'disappearing 
interfaces · may be equal to 5; 4, 3, 2, 1 and respectively 1, 2, 3, 4, 5; so that 
in two cases the effective latent heat may be greater and iri two-smaller thim y*). 
We recall that in the usual Stefan approach the value of surface energy enters into 
governing equations if and only if the change of the melting temperature due to 
the change of the principal i-adii of curvature of the phase interface is taken into 
account. The growth of the plane interface appears in such an approach as evolv
ing without accumulation of the surface energy. 

5. Conclusion 

As it has been said in introduction we consider the above model as a rough and 
therefore inadequate one. This inadequancy is, first of all, the result of a macro
scopic character of the model, unavoidable when one is studying the influence 
of external fields on the process of solidification, since the growth of the crystal 
is really governed by a microscopic levei of the process evolution . The growth 
of the crystal faces is a result of ajoining to it individual particles (atomsjions) or, 
with smaller probability, clusters of particles, but not crystallits of a macroscopic 
size (G. H . Gilmer, 1980). 

Dealing with our macroscopic description we were unable to take into account 
the influence of dislocations and impurities. This is in contrast to digital computer 
simulations of the growth of an individual crystal using stochastic models (in par
ticular kinetic Ising model) (See, for instance G. H . Gilmer, l980 and H. Mul
ler-Krumbhar, 1975). These simulations deal with a microscopis level of the process 
and do not tackle the problem of the influence of non-homogeneity of external 
temperature field on the dynamics of crystal growth and on its shape. 

*) We assume here that no one of virtual crystallits from the environment of that suffering 
the phase transition at the moment under consideration is involved into the process of the change 
of its phase state. . . . . . . 
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Our model uses arbitrary assumptions concerning the duration of the under
cooled state of virtual crystallits. These assumptiOns are compatible with laws of 
energy conservation but are not necessary ones. It is knqwn that the metastable 
undercooled state of a crystal may continue indefinitely long time, whereas in our 
model the duration of this state is strongly predetermined by the evolution of tem
perature fields inside the growing crys,al and in its environment. This distinction 
is, perhaps, the most vulnerable place in our model. On the other hand, our model 
rigorously takes into account the contribution of the change of surface · energy 
into energetic balance of the crystal. This is in contrast to the das~ical Stefan ap
proach to the problem which is unable to take into account the consumption of 
energy in the process of enlargement of plane phase interfaces. 

Taking all of this into account we can not be so far sure of the sufficient ade
quacy of our model without at1Y comparison of a 1epresentat1ve series of compu
tations with relevant experimental data. Since such comparison has not be per
formed we consider this paper as being only a preliminary information. 
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0 modelowaniu matematycznym wzrostu pojedynczego jedno
skladnikowego krysztalu z wytopu w niejednostajnym polu 
temperatury 

Zaproponowany zostaje makroskopowy model matematyczny opisuj"!CY wzrost pojedynczego 
polikrysztalu zanurzonego w wytopie tej samej jednoskladnikowej substancji i umieszczonego na 
przechlodzonej podporze. Model opisuje w spos6b przybli:i:ony spontaniczne wyst"!pienie warstwy 
brzegowej rozdzielaj"!cej mas~ fazy plynnej od kryszta!u znajduj'!cegc; si~ w stanie przechlodzonym, 
odtwarza takZe wlasciwosci krystalograficzne krysztalu dzi~ki rozwa:i:eniu sta!ej sieci, kt6rej ka:i:da 
kom6rka reprezentuje wirtualny monokrysztal mog'!CY przyl"!czyc si~ do krysztalu istniej1J:cego. 
Dla unikni~cia dodatkowych komplikacji rozwa:i:ania ograniczaj'l s i~ do sytuacji dwuwymiarowej 
(plaskiej). 

2 
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0 MaTeMaTII'IeCKOM MO,LJ;eJJHpOBaHHJI pOCTa OT,LJ;eJJbHOrO 

MOHOKOMllOJieUTHOrO Kp11CT3JJJJa C paCIJJJaBa B HeO,LJ;HOpO,LI;HOM 

TeMRCpaTypHOM llOJJe 

L. RUBINS'l'EIIN 

Tipe,D;JiaraeTCl! MaKpOCKOIII{'{ecKa!! MaTeMaTH'feCKal! MO,!I,elih Olli{ChiBaJOW:al! pOCT OT,!I,eJDlOfO 

rroJin:KpncTanna norp)')!Cemwro B pacrmaB Toro )f(e caMoro MaTepHana H pacrroJiolKeHHoro Ha 

rrepeoxnaJK,!J;eHHOM cymropTe. 

Mo,D;eJlh npH6JIH3HTeJibHO Onu:CbiBaeT CllOBTaHHOH Bh!XO,!I; norpaHH'lHOfO CITOl! pa3,D;e.TJSIJOll!ero 

COCTaB )i():{,!I,KOH cpa3hl OT KpMCTaJIJia B rrepeOXJlalK,D;eHHOM COCTOlll{l!H, KPOMe TOro HMHTHpyeT 

KpRCTaJIJIOrpacpM'lecKMe CBOHCTBa KpRCTaJIJia paCC)')IC,D;al! cpHKCHpOBaHHy!O CeTb, B KOTOpoii: BCe 

»'feiiKH npe,D;CTaBJiliiOT BHpTyaJibllbie MOHOKpilCTaJIJlhi CIIOC06Hbie llpHCOe,!I,HHl!TCll K cynreCTBY

JOW:eMy KpHCTaJIJIY. 

"lJTo6 H3BJieTb H3JI11111HHX OC!lO:>t.'"HeRHii: BCe paCC)')IC,ll,eHHll' orpaHH'IeHbi ,!I,BYXMepHOH IIOCTa

HOBKOH (B IIJIOCKOCTH) . 


