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Two indirect and two direct model matching adaptive controllers for minimumphase discrete
time plants are presented in the unified approach. The stability analysis of indirect adaptive

control system is given.
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1. Introduction

The most frequent adaptive control problem statement for minimumphase plant
with unknown parameters is to choose the plant input sequence in such a way
that the plant output shall follow the output of the certain model (called some-
times the reference model) which represents the desired behaviour of the plant.
Self Tuning Regulators (STR) is the most intuitive approach to this adaptive con-
trol problem. In this approach the unknown plant paiameters are recursively esti-
mated and, basing on the design procedure for known plant, the regulator para-
meters are computed at each discrete time instant using estimated parameters
instead of the parameters of plant. For estimation purposes the plant model has
to be parametrized. However, this may be done in various manners allowing vari-
ous types of adaptive controllers to be applied. Two of them, called “direct” and
“indirect”, are of special importance. In the indirect adaptive controllers the plant
model is parametrized in the standard minimal mannec [2] (minimal with respect
to the number of parameters). On the other hand in the direct ones a special
nonminimal parametrization is applied which allows the direct estimation of regu-
lator parameters [1]—[3]. Another interpretation of the direct adaptive controllers
may be done on the basis of the Model Reference Adaptive Control (MRAC)
approach [1], [5].

The most important problem in adaptive control theory is the global stability
of adaptive schemes. This stability problem has been positively resolved recently
for the direct adaptive controllers [1], [5], [6].

In this paper two types of indirect adaptive controllers and two types of direct
ones are presented in the unified approach. One of them, called in the sequel the
indirect adaptive controller II is a new one. Since up to now the direct controllers
have been considered most frequently, more attention is paid in this paper to the
indirect ones (there is some supposition that in the case of the plant with large
time delay the indirect controllers may have better performance then the direct
ones). Basing on Goodwin’s, Ramadge’s and Caines’s idea [1] it is proved that
if some assumptions about estimation algorithm are satisfied the indirect control-
lers presented in the paper guarantee the convergence of the error between the
plant and model reference output to zero and that the proposed adaptive schemes
are globally stable,

The paper is organized as follows. The problem statement and the design method
for known plants are presented in section 2 and 3 respectively. Two indirect
adaptive controllers are described in section 4 and 5. Next two direct adaptive
controllers which correspond to two proposed indirect schemes are pr esented in
section 6. Some stability results are given in section 7.
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Notation

The plant and the controllers will be described in the discrete-time domain
using a polynomial representation. The following notation will be used throughout
the paper '

Flg~D=fotfs g~ koot ™Y
where ¢~' is the backward — shift operator defined as ¢~ u(¥)=-u(t—1), f; are
constant coefficients, 7, is the degree of the polynomial F(g~1!). If f,=1 then
the polynomial F(g~1!) is said to be monic. If F(z=!) has all zeros inside the
closed unit disk then it is said to be Hurwitz polynomial. A polynomial with
time —- varying coefficients will be denoted respectively by

Filg D=foO+fi (g +... 41, (Dg™

Let G, (¢7")=> g (t)g™". Let F,(¢7") G, (¢g"") and F,(¢7") G,(¢"") be two
i=0
kinds of composition of operator polynomials F,(¢™!), G,(¢~') defined respec-

tively by

1

nr g

Fig™) G (g™)= D) /() D) &:(0)g~0+”

Jj=0
and
Ar Hg
Fi@™)Gia™)= D fi® Y git—i) g™+
i=0 i=0

2. Statement of the problem

Let us assume that the plant to be controlled is a single input — single output,
discrete —- time, linear, time — invariant system

Al ) y®)=q"*B(g~Yu(t), d>0 1))

Where u(t), y(t) are the plant input and output respectively, ¢ denotes the time
delay, A(q~"), R(q~') are the polynomials of the form

A(@ D=14+a,97 ' +...+a, g~ " )
B(q—l);—'bO_*_bl q—1+"'+ban_nbz b0¢0 (3)

We assume that:
1. the time delay d is known
2. the degrees of the polynomials 4 (¢~1), B(¢~') are known
3. the polynomial B(g~') is Hu.witz
Define the model whose output y,, (7) represents the desired behaviour of the
plant output. Let this model be described by

AM (@Y yar (1) =a" " BM (g7 ") 1y (1) )
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where u,, (¢) is a bounded command input, 4™ (¢~*') is monic and Hurwitz poly-
nomial.

The objective of the control is to determine an appropriate bounded control
input 2(#) in such a way that the plant-model output error defined as

eo (D=y(t)—yu(®) &)
shall tend to zero when -0

~

REMARKS

1. Note that we do not assume that a, #0 and b , 70 Therefore in fact, only
some upper bounds on the degrees of the polynomlals A(g~ ‘) B(g~1) are
needed to be known.

2. The assumption 3 is necessary since the regulator applied cancels the zeros
of polynomial B(g~1).

3. Design of controller for a known plant

The design method for the plant with known parameters, as a basis for adap-
tive controller design, is derived below.

Let
Clr=lte ¢+t g™ (6)
P(g~H=1+pig™'+...+Ps, "™ (7
be arbitrary Hurwitz polynomials, and let the polynomials
S(g YH=14sg7 +...455-1979 ‘ (8)
R(g™V=ro+r g ' +...4r, ¢ ™, m=max(.—d, n,—1) (9)

be the solution of the following polynomial eguation

C@H=S(q@ YA H+q9 “R(g™) (10)
(In appendix B it is shown that the solution of (10) exists and is unique).
Using (1), (5) and (10) we have

Cl@ Ve (t+d)=C(g Ny (t+d)—Clg~ D yu(t+d)=
=S(g A )y A+ +R@G Yy (H)—C@ Dyu(t+d)=
=S )B@ Hu@)+Rq Ny t)-Cg ) yu(t+d)=

Tig—1 Rig—1! C(g-1
2 by i+ P ) YO s serd| an
where
T(g~")=S8(g"")B(g™")—bo P(g7") (12)

degree T (¢~ Y)=n,=max (n,+d—1,n,) (13)
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From equation (11) it follows that the control objective (5) is fulfilled by the
control law

T(g™") R(g™h C@q™h
bou(t)y+ ——— 1050 u(t)y+ ——— 7D ;()—WJ’M(H@:O (14)
or equivalently
T(qg™") R(g™H C™
u(t)+ P(q—l) M(t)+ P(q-—l) y(t)_“aﬁmyx\l(t-*—d):;() (Js)
-1 K == 1" )
Where'dg)=54, ‘1)“‘——@—) R(q“1)=———~(g )

Summarizing, the design method for known plant can be represented in the
following four-step procedure
1. Choose monic Hurwitz polynomials C(g~1), P(q™1)
2. Solve the polynomial equation (10) with respect to S(¢~1), R(¢g™?")
3. Compute the polynomial T'(g~') from (12)
4. Use the control law (14) or (15).

REMARKS
1. Substituting the equation (14) into (11) we obtain

Clg™" eo (t+d)=0 (16)

It follows from above that the choice of stable polynomial C(g~') affects the
behaviour of plant only during the transient period i.e. the polynomial C(g™1)
characterizes the regulation property of the control scheme.

2. Let BM (g~ )=by'+b} ¢~ * +... + b}l g~™. Assume that by’ #0 and that BM(g™")
is Hurwitz polynomial. Then choosing

1
Clg™H=4"(g DL Plg =3 BY (D L@ (n
0
for an arbitrary monic Hurwitz polynomial Z (¢~1), the control scheme without
the input dynamics may be obtained.

4, Indirect adaptive controiler I

Two kinds of indirect adaptive controllers are described in this and following
sections. These controllers do not differ from each other very much and are iden-
tical when one assumes that the value of parameter b, is known.

As it has been pointed in the introduction the idea of indirect adaptive control
is to estimate the unknown parameters of the plant equation (1) recursively and
to compute the regulator parameters using estimated plant parameters at each step.
The problem of estimation and regulator parameters computation are discussed in
the following two subsection.
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4.1. Plant parameters estimation

Assume that coefficients of 4 (¢~1), B(¢~!') are unknown and only time de-
lay d and the degrees of 4 (¢~1), B(q~') are known. Let D (¢~*) be an arbitrary
monic Hurwitz polynomial') and define the filtered variables u®” (¢), y” (¢) as

D(g=H)uPt)=u(t), D )@=y, 1=0,1,2,.. (18)
where all initial condition, ¥ (—1), u?(-2), ..., y?(=1), y?(~2), ... are as-
sumed to be identically zero?).

From the plant equation (1) it follows that the nltered variables satisfy the
equation

A(g=")yP(O)=B (g~ ") u’ (t—d) (19)
Rewrite the eguation (19) in the form
P (1)=06" 0 (1) 20)
where
O=[a1, 85, ous s Biosveer B )" 2n

P’ (O)=[—yP(—1), —yP(t=2), ..., —yP(t—n,), uP(t—d), ..., u>(t —d—n,)]" (22)

Since the vector @ is unknown it has to be recursively estimated. The stability
analysis presented in section 6 requires that the sequence of estimates {6 (1)} ge-
nerated by a recursive algorithm fulfils the following four reguirements
I.1. The sequence {||0(¢)||} is bounded.

I1.2. Iim [|0(t+k)—0(¢)||=0 for every finite &

t—00

. e (1)
B G er om0
where variable e, (¢) is defined as

e.(1)=y" (-0 ()" (1) (23)

and will be called an estimation error
I.4. The estimate b, (¢) differs from zero for every 7.

The requirements I.1—3 are satisfied by many well known estimation algorithms
as recursive least squares algorithm and projection algorithm [1], stochastic ap-
proximation algorithm [6], some recursive algorithms derived via the stabuility
theory [7], [8]3).

') The choice D(g~')=P(g~') is of special interest.
2) If theinitial conditions are nonzero an additional exponentially decaying term appears in
the equation (19).
3) It is worth ta note that algorithms mentioned (apart from the stechastic approximation
algorithm) satisfy the stronger condition than required in 1.3, namely
lim e, (¢)=0

t—00
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However, in order to iulfil the requirement 1.4, some modifications of the algo-
rithm mentioned above are necessary [1]. An example of an appropriately modified
projection algorithm is presented below.

Assume additionally that the sign of b, is known and let us assume by>0.
Let B be a positive constant such that 0<f<b,. Then the following algorithm
can be applied.

@® (PP (O-0(@-1D) 0" (1))
1+ [l0® @)1

0 (H)=0(t—1)+ (24)

0 (1) if U, (=5
=
[0'1 (1), 6‘; (1) — 0,',ﬂ (), p, 6::.,+2 (), s 0:’1‘.+m,+1 (O]T otherwise

(6; () denotes i-th element of vector 6" (1))
In appendix A it is shown that the algorithm described above fulfils the re-
guirements I.1—4.

(25)

4.2. Computation of regulator parameters

Define the polynomials
A (@ D=1+a (g ' +...+a, ()g™"™ (26)
Big)=bo(t)+b, (1) g~ +...+b, (1) g™ 27)

where a;(t), b;(¢) are the current estimates of a;, b; at time ¢.
Let S;(¢™1Y), R,(¢~") be the solution of the following polynomial equation

Clqg=S:(q7") A (g™ D+g " R(q™") (28)
where according to (8) and (9) the polynomials S,(¢~1), R,(g~") have the form
S (g HY=14+s5(8)qg  +...+54_,(t) g™+ (29)
R (g N=ro(O+r ()g  +...4r, (g™ (30)

Define the filtered variables u” (), y* (1), yi (¢) as
Pl Hu" O=u(®), Plg~)y* =y, P ")yy @)=y @31
Therefore according to (14) the control input is determined by equation

bo (1) 4 () + T, (g~ u" () + R, (") Y ()= C (g™ ") yy (1 +d)=0 (32)
where
T,(q"")=8:(q"") B:(qg7")—bo(t)-P(g™") (33)

Since by (1)#0 (requirement I4) the solution of (32) wih respect to u (1)
exists.

Summarizing, the adaptive controller derived in this section can be represented
in the form of the following algorithm.
1. Estimate the parameters of the model (19) by recursive algorithm fulfiling 1.1-—4

(for instance by algorithm described by (24), (25)).



26 D. JANECKI, A. GOSIEWSKI

2. Using the current estimates of plant paiameters compute the control input
from (32).
The steps 1, 2 are repeated at each time f.
The block diagram of derived adaptive controller is presented in fig. 1.

s | ESTIMATION
] ST OF 8
u |yl H
FILTER FILTER 1; T
Dlq. 1/D{q") ]i
— . .
it} |8 |yt iq R o0 i
" T S PLANT f7 et
S . AN Y Y COMPUTATION
| 51 TER ILTE oF
s PR REGULATOR
Fiq) 1P(gYy PARAMETERS
T & =
L y (1) H

Rys. 1

A complete analysis of the stability of adaptive system i.e. plant + adaptive
controller I, is given in section 6 and appendix B. Below it is only shown that if
the sequences of plant inputs and outputs are bounded (i.e. the adaptive system
is stable) the output error e, converges to zero.

Actually, it follows from lemma B2 (see appendix B) that for special case
P(qg Y )=D(g™') the plant output generated by the adaptive system is such that
the output error e, (?) satisfies the equation

CgY eo (t+d)=D (g7 S, (g™ e, (t+d) +

d—1
-1 - TziD, T = 4
+D(g )g s;()(0(t+d—)—0(@) 0P (t+d—i) (so()=1) (34

The requirements I.1—4 imply that if the sequence {|lw®(¢)|]} is bounded, all
components of the right side of equation (34) converge to zero, and so does the
output erroi e,. Notice also that, in general, the convergence e, (#)—0 does not
imply that 6(7)—8.

5. Indirect adaptive controller II

The adaptive controller described in this section differs from that in section 4
by a slightly different way of the parametrization of plant.
Dividing the equation (19) by b, (we recall that b, #0) we obtain

A(@ ") y*()=B(g~")u"(t—d) (35)
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where

- 0 .
A(q_1)=‘b-'A(‘I_l):do‘f'diq—1+---+dn.,q_"“ (36)

0
_ 1 _ - '
B(q“‘)=—b;‘3(q“1):1+b1q‘1+.--+bn,,q‘"” , (37

Using the notation
0=[d,, d, ...,d,,a,l-Jl, Liss By (38)
@? (=[P @), y?(t-1), ..., yP (t—ny), —uP (t—d—1), ..., —uP? (t~d—n)]* (39)
the equation (35) can be rewritten in the form
uP (t—d)=0" @ (¢) (40)

For estimating 6 from (40) let us assume that a recursive algorithm is applied
which generates the sequence of estimates & (z) satisfing the following require-
ments (These requirements are important to ensure the global stability of adap-
tive systeni) :

I.1. The sequence {|6(¢)|} is bounded
11.2. lim |G (t4%)—0 (¢)||=0 for every finite k
o0
. e. (1)
3 I @ ope
where the estimation error is defined now as

e, ()=ul (t—d)y—0 ()T @"(¢) . 41)

11.4. There exist a positive constant « such that for every |dj (¢)| >x.

If we assume that the sign of @, is known and positive and g, >« >0 for a cer-
tain known constant o« the following recursive algorithm corresponding to that
described by (24), (25) can be applied

@® (t) (uP (t—d)—0 (t— )T @° (1))
1+ [@® (@)

0 (H)=0(t—-1D+

(42)

0' (1) if 0, (1)>«
0 ()= " , y 43)
[, 05 (), ..y 0, 1,1 (D]T otherwise
Let, according to (15), the control input be computed from
u()+T, (g~ )u" () +R (g~ ) y* () —do (1) - C(g™") yy; (¢ +d)=0 (44)
where
T, (¢")=S:(¢"") B, (¢=)~P(g™") (45)
and S,(g71), R,(¢~!) are the solution of the equation

o (1) C(q=)=8:(q™") A (g™H+q™* Re(g™") (46)
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REMARKS

1) The solution of (46) always exists and is unique if g (#)#0

2) The equations (45), (46) corespond to equations (10), (12) divided by bq.
Summarizing, the following adaptive control algorithm has been obtained in

this section

1. Estimate the parameters of the model (35) by recursive algorithm fulfiling IT.1—4
(for instance by algorithm described by (42), (43))

2. Using the current estimates 0(¢) compute the control input from (44).
The steps 1, 2 are repeated at each time 7.

ESTIMATION
UD(U W OF.6
FILTER FILTER _
1/D(q7) 1/0(q7) o(t)
u (D] BMq7)| y (t+d) c(q’) u(t) [ y(t)
2"g7) P > (Y [PLANT] COMPUTATION
FILTER FILTER REGULATOR
1/P(q]) 1/P(3")| |PARAMETERS

ut) yFt)

The block diagram of indirect adaptive controller IT is presented in fig. 2. For
special case P(g~1')=D(¢~') the plant output generated by the adaptive system
(plant + adaptive controller I[) is such that the output error e, (¢) satisfies the
equation ‘

ay (1) C(qg ) eo(t+d)=—-D(qg ") S (g™ e (t+d)+
D@ N 5 O@O-D+d-D)TTP(+d-i) (s O=1) @)

i=0

Equation (47) and requirements I1.1-—4 ensure that if the sequence {@”(f)}
is bounded then the output error converges to zero.

REMARK Notice that in order to fultil the requirement I1.4 (for instance using
the algorithm (42) (43)) an additional information about the parameter b, is nec-
essary, namely a positive lower bound of |a,| i.e. an upper bound of |b,|. In the
case of indirect adaptive controller I the reguirement 1.4 is slightly less restrictive
than I1.4. However it is clear that in practice it is not admissible that the value
|bo(2)| be too small. In this regard the requirement |b, (¢)]>f should be fulfilled
where f is a known, not too small, lower bound of b,. (It can be done for in-
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stance by applying the algorithm (24) (25)). Now we sce that to apply the adaptive
controller I or Il an additional information on the parameters b, is needed but
different in either case.

6. Adaptive controllers with direct estimation of regulator
parameters — direct adaptive control

In the indirect adaptive control approach the plant is parametrized in the sim-
plest natural way. However another possibilities can also be utilized. One of them
is to rewrite the plant equation in such a way that the parameters of this rewritten
equation would be coincident with the regulator parameters. Such parametrization
enables the ditect estimation of regulator parameters and leads to the approach
which is called “direct”. In the following two subsections two direct adaptive con-
trollers corresponding to the indirect ones described previously are presented.

6.1. Direct adaptive controller I

Using (10), (19) and (12) consecutively we obtain
Clg™Hy?)=S(q N A(g™)y*(O+R(g™)yP(t—d)=
=S(qg) B HuP(t-d)+R(q~)yP(t~d)=bo - P(¢g~DHu" (t—d)+
+T(g~HuP(t—d)+R (g~ ") y°(t~d)  (48)
Introducing notations

O=Plos 111y sty Fou s B 17 (49)
o ()=[P(gVu(t), u(t—1), ...,u(t—mn), y(), ...,y t—n)" (50)
we obtain
C(g™ 1) yP(t+d)y=397 9" (1) (5D
where
“ D (g™ 0" ()=p (1) (52)

Notice that the elements of vector $ can be considered *o be the parameters
of the plant equation rewritten in a special way. On the other hand the elements
of 4 are also the regulator parameters. Hence by estimating the vector & we esti-
mate the regulator parameters directly.

The direct adaptive controller I can be represented in the form of the follow-
ing algorithm.

1. Estimate recursively the parameters of the model (51) (i.e. the elements of 9)
2. Using the current estimate § {#) compute the control input from (32) or equiva-~
lently from

$(OT " () —C(q™ ) yy (t+d)=0 (53)
where P(q™1) of ()=0p (1).
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The adaptive controllers similar to that described above for special case
P(qg~)=D(q™") have been considered by many authors [1], [4].

6.2. Direct adaptive coutroller I

Dividing (48) by b, we obtain

1 1
P@g™") u"(f—d)=*b'; C(q”l)y”(f)"b—0 T(g~DuP—d)—-

1 &
—KR(q‘l)y”(t—d)=do Clg )y O-T@ Hu@—d)—
—R@ My (t-=3"p%() (59
where

92{“0; ila fz: sy fn,’ f()s saing fn,]T (55)
PP ()=[C(g~ ")y’ (1) —uP (t—d-1), —uP (t—d=2),..., —uP(1—d—-n),
y(t—d), ..., yP(t—d—n)]"  (56)

Direct adaptive controller we obtain by estimating the vector 3 from (54) and
by using J(¢) to compute the control input from (44).

Similar adaptive controller (but in continuous time domain) is considered in [9].

Remark. Notice, that dim @=dim 0=n,+#,+1 and dim I=dim I=n,+n,+
+2>n,+n,+d. Therefore for d>1 the number of estimated parameters in the
indirect adaptive controllers is greater than in the direct ones. This implies that
among elements of vector 9 (and J) at least d—1 elements are not independent. .
However this fact is not utilized in estimation i.e. the elements of 3 (and J) are
estimated as if they were all independent. So one can say that if the ptant model
is nonminimally parametrized (with respect to the number of parameters), some
information about plant is lost. This fact may negatively affect the efficiency of
estimation and also the convergence rate ot the output error to zcro. Therefore
for large d it may be preferable to use the indirect controller rather than the
direct one.

7. Some stability and convergence results

In this section some stability and convergence results are given. It is shown that
the proposed adaptive control methods assure the boundedness of the sequences
{u(®)}, {y(t)} and the convergence of output error to zero. This features mean
that the control objectives stated in section 2 are accomplished.

Analysis presented is based on Goodwin’s, Ramadge’s and Caines’s concept [1].

First, two lemmas are given
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Appendix A

Define
e(O=" () =0 (t=1)T " (1) (AD)
and
V=16—-0@I? (A2)
From (24), (25) and (Al) we obtain
Vi) -V(-D=[0-0@)F-I8-0¢-1I*<
LI0-6 @O - l6-0(@-D>=

o®(e) [?

=H9“’("”“ TP | ~10-0¢-Di*=
_lle®®iPe? () 2e)(0-0(-D) ") _
T+ e® 0P 1+ [P ()12 -
_ePorSm 220 e .
e T N T PO T P O T

Hence V(1)< V(0) and consequently the sequence {6 (f)} is bounded (the require-
ment I.1).

Since the function V(¢) is bounded from below it follows from (A3) that

] o N
e (NP T I A9

Now, using (24), (25), we obtain
@ @+1)—0@I<]0" ¢+ D) -0 ()=
le ¢+ D) llw® 2+ 1) le (£+ D

T TP GO AH P D S A+l AY
Hence, using (A4)
k
lim |0 (t+k)—0(7)]|< lim 2 16 (¢+i)—0 (t+i—1)||<
t—00 t—oo =7
i - le (t+1)| i ik
o & (T [P ((+D D)2 Vi
This implies that the requirement 1.2 holds.
Furthermore, from definitions (Al) and (23) we have
e, ()=e(®)—(0()—0(—1))T® () (A7
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Hence, using (A4) and (A6)
e.(1) . &(1)

I AP OPE 0T P 0P

. . o)
+£2[(9(,)_0(,_1)) EEZAnIER B

and so the requirement I.3 holds.
Fulfilment of 1.4 follows directly from (25).

Appendix B
First, two lemmas will be proved.

LemMMA Bl. The solution S(q™'), R (¢~") of polynomial equation (10) always
exists, is unique and the function Q defined as Q: (ay, @z, ..., @y ) (S1, <25 Su—15T05 ++5 I'n)
is continuous.

Proof. Rewrite the equation (10) in the matrix form

1 _ -

a, 1 ;

a, a 1 Sl 1

. . . 2

. - . X Cl
i1 Q4..» - a, 1 S.a~—1 s C.2 (A9)
aqg  dg—y a; 1 F :
Qa1 a 01 ro Ca-1

: a; 0 0 1 J R

: 1 .

i 00 o01|Wm -

Since the determinant of triangular matrix in (A9) is always equal to 1 so the solu-
tion of equation (9) exists and is unique. The continuity of Q is obvious. =

CorOLLARY Let {R, (g™ 1)}, {S.(¢~")} be the sequences of solutions of (28) and
let {T.(qg~Y)} be determined by (33). If the requirements 1.1—2 are fulfilled then for
i=1,...d—1, j=0,1,..,m, k=1,..,n,

1. the time sequences {s;(t)}, {r;(®)}, {t.(t)} are bounded,
2. lim (s; (¢ +m)—s; (1))=0, lim (r; (¢t+m)—r())=0,

Y g0 _ -0
lim (#, (1+m)—1(¢))=0 for every finite m
T—00

LemMmA B2. Let the vectors 9 and ¢(t) be defined by (49), (50) respectively,
qnd let () be a vector of regulator parameters corresponding to 3 and computed
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at time t. The plant output generated by the adaptive system (plant + adaptive con-

troller 1) is such that the output error ey\t) satisfies the equation.

Clg~ e (t+d)=D(q™") S, (g7 ") e (t+d)+

ng d—1
Dd Y si(t=p(0u+d—i-j)=0(t—)) P (+d—i-j)+
i=0 i=0

+ D i (BUu=D=IO) ¢* (=)= 3 p(3(=D)--8(0) " (1=1)

i=1

(do=1, s4()=1)

(A10)

Proof: Using definitions of vectors 3(f), ¢ (¢) the equation (32) can be re-

written in the form

Clg™ Yy (t+d)=by ) u(t)+T, (g ) u" ()+ R, (¢~ ") y* ()=3()" 9" (t) (All)

We have
P@ ) (3@ " (0)=30)"(P(g™") o" (1)) +
+(P(g D3O =3O Pg=))" 0" ()=3()" ¢ () +

+ N g (=)= 81T pF (t—i)

i=1

Similarly
Hg

D@ (IO P O)=OT 9 )+ D d;($(1=) =8 ®)T 9 (t~1)

From (Al1), (A12), (A13) we obtain
D(g ) [3(D)T 9” ()= C (g™ ") yay (t+d)]=

ng

= N d,(3u-D-3M) ¢° (t-D)- ¥ pi(3(t=)—=3()) o (t—7)

i=1 i

 From (23) we have o '

YPO=0()" " (1) +e. (1)
or eguivalently
A (g7 )P (=B, (g™ ) uP (t—d)+e. (1)
Now, using (28), (A16), (32) consecutively we obtain
C@ e u+d)=Clg™)y° (t+d)~C (g )y} (1 +d)=:
=S,(¢7") A (g7 )P (t+ D)+ R (a7 Y* () —Clg~ Y ym (t+d)=

=S, (@) Aira(@ ) IP(t+d)+R (g7 P (- C g DNyp t+d)+ - .

(A12)

(A13)

(A14)

(A15)

(A16)
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+(S: (g7 4 (@) =5 (@) drra(g™)) ¥ (t+d)=

=8:(q™ ") B4 a(g YU O+ R (g™ )Y ()= C (g™ ) yy (t+d)+

+8,(g e t+d)+(S: (") A (g™ =S:(q7H) Arsa(g™h)) yP (t+d)=
=8:(¢7Y) B (g HuP (D+R (g™ )Y ()-C(g™Vyn (¢ +d)+

+8: (@) e (t+D)+(S: (g7 A (g™ =S (™) e a(g™)) P (t+d) -
~(8:(g") B (g™ ) =S (g™ ) Bsalg™ ")) uP ()=

=bo (NP (g~ Y uP () +T, (g~ Hu” )+ R, (g ) y* ()~ C (g~ ) ¥y (t+d)+

da—1

+8, (g~ Ve, (t+d)+ Z s5: () (0 (t+d—)—6 (1))T P (t+d—i)=
=3@)" p® ()—C (g~ Dy (t+d)+8. (g7 ") e (t+d)+
d—-1
+ 2 s ()0t +d—-D) -0 0P (t+d—i) (ALT)
i=0

Multiplying equation (A17) by D (¢~!) and using (Al4) we obtain equation
(A10). |

Proof of theorem 1. As it was pointed earlier, the fulfilment of the

three assumptions of lemma 2 is only to be shown. This is done in the following
three points respectively.
1. Define a new time-varying vector y (1+d) as a vector constructed from all
different elements of the following vectors: w? (t+d—i) for i=0,1,...,d+n;—1,
oP (t—i) for i=1,...,n, and ¢f (t—i) for i=1, ...,n,. Using this vector, the equa-
tion (A10) can be presented in the form

Clg™Deo(t+d)=D(q7 1) S, (g™ e (t+d)+o(t+d)Ty t+d)  (AlB)

where o (t+d) is the appropriate time-varying vector of the same dimension as
v (t+d). From the corollary it follows that
lim |jo (¢)|[=0 (A19)
{00
Let v, (#) (i=0, 1, ...,n,+d—1) be the coefficients of polynomial D{(g~*)S,(g~1)
and denote K'=sup max |v;(¢)]. From (Al8) we obtain

t O<i<ngtd—1
eo (t+d)|=[C(g™ ") eo (t+d)|<[D(q7) S; (g™ ") e. (t+d) |+
+lo@+d) Ty (t+d)|<@m;+d-1)-K' max |e,(t+d—i)|+
¢ o<i<ng+d—1

+lo(t+d)| - lw(t+d)I<K- max le, (t+d—i)|+n(t+d) - w(t+d)| (A20)

O0<i<N

where
K=K'-(n;+d-1), n@®=lo(®)|, N=ny+d-1 (A22)

Hence, the assumption 1 of lemma 2 holds.
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Lemma 1. [1]. Let {el (1)}, {w ()} be some real scalar and vector sequences,
respectively, and assume that
eh (1)

L I v ° L0

2. for some positive constants Ky, K,

lw ()| <K, + K, - max |e} (7)| for every t=0 (58)
0<t<n
Then lim e} (t)==0 and the sequence {y (t)} is bounded.

t—00
The next lemma is essential for stability proofs of adaptive schemes presented
in this paper.

LEMMA 2. Let the output error be determined by (1)—(5). Assume that for a posi-
tive constant K, a positive integer N, a scalar real sequence {n(t)} subject to lim #(#)==0

and a vector sequence {y (1)} the following conditions are fulfilled L
L lef )I<K- max le, (t—1)+7(t) - |y (#)!] (59
O0<i<N
where e} (1)=C\q~ ') e, (¢) and e,(t) is the estimation error defined by (23) 0" (41)
e (t—1i)
2 =0 for 0<i<N (60)

. Bmy——

o0 (L w7 (D12
3. For some positive constants K, K, the linear boundedness condition (58) is satisfied.
Then the sequences {u(7)}, {y(#)} arc bounded and lim e, (£)=0

=00
Proof. We conclude from (60) that
max e, (f—1i)

% O<igN —

G e b
Now using (59) and (61) we obtain

max le, (t—1i) ,
O . hmoﬂq' B — ol o
e A+ O S 00w @2 25T A R ;

Thus the sequences {ef(¢)} and {w(¢)} fulfil the assumption of lemma 1.
Therefore lim e} (#)==0. Since ¢} (£)=C (g~ ') e, (¢) and C(g~*) is Hurwitz poly-

t—00

nomial then also
lim e, (£)=0 (63)

t—00

In section 2 it was assumed that the command input u,, (f) is bounded. Since
0 (B (4)

I =" )
the model y,;(¢) 1s also bounded, and then from (5) and {63), the plant output,

A{g™")
too. Therefore the plant mput is also bounded because u(t)=§—q-ﬁ,— y(t+d)

-1
and B(g~') is Hurwitz polynomial. @) =

uy (2) and AM (¢g~1) is Hurwitz polynomial, the output of
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In order 1o prove the stability of particulai adaptive schemes the fulfilment
of assumptions of lemma 2 is only to be shown. In this way the following two
theorems can be proved.

THEOREM 1. If the requirements 1.1—4 are fulfilled, the indirect adaptive con-
troller 1 described in :ection 4 assures both the uniform boundedness of plant input
“and output and convergence

lim eq (1)=0

=00

For proof see appendix B.

THEOREM 2. If the requirements 11.1—4 are fulfilled, the indirect adaptive con-
troller Y1 described in section 5 assures both the boundedness of plant input and outpit
and convergence {

lim e, (#)=0
1—>C0

The proof of theorem 2 is very similar to that of theorem 1 and will not be
given in this paper.

Remark. Although the indirect adaptive controller has been analysed only the
same method as in appendix B can be applied to the stability analysis of adaptive
controllers based on any other way of parametrization.
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2. For 0<i<N we have
le(1—0)] le. (2—1)| : (1+Hw”(t—i)“2)”2
A+llw @7 (A4l 1+ [lw )|

& Iee (t_'l)l
= (4 [loP (D))t 2

(A23)

because [P (t—i)||< [y ()]
Now, using requirement [.3, the assumption 2 of lemma 2 follows.

3. Denote 37 (1)=C (g~ ) y(¢) and yi (£)=C (g~ ") y(¢). Let Q;(z™") be a transfer
function specified by equation w;()=0; (g~ 1" () (v,(t) denotes the i-th ele-
ment of w (¢)). From the definition of vector v and from the fact that the plant
is minimumphase it follows that for all elements y; (¢) the transfer function Q; (z™1)
is proper and asymptoticaly stable. Therefore from the known property of dynamic
systems [1], for each element w; (¢) there exist some positive constants L,;, L,;. 4
that

lwi () €Ly +Ls;., max |37 (1)] for every >0 (A24)

0<z<t

Hence, for some positive constants K;, K, some

Iy (1)< K, + K, max

O0=t<t

¥ ()] for every t=0 (A25)

Since the command input is bounded so is the filtered output of the model
¥ (D), ie. |yi0)|<K; for a certain positive K. Hence

W (O =leo )+ ¥ (<l (O] +y3 (D<€ ()] +Ks (A26)
Now, substituting (A26) into (A25) the linear boundedness condition (58) can
be obtained. Hence the assumption 3 of lemma 2 holds, too. B

Regulatory adaptacyjne dostrajania do modelu dla dyskretnych
w czasie obiektow minimalnofazewych

W literaturze rozréznia sie obecnie dwa podstawowe podejscia do problemu adaptacyjnego
sterowania obiektow o nieznanych parametrach. Podejscia te prowadza do dwoch rdéznych metod
projektowania ukladéw adaptacyjnych: metody po$redniej i metody bezpofredniej. W metodzie
posredniej parametry regulatora sa wyznaczone w kazdej dyskretnej chwili czasu na podstawie
biezgcej estymaty parametroéw obiektu. W metodzie bezposredniej natomiast, estymowane sa bez-
posrednio parametry regulatora.

W niniejszej pracy przedstawiono w zunifikowanym ujeciu cztery typy regulatorow adaptacyj-
nych dla obiektéw minimalnofazowych, z ktorych dwa sa posrednie, a pozostale dwa — bez-
posrednie. Jeden z przedstawionych typdw, nazywany w pracy posrednim regulatorem adaptacyj-
nym JI, stanowi pewna nowa propozycje. Poniewaz w literaturze cz¢sciej sa rozwazane regulatory
bezposrednie w niniejszej pracy wiekszy nacisk polozono na regulatory posrednie. Opierajac sie
o koncepcje zawarte w pracy [1] pokazano, ze przedstawione regulatory posrednie zapewniaja
stabilno$¢ ukfadu i zbieznosé bledu wyjSciowego (roznicy miedzy wyjsciem obiektu a wyjsciem
modelu) do zera.
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AJanTHBHLIE PETYJIATOPHI HACTPOHKH IO MOJEIH /s
MHHHMAIbHO(A30BBIX JMCKPETHHIX N0 BpeMeHH O00beKTOB

B Hactosinee BpeMsi pa3idYaroOTCs B JIMTEPATYPE /IBa OCHOBHBIX IOAXOJa K mpobneme amam-
THBHOT'O YIPABJCHUS OOBEKTOB C HEU3BECTHBIMHE ITapaMeTpaMu. DTH ITOAXOIbl BEAYT K ABYM pas-
JIMYHBIM METOJIaM IPOEKTUPOBAHMS aJAaIlITHBHbIX CHCTEM: KOCBEHHOMY M NpsiMoMy. B xocBerHOM
METOJE TAapaMeTpPhl PEryasTopa OJIPENesISIOTCS /IS KaKI0TO JMCKPETHOr0O MOMEHTA BpPEMEHH
Ha OCHOBAHWM TEKYILIeH OLIEHKM mapamMeTpoB 00bexkTa. BmMecTo 5TOro B mpsMOM METOHE mapa-
METPBI PEeryjsiTopa OLEHABAIOTCS HENOCPEICTBEHHO.

B craTbe mpencTaBieHbl B €AWHOM IIOCTAHOBKE YETHIPE THIIA ANANTHBHBIX PEryasiTOPOR, ABa
U3 KOTOPBHIX KOCBEHHBIE, 4 OCTAJbHBIC IBA — MpsiMbie. OOUH U3 PACCMOTPEHHBIX THIIOB, Ha3bi-
BaeMblil B CTAThe KOCBEHHBIM aJallTUBHBIM perynstopom I, mpeacrasiiseT cOO0M HOBOE pelLEHUE.
TlockonbKy B NUTEpaType pacCMATPHBAIOTCS TJIABHBIM 00pa30M HIPSMBIE DEryIsTOpbI, B HACTO-
sAnieil cratbe OoMblilee BHUMAHUE YACISETCSl KOCBEHHBIM peryistopam. OCHOBBIBAsSCh HA HOEAK
IIpeICTaBIEeHHbIX B pabore [1] mokxa3ano, YTO pacCMOTpPEHHBIE KOCBEHHBIC PEryNISATOpsI - -0becke-
YEBAIOT YCTOWYHBOCTH CHCTEMBI M CXOAMMOCTH BBLIXOAHOU OMUOKU (PASHHLBI MEXIY BbIXOLOM
00BEeKTa ¥ BLIXOJOM MOJETH) K HYIIIO.



