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This paper presents an algorithm for enumeration of all efficient solutions for equality
constrained linear integer bicriteria problems.

The idea is based on a reduction of a bicriteria problem to the problem of solving a system
of parametric linear diophantine equations. For such a system the general solution is found and
the Fourier-Motzkin elimination scheme is applied to verify whether among all solutions there
exist nonnegative ones.

Using this idea an iterative algorithm is proposed and a numerical example is given.

1. Introduction

In recent years many papers have been published on the multiple criteria conti-
nuous programming. There is natural interest to extend this results for integer pro-
gramming problems. Some steps in direction have been already done. Bitran [3]
investigated multiple criteria zero-one programs. Zionts [10] extended his and
Wallenius idea of interactive approach to multiple criteria integer program-
ming. Similar ideas were exploited by Villarreal and Karwan [9]. The main
aim of this paper is to demonstrate an algorithimic tool to enumerate all efficient
solutions for a special class of these problems, namely for integer bicriteria pro-
grams. ;

The integer multiple criteria problem is formulated as

max {Cx|x € S} ' (MP)

where S=D N1, D={x e R"|Ax=b, x>0}, I={x € R"|x;-integer, j=1,...,n}, Cis
a pXn matrix, A 1s a m X n matrix, b is.a mx 1 vector. We assume that C, 4 and
b have integer elements, S is bounded and non-empty. Here the sign ,,max” is an
operator of finding all efficient solutions which are defined below. For a bicriteria
problem (BP) p=2.
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Integer vectors x e R" and y e R? form a decision space and a criteria space
respectively.

An example of a practical problem which can be formulated as a MP problem
is space (plane) filling with finite number of object types under conflicting goals.

To formulate any multiple criteria problem a relation should be introduced by
which solutions can be compared in a criteria space. The most frequently applied
is Pareto partial ordering x =y which means x;>y;, j €J, with at least one strict
inequality. A solution x, € S is said to be efficient for a MP program if there is
no other solution x € § such that Cx=Cx,. Solutions x € § for which Cx,=>Cx
are said to be dominated by x,, or equivalently, x, dominates them.

It has been shown (see e.g. [5]) that for convex multiple objective programs
every efficient solution maximizes a linear functional ACx, /4 € R?, 2=>0. This is not
the case for integer multiple objective programming as it is shown by the follow-
ing example.

Fig. 1

The preference cone is defined as PC={p € R?|Cp=0}. An alternative defini-
tion of efficient solution is: given a set X, x, € X is efficient if X N ({x,}+PC)=
={x,}. On the fig. 1 a feasible solution set S of an integer programming problem
and a preference cone at a feasible solution x° is presented. Clearly the solution
x0 is efficient but as it lies inside the conv (S) (convex hull of S) there is no 4 such
that x° maximizes the functional ACx over conv (S).

In this paper an algorithm for enumeration of all efficient solutions for BP
problems basing on direct application of the efficient solution definition is proposed.
A slight modification of this algorithm can be also applied to enumerate all
optimal solutions of single objective integer programs and to perform sensitivity
analysis for changes of r.h.s. vector elements. In the next paragraph the BP
problem is formulated in terms of parametric diophantine equations. A number-
~theoretic method for solving systems of diophantine equations with one para-
meter is described in paragraph three. In paragraph four this method is ex-
tended for enumeration of all efficient solutions for BP problems and an algorithm
is given. A numerical example and some possible improvements in the Fourier-
Motzkin elimination method are presented in appendices.
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2. Efficient solutions enumeration problem in number theoretic
setting

Efficient solutions for BP problems can be found by a direct application of the
efficiency definition. Let a,=max {¢’/ x|x € S}, j=1,2 and b;=max {c' x|x € S,
¢? x=a,}. The following scheme enumerates efficient solutions for BP problems.

Scheme E

In consecutive iterations indexed by i, ieI={0,1,..,i*}, i* to be deter-

mined, find all pairs of integers (s;, r;), such that

1) s§i-1>s8;, i€1, so=ay, s;x=by, s;_;—s; is as small as possible,

1) # g Pl Eilys Pyt

iii) the set of diophantine equations
et ==y
2 X1 ™
Ax=b

has nonnegative solutions,
iv) for chosen s;, r; is as large as possible,
and for all such pairs (s;, r;) determine all solutions satisfying (*).

LEMMA. The Scheme E enumerates all efficient solutions.

Proof. There is no efficient solution for s ¢ [ay, b,]. The solutions corresponding
to (s, rp) are efficient. Suppose the first & pairs (s;, ;) have been enumerated and
all of them correspond to efficient solutions. Since §o>...5,> 5+ and io<..<
<ry<riy1 no solution corresponding to the (k+1)-th pair dominate any solu-
tion corresponding to the first k pairs and vice versa. To preserve efficiency of so-
lutions corresponding to the (k+1)-th pair (si.q, 7 41), Fx+i must be as large as
possible. By the condition i) no nondominated pair (s, ) will be omitted. Q.E.D.
- ]
Let us observe that if we would start the Scheme E with (s;., ;<) and pro-
ceed with decreasing values of i/ it may cause generation of some non-efficient
points.

3. Solving sets of diophantine equations in nonnegative numbers

Suppose that a set of diophantine equations Ax=h is given. The solvability
conditions for a set of diophantine equations are given by the following theorem.

TuEOREM [8]. The system of m equations

a, x;+..+a, x,=b, (r=1,..,m)
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is solvable in integers xy, ..., x, if and only if the greatest common divisor of all
m-row determinants of the matrix of coefficients a,s is equal to the greatest common
divisor of all m-row determinants of the matrix of coefficients a,, and b,.

In the single equation case the theorem specifies the well known condition:
a diphantine equation is solvable iff the greatest common divisor (g.c.d) of coef-
ficients divides the r.h.s element.

To check whether the condition given in the theorem holds is not easy. On the
other hand there exist efficient algorithms for computing the g.c.d of n numbers.
So the solvability of a system of diophantine equations may be verified and general
solutions may be found by sequential application of a g.c.d algorithm as follows.

A general solution of a single diophantine equation with n variables has the
form x=x%+Fy, where x* is any particular solution, F — a fundamental (integer)
matrix of nx(n—1) size, y — any integer (n—1) vector. Any algorithm for g.c.d
constructs implicitly or explicitly x* and F.

A set of m diophantine equations with n variables and a constraint matrix
of the rank m has its general solution (if exists) in the same form: x=x*+Fy,
wheie F is of nX(n—m) size, y is of (n—m) size.

1t has been proved [7] that if x=x%+ Fy is a general solution of the first i dio-
phantine equations then the set of the first 7+ 1 diophantine equations is solvable
iff the single diophantine equation a'*! x*+4'*! Fy=b,,, is solvable. The obser-
vation of this fact constitutes the basis for the Rubin’s sequential algorithm for
solving sets of diophantine equations, which for a given set of equations builds
a particular solution x* and a fundamental matrix F [7].

The sequential algorithm has been adapted by Richmond and Ravindran [6]
for solving integer programming problems. Assuming that an (integer) upper bound
z, for the value of an objective function is known every linear integer program
with rational coefficients and with an objective function to be maximized can be
formulated as follows.

IP: find minimal integer k*>0
for which the set of diophantine equations

cx=zo—k

1
Ax=b )

has nonnegative solutions x, where ¢ is an integer vector of objective func-
tion coefficients.
The set of diophantine equations (1), if solvable, has solutions x (k)=x* (k)+ Fy,
where x* (k) is a particular solution which depends on 4. ’

It has been proved in [6] that x* (k) can be expressed as x* (k)=x* (ko)—
—(k—ko) f, where k, is the smallest value of k& for which (1) has solutions (not
necessarily nonnegative), x* (k) a particular solution for k,, / a constant integer
vector. The vector f can be determined when the second value &k, >ky, for which
(1) has solution, and x* (k;) are known. Then f=(x* (k\)—x* (ko))/(ko—k;).
Thus after substituting the expression for x* (k) to the formula for solutions of
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(1) we get x(k)=x* (ko)—(k—ko)f+Fy. The nonnegativity conditions imposed
on x variables imply x* (lco)—(k—ko) f+Fy>=0. Now an integer programming
problem IP can be reformulated as follows
IP1: find minimal integer k*>0

for which the set of diophantine inequalities

x* (ko) —(k—ko) [+ Fy=0 (@)

is solvable.
To solve (2) the Fourier-Motzkin (F-M) elimination method can be applied. We
sketch this method briefly here following the notation used in [6].
In a system of linear inequalities

Fy=p (3

where F is a matrix of nxr size and p has n elements we choose any variable,
say y;, and we partition the set of n inequalities into three groups:-

hy={slf;,1>0},
/12:{f[f,’ 1 <0},
hy={ulf, 1=0j}.

We write inequalities belonging to the first group as

ps/fs, 15 Z (fs J/fs Dy;sy; for sehy, “4)
i=2
inequalities belonging to the second group as
yspdfe = D slf 0y for  teh, (5)
i=2

and inequalities belonging to the third group as

Z fu, i X >pu for ue /73 %

i=2
We eliminate the variable y; by forming for each pair of indices s € /1y, t € h, the
set of inequalities

il 1= D) oslfe D ys<pdfe = 3 (Foilfe, ) 3

Jj=2 ji=2

This set together with inequalities indexed by u € /13 form the new set of inequa-
lities with one unknown less and (4) and (5) establish upper and lower bounds
on y;. The second variable is then eliminated, its upper and lower bounds
established and so on until bounds for the last eliminated variable are deter-
mined. Then going in the order reverse to the order of variable elimination we
choose any feasible value of the last eliminated variable and substitute it to boun-
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ding expressions for the last but one eliminated variable, choose any of its
feasible value etc. However choosing integer values of variables it might happen
that for some particular values taken by a part of variables, feasibility ranges for
other variables are empty. Therefore the F-M method when applied for solving
diophantine inegqualities, must be combined with a simple backtrack procedure for
determination of integer solution vectors (if any). This procedure works as follows.

Let the order of variable elimination be 1, 2, ..., > We denote L, and U; lower and

upper bounds on variables resulted from the F-M elimination, |a| —the greatest

integer <a, |a]=|a]+1.
1. If [L,]>]U,] then (3) has no integer solution.
If 1L:1<[ W] set y=]L]
2. Substitute the value of y, to the set of inequalities containing y, and y,_; only.
This gives conditional bounds [L,_;| and |U,_,| on y,_,. We continue this
process until one of the following cases ocur.
a) If for every i, 1<i<r, [L;]>|U.| does not hold then y,=[L,], 1<i<r is
integer solution for (4).

b) If for any 7, [L;]>| U, thenif [L;; (| +1<| U4 ] then [Liy,|:=[Liy,]+1
and the process of backward substitution must be repeated, otherwise if
[Lis ] +1<|U;yn] then [L;,,]:=[L;.,]+1 and the process of backward
substitution must be repeated, ..., otherwise if [L,|+1<]|U,| then [L,|:=
=|[L,]+1 and the process of backward substitution must be repeated, other-
wise [L,]+1>|U,| implies that (3) has no integer solution.

Now the method for solving integer programs can be summarized as follows

1. Reduce an integer program to the IP formulation.

2. Applying sequential algorithm solve a system of diophantine equations (1) and
find ko, ki, x*(ko), x*(k,) and f.

3. Solve a system of linear diophantine inequalities (2) by the variant of F-M me-
thod described above, where r=n—m—1, y,,,=kand |L,,,]|=max (0, [L,,,]).
If there is a solution k=[L,..], 7;=|L;] then x (k)=x* (ko)—(k—ko) f+Fy
is the optimal solution of P with the objective function value z,, =cx (k)=
=z, —k.

Let ko, k1, k5, ..., where k;<k;,, be the consecutive values of k& for which (1)
has solutions. It has been proved in [6] that k;,,—k;=J for all nonnegative i,
where d—integer constant. Thus each time [L,, ] is increased it can be increased
by 6>1 instead of 1.

4. The Algorithm

The method for solving integer programming problems as described in the pre-
ceeding paragraph can be easily adapted to implement the Scheme E.
We start with computation of a;. To do this we form from (*) the following
problem:
P,: find minimal integer *>0
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for which the set of diophantine equations*)
Ax=b
c*x—1=0
clx=zt—t
has nonnegative solution vectors x, where zy is an integer upper bound for
c¢'x. Then a;=z}—1t*.1(t*) establishes a lower bound for r,s in (*).
Analogously we form P, problem.
P,: find minimal integer &£*>0
for which the set of diophantine equations
Ax=b
ctx—s5=0
Ax=z—k
has nonnegative solution vectors x, where zZ is an integer upper bound for
¢?x. Then a,=z}—k*. Determine m.
Let us observe that by extra computations of the described backtrack procedure
other optimal solutions (if any) can be enumerated. Thus we can determine b; as
a maximal value of s over all optimal solutions of P,.
The general solution of the diophantine equation set of the P, problem is
*
=l o] -emrare s ©
Now we can take advantage of conditional bounds on k and y established during
the elimination phase of the F-M method to check whether for some specific values
of s there could be x>0 in (6). This time F has (n+1) X ' size, where r=n+1—-m—2.
Assume that the last row of F has only one non zero element, namely the element
Ju+1,» (if it is not the case F can be always reduced to this form). Then the last
row of (6) has the form

s=5% (ko) —(k—ko) fu+1+Sus1,r Vr @)

To implement the Scheme E we must determine consecutive values of s € [by, a,]
which satisfy the requirement i) of the scheme and guarantee x>0 in (6). We need
to take into account only those s for which (7) has solutions i.e. those s for which
g.cd. (fus 1> fus1,r) divides (s—s5* (ko) —ko fo+1) and to satisfy the requirement iv)
we must have & as small as possible. The Scheme E is equivalent to the following
algorithm.

Algorithm E

i) Solve P, and determine a, and [ (¢*).

ii) Solve P, and determine a, and b;. During the Fourier-Motzkin elimination
phase, eliminate-k as the last variable and y, as the last but one variable.
Set p:=0, h:=z3—1(t*).

*) We write now constraints at the top because of numerical convenience. See App. 1.
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Step p. Take consecutive admissible s. Check wheather the equation s=s5* (ko) +
—(k—ko) fu+1+/n+1,ry- has solutions. If not, take consecutive values of s
until the equation has solutions. Start the Fourier-Motzkin substitution phase
by setting ‘LL,+1_I:=maX([L,+1J,O), Ui Ji=min (U, |, b), k:=|L,,,].
Step (p, s, k). Having k and s determine y.
If there is no feasible y satisfying (6) and such that s=s* (ko) —(k—ko) f+1+
+fust.r Vmsetk:=[L, ]+ and repeat Step (p,s, k). If there is no fea-
sible y satisfying (6) for all admissible k, repeat Step p. If a feasible (k,y)
is determined set s,:=s, r,:=z5—k, h:=k—J and save (s, r,)T. Find all so-
lutions x corresponding to (s, r,)*. If s,=b, then i*:=p and STOP.
Set p=p+1 and repeat Step p.
In Appendix I a complete numerical example illustrates various steps of the algo-
rithm.

5. Conclusions

The main disadvantage of the Fourier-Motzkin elimination method is an in-
crease of the inequality number 1n the elimination phase. In the Appendix IT we
discuss the possibility to avoid this phenomenon.

The approach presented in this paper can be applied also to inequality con-
strained problems by transforming inequalities to equalities. It can be also used
to perform the sensitivity analysis. We can take advantage of the fact that any
changes of r.h.s. vectors do not affect fundamental matrices but they affect par-
ticular solutions only. A slight modification of sequential algorithm will provide
a particular solution for any r.h.s. vector. We observe further that the process
of building of new inequalities in the F-M elimination method is controlled by
coefficient values of fundamental matrices but not by constant values. It implies
that as long as fundamental matrix is unchanged the number and structure of in-
equalities built during elimination of variables does not vary. Once this structure
is found we may use it for any values of r.h.s. vectors. The changes of r.h.s.
vectors change constant values in inequalities (e.g. particular solutions of diophan-
tine equations sets) and at last they change lower and upper bound L; and U,.
Keeping track of 4, h,, h; on each step of the F-M elimination, each time the
r.h.s. is changed new bounds L; and U, can be easily computed. In this way we
can easily find stability ranges for given optimal vector x°.

Appendix I. An Example

Consider the BP as follows
X +2x,Fx3+2x,=2
4x; +5x, +7x3+2x,=w; — max
—2X1+7x,—Xx3+8x4=w, - max
X1, X2, X3, X4 =0 and integer. :
Applying the Algorithm E we enumerate all efficient solutions of this problem.
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Algorithm E
i) Assume z;=14.
P, : find minimal integer *>0 for which the set of diophantine equations
X +2x,+x3+2x,=2
—2x1+7x, —x3+8x,— =0
4x,+5x, +Tx3+2x,=14—1t

has a nonnegative solution vector x.
Solution of P,.
t=0. The r.h.s. vector (2,0, 14)T and the general solution of this set is

[ o] [-3 —4]
" 0 1 0
P

|-2] | 12 14]

By substituting y=0 we get solution vector x>0, hence t*=0, a,=14, [ (t*)=—2.
ii) Assume z;=8.
P,: find minimal integer k*>0 for which the set of diophantine equations

X1 +2xZ+X3 +2X4:2
4x;+5x, +Tx3+2x, —5=0
—2x1+7Tx, —x3+8x,=8—k

has a nonnegative solution vector x.
Solution of P,.
k=0. The r.h.s vector (2,0, 8)T. The general.solution of this set is

[-10] | 9 10]

0 = 0
["‘]f 12)4] 11 =129
& 0 0 I

| 44] |-36 —42]

k=1. The r.h.s. vector (2, 0, 7)". The particular solution exists, namely (x*, s*)T=
=(—9,0,11,0,41)T. (Note that the fundamental matrix is the same as for k=0).
The difference vector f=(—1,0,1,0,3)T, 6=1. Now

[-10] [-1]1 [ 9 10]

’ 0 0 1 0
ls]: 12|k 1|+|-11 —12|y
0 0 0 1

| 4] 1 3] =% -4
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Condition x>0 implies the following set of diophantine inequalities
9y,+10y,+k>10
120
—1ly, =12y, —k>—12
Y220

By unimodular transformations we reduce F to the required form (only one non-
zero element in the last row of F).
Then the above set reduces to

3z, +z,+k>10

Tz, —2,20
—5zy—z,—k>-12

—6z,4+2,20

and s=44—6z,—3k
We apply now the F—AM elimination method.

Elimination phase

Iteration I,
z,210/3-1/3z,—1/3k
z1=21/1z,
z,<12/5-1/5z,—1/5k
z,<1/6z,
Iteration II.
2, 27—k
2, <7-7/12k
z,220/3-2/3k

z,=20
Iteration III.
k=0
k=>—-4
k<12
Substitution & backirack phase
k=0
1<z, <7

1<z,<1
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Hence k*=0 and a,=r;»=8. Since there is only one nonnegative solution for
k=0, namely this given by z,=7, z;=1, the value b, is determined by xT=

=(—10,0,12,0)T+(3,7,

-5, —6)T+(7, -7, -7,77=(0,0,0, ).

Substituting this to the first objective function we get b, =s;.=2.

p=0, h=10.
Step 0. s=14.

Step (0, 14, 0).
Step (0, 14, 1).
Step (0, 14, 2).
Step (0, 14, 3).
Step (0, 14, 4).
Step (0, 14, 5).
Step (0, 14, 6).
Step (0, 14, 7).
Step (0, 14, 8).
Step (0, 14,9).
Step (0, 14, 10).

The equation (7) takes the form 14=44— 622—3k This equation
has solutions (for g.c.d. (6, 3) divides 30).[U, =min (12, 10),
[L;+]:=max (0, 0).

k= 0, z,= 5 impossible (conditional bounds imply k=0, z,=7).
k= 1, 62,=27 no solution.
k= 2, z,= 4 impossible (conditional bounds imply k=2, z, >35).
k= 3, 6z,=21 no solution.
k= 4, z,= 3 impossible.
k= 5, 6z,=15 no solution.
k= 6, z,= 2 impossible.
k= 17, 6z,= 9 no solution.
k= 8, z,= 1 impossible.
k=9, 6z,= 3 no solution.
k=10, z,= 0 possible (conditional bounds imply k=10, z,=0,

z,=0).

so=14, ro=—2, h=9. The only solution corresponding to (sq, 7o) is x=(0,0, 2,0)".

Step 1. s=13.
s=12,
S=11.

Step (1, 11, 0).
Step (1,11, 1).
Step (1, 11, 2).
Step (1, 11, 3).
Step (1, 11, 4).
Step (1,11, 5).
Step (1, 11, 6).
Step (1, 11, 7).
Step (1,11, 8).
Step (1,11, 9).

The
tion

equation (7) takes the form 13=44—6z,—3k. This equa-
has no solution (for g.c.d. (6,3) does not divide 31).

The equation (7) takes the form 12=44—6z,—3k. This equa-
tion has no solution.

The equation (7) takes the form 11=44—6z,—3k. This equa-
tion has solutions. |U,, ;|:=min (12,9), [L,.]:=0.

k=0, 6z,=33 no solution.

k=1, z,= 5 impossible.

k=2, 6z,=27 no solution.

k=3, z,= 4 impossible.

k=4, 6z,=21 no solution.

k=5, z,= 3 impossible.

k=6, 6z,=15 no solution.

k=7, z,= 2 impossible.

k=8, 6z,= 9 no solution.

k=9, z,=11 impossible.

s=10. The equation (7) takes the form 10=44—6z,—3k. This

equation has no solution.

s= 9. The equation (7) takes form 9=44—6z,—3k. This equa-
tion has no solution.
s= 8. The equation (7) takes form 8=44 -6z,—3k. This equa-

2,9), [Lyss]:=0.

tion has solutions. | U, |:=min (1
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Step (1,8,0). k=0, z,= 6 impossible.
Step (1,8, 1). k=1, 62,=33 no solution.
Step (1,8,2). k=2, z,= 5 impossible.
Step (1,8, 3). k=3, 6z,==27 no solution.
Step (1,8,4). k=4, z,= 4 impossible.
Step (1,8, 5). k=35, 6z,=21 no solution.
Step (1,8,6). k=6, z,= 3 impossible.
Step (1,8,7). k=7, 6z,=15 no solution.
Step (1,8, 8). k=8, z,= 2 impossible.
Step (1,8,9). k=9, 6z,= no solution.
s=7. The equation (7) takes the form 7=44—6z,—3k. This

equation has no solution.
s=6. The equation (7) takes the form 6=44-—6z,—3k. This
equation has no solution.
s=5. The equation (7) takes the form 5=44—6z,—3k. This
equation has solutions. |U,,,|:=min(12,9), [L.,,]:=0.
0, 6z,=39 no solution.
1, z,= 6 possible (conditional bounds imply k=1, z,=6,

I

Step (1,5,0). k&
k

I

s;=3, ry=7, h=0. The only solution corresponding to (s;, r;) is x=(0, 1, 0, 0)7.
Step 2. s=4. The equation (7) takes the form 4=44—6z,—3k. This eguation
has neo soludon.
s=3. The equation (7) takes the form 3=44—6z,—3k. This equation
has no solution.
s=2. s=b hence (s,,r,)=(2,8). STOP. The vector x corresponding
to (s,,7,) has been already determined.

Appendix II. Implementing the Fourier-Motzkin elimination method

Consider the following set of linear inequalities
Fxz=p

The main drawback of the Fourier-Motzkin elimination method is the fast grow
of the inequalities number during the elimination phase. Bradley has shown [4]
that if Fis (n+1) xn matrix or (n+2) X»n matrix then its triangularization and
the proper choice of an eliminated variable guarantee that the number of inequa-
lities on each iteration decreases. This result, presented originally in the form of
two theorems, we restate now using our notation in the Lemma 1. For explana-
tory purpose we present also here the proof of it.

Lemma 1. Let F be a mXn real matrix of full rank, m<n+2. Then by the triangu-
larization of the matrix and the proper choice of an eliminated variable the number
of inequalities to be dealt with on each iteration of the Fourier-Motzkin elimination
method decreases.
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Proof.

Case A) m<n
By a transformation FKK~! y>p, where K is an unimodular matrix, the set
of inequalities can be reduced to (7, 0) z>p, where z=K~! y, T-lower trian-
gular m xXm marix of the rank m. Then we can eliminate from the first m
inequalities the variable z, what results in one extra inequality of the form

i DPm tm, 1 tm,m—l 2 DPm tm, 1
Zm>-"—_*“‘*“21—...""~"— Zyy—~1 if f,,,,mE/’ll or Zm<—‘**—-'t——21—
tm,m tm,m tm,m m,m m,m

tm,m—l

T T Zmet if #,, m €h, (see paragraph 3 for definitions of /#;). The case
m,m

Im,m €hs is impossible for the rank (7)=m. Analogously we can eliminate
Zm—1s Zm—2s s Z1. On each iteration the number of inegualities to be dealt
with decreases.

Case B) m=n+1
This time by an unimodular transformation the matrix F can be reduced to

[—f-], where T — lower triangular nxn matrix of the rank n. We start the

elimination process with z,.

v If , , and f,, , belong both to /i; or both to 7, we get two inequalities on
z, with the same inequality sign. Thus, these inequalities do not restrict varia-
bles zi, ..., z,_1, hence we can eliminate z,_{, z,_,, ..., z; from the first n—1
inegualities of 7" what reduces to the case A.

If 7, ,, and f,, , belong to different h; s, i={1,2} then they generate two
inequalities on z, with different inequality signs. Thus, these inequalities gene-
rate a new inequality in variables zy, ..., z,_;. The first n—1 inequalities plus
the new inequality constitute the new inequality set in n—1 variables which
again corresponds to the Case B.

If f,,.. belongs to /1; then we get one inequality on z,. Further we can elimi-
naté z,_;, Zy_a, ..., 21 from the first #—1 inequalities plus the last m-th in-
equality. The inequalities constitute the new inequality set in #—1 variables
which again corresponds to the Case B.

Case C) m=n-+2

T
By an unimodular transformation the matrix F can be reduced to | f

g
where T — lower triangular #xn matrix of the rank n. We start the elimi-
nation process with z,.

If . 4 fut+1,m &mn Delong all three to /i; or all three to /i, then we get
three inequalities on z, with the same inequality sign. Thus, these inequalities
do not restrict variables zi, ..., z,_¢, hence we can eliminate z,_q, z,_,, ...
from the first n—1 inequalities what reduces to the Case A.

If 1y fu+1,m &nn do not belong all three to 4; and none of them be-
longs to /1, then they generate three inequalities on z, with different inequality

>

ok
s &1
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signs. Thus, these inequalities generate two new inequalities in variables z; ...,
wess Zy—1. The first n—1 inequalities pius the two new inequalities constitute the
new inequality set in n—1 variables which again corresponds to the Case C.

If both f,1y 4 &m,n belong to 3 we eliminate z, from che n-th inequality
and we get again the Case C with n—1 variables.

If only one of f,41 s &m,n belongs to A assume that this is fo4 1,
If g,,, and 1, , belong both to /; or both to 4, then we get two inequalities on
z, with the same inequality sign.

Thus these inequalities fo not restrict variables zy, ..., z,—,, hence we can elimi-
nate Z,_1, Zn—z» ..., z; from the first n—1 inequalities plus (n+1) th inequality
what reduces to the Case B.

If g, . and ¢, , belong to different h; s, i=1, 2 then they generate two inequa-
lities on z, with different inequality signs. Thus, these inequalities generate
a new inequality in variables zi, ..., Z, (. The first n—1 inequalities plus (7+1)
inequality plus the new inequality constitute the new inequality set in n—1
variables which again corresponds to the Case C. Q.E.D. L]

The Lemma 1 implies the following fact.

LEMMA 2. The maximal number of inequalities in the Fourier-Motzkin elimination
method is

a) m if m<n
b) 2n if m=n+1
c) 3n if m=n+2

Proof.
a) This is clear from the proof of the Lemma 1, Case A.
b) and c¢) At the worst case the number of inequalities grows as follows.

num.ber of number of number of number of number of
varjables inequalities inequalities inequalities inequalities
for elimination for substitution for elimination for substitution..
\ 1
n i n+1 0 n+2 0
n—1 n 2 n+1 3
n—2 n—1 4 n 6
n—i n—i+1 2i n—i+2 3
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Let f=maximal number of inegualities

b) 1= max (n—i+142i)=2n
i=0,1,2y..,n—1
¢) 1= max (n—i+2+43i)=3n Q.E.D.

i=0,1,2,..,n—-1

For cases others then those described in Lemma 1 and 2 to avoid an excessive
grow of the inequality number different kinds of heuristics can be applied. One
possible heuristic 1s such a choice of variables to be eliminated which minimizes
cardinality of the carthesian product /i, X /,. The unimodular transformations ap-
plied in the proof of Lemma 1 might be very helpful in minimizing product cardi-
nalities.
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Wyznaczanie rozwiazan efektywnych dla dwukryteriowych
zadan programowania calkowitoliczbowego metodami teorii
liczb

W pracy zaprezentowany zostal algorytm wyznaczania wszystkich rozwijzan efektywnych dla
dwukryteriowego zadania programowania liniowego calkowitoliczbowego z ograniczeniami row-
nosciowymi.

Podstawa dzialania algorytmu jest idea transformacji zadania dwukryteriowego do problemu
znajdowania rozwigzan ukladu parametrycznych, liniowych rownan diofantycznych. Dla takiego
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ukladu znajdowane jest rozwiazanie w postaci ogélnej a nastepnie za pomoca eliminacji Fou-
riera-Motzkina badane jest istnlenie rozwiazan nieujemnych.

Dzialanie opartego na tej zasadzie algorytmu iteracyjnego zilustrowane zostalo przykiadem
numeryczoym.

Boruncnenne 3(peKTHBHBLIX PeLleHnil N JBYKPHTEPHAIBHBIX
33424 WeJIO4HCICHHOIO HPOrPaMMHPOBAHHA NPH HCIOJIb30-
BAHUH YHC/ICHHO-TEOPETHYECKOIo NMOAX0Aa

B pabore mpencTaBiieH anrOPUTM UL BBIMHCICHHS BCeX 3GhEKTHBHBIX DEIICHWI IBYKPHUTE-
DPHAJIBHOM 3aJavy IENIOYHCIIEHHOIO IPOTPAMMHUPOBAHUS C OTPAHPYCHUSAMH B BHOE DPABEHCTB.
Wpnest alnropurMa COCTOMT B CBEICHHH IBYKPHTEPHATIBHON 3allaud K 3a7a4e PEIICHHS CHCTEMBI
APaMETPHYECKHX OUO(GAHTOBBIX ypaBHEHHU. [ 9TOM CHCTEMBI HAXOJUTCHA OOmee “pelreHne,
a 3aTeM MCHOJB3YeTCS MeTon McKarouenus Pypbe-MOT3KHHA IS HAXOWICHWUS CPEOH BCEX pe-
IICHAN TaKHX, KOTOPBIE SBISIFOTCSA HEOTPULATEIHHLIMH.

Ha ocnose 3TOil HAen TUpeaCcTaBiieHa UTEPATHBHAS CXeMa DEINSHUS MCXONHON 3amaum. B 3a-
KIIIOYEHUE IIPUBENCH YHCICHHBIA IIpUMED.



