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We develop a class of msthods for minimizing, subject to a finite number of inequality
constraints, a nondifferentiable function which is the pointwise maximum of a finite collection
of continuously differentiable functions. The methods proceed by solving iteratively quadratic
programming problems to generate search directions. Several practical stepsize procedures are
also introduced. The method does not require a feesible initial approximation to a solution.
Global convergence of the algorithms is established. Under additional convexity assumptions
the method is at least linearly convergent. The algorithm is conceptually simple and easy to
implement. It generalizes several robust and efficient feasible point methods for standard non-
linear programming calculations.

1. Intreduction

In this paper we present an implementable method for solving optimization
problems of the following type: minimize f, (x) subject to /' (x)<0, where x € RY
and f, and f are real-valued functions that are the pointwise maxima of two
finite collections of continuously differentiable functions. The problem is usually
called a constrained minimax problem in the literature and abounds with appli-
cations [2, 3, 6,9, 15].

Recently much research has been conducted in the area of minimax optimiza-
tion. As expected, almost all the methods proposed until now tend to exploit the
knowledge which is available for the differentiable case, i.e. when f, is continu-
ously differentiable. Demyanov’s minimax methods [2] are based on Zoutendijk’s
[16] and Polak’s [12] feasible direction methods for solving standard nonlinear
programming problems. The algorithm of Madsen and Schjaer-Jacobsen [6] for
linearly constrained minimax optimization generalizes one of Zoutendijk’s feasible
direction methods [11, 16]. In [9] Panin presented an extension of Pshenichnyi’s
method of linearizations [14]. In this paper we introduce methods that generalize’
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three well-known methods for standard nonlinear programming calculations: Pi-
ronneau and Polak’s method of centers [10] and their feasible direction method
[11], and the phase I — phase II feasible direction method of Polak, Trahan and
Mayne [14]. These last three methods are considered to be the most robust and
efficient among the feasible point methods for standard nonlinear programming
calculations [13, 14]. Therefore our methods are potentially superior to the methods
of Demyanov [2] and Madsen and Schjaer-Jacobsen [6].

Our methods combine, extend and modify ideas contained in [3, 10, 14, 15].
Their derivation is based on the application of guadratic approximation me-
thods [3, 15] to the improvement function used in the modified method of centers
[10, 12]. The algorithms are iterative in nature. They have search direction finding
subproblems that are quadratic programming problems obtained by making a na-
tural piecewise linearization of the problem functions. The matrices in the qua-
dratic programming subproblems are preferably updated according to the rules
used in variable metric algorithms [3, 15]. Specific variable metric updating schemes
are not discussed here; they are a subject of on-going research.

When an initial approximation to a solution is feasible, the algorithms proceed
as feasible point methods and the objective function f, need not be evaluated at
infeasible points. This is important in certain applications [6]. When the initial
approximation is infeasible, the methods decrease constraint violation at each
iteration while not completely ignoring the objective function. Each method ge-
erates a sequence of points whose accumulation points satisfy the necessary con-
ditions of optimality if some regularity assumption on the gradients of constraint
functions outside the feasible set holds. However, we do not require that the opti-
mization problem be normal, cf. [3], which is necessary for convergence of Panin’s
method [9] that uses an exact penalty function. Under additional convexity as-
sumptions on the problem, we show that the methods construct a sequence of
points converging to the solution with a linear rate. This seems to be the first
such result for feasible point methods for nonlinearly constrained minimax opti-
mization.

A further modification of the ideas presented in this paper has lead to a new
implementable algorithm [5] for solving nondifferentiable problems of a more
general nature, when f; and f are semismooth [7].

In section 2 we state the problem considered and its necessaiy conditions of
optimality. The search direction finding subproblems are discussed in section 3.
In section 4 we present the method and comment on its possible implementations.
Section 5 contains results on global convergence of the methods. In section 6 we
introduce additional regularity assumptions on the problem and establish linear
rate of convergence of the algorithms. Section 7 provides some modifications.
Finally, we have a conclusion section.

RY denotes the N-dimensional Euclidean space with the usual inner product
{+, ) and the associated norm |- |. |- || denotes the associated norm of a matrix.
We use x; to denote the i-th component of the vector x. Superscripts are used
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to denote different vectors, e.g. x* and x?. All vectors are column vectors and
a row vector is denoted by the superscript 7. However, for convenience a column
vector in RV¥*" is sometimes denoted by (x,y) even though x and y are column
vectors in RN and R" respectively. If F is a real valued function on RY, then F’
denotes the gradient of F and F'' the Hessian.

2. Problem statement

Consider the following optimization problem

minimize f; (x), subject to f(x)<0, @2.D
where
fo(x¥)=maxf, ;(x), f(x)=maxf;(x) ‘ (2.2)
ielp iel

and f,,,: RY-»R', iel,={1,2,...,n}, and f;: RV->R', iel={1,2,...,m}, are
continuously differentiable; N, m, n< + oco.

ReMARK 2.1. If the initial approximation x' to a solution of (2.1) is feasible, i.e.
x'eS={xeR": f(x)<0}, then we may only require that fy,;, i € I,, be defined
and continuously differentiable on S.

Let

Wz{w eR" " w>=0 and Enwizl}, (2.3)

i=1

We say that a point X € RY satisfies the Fritz-John necessary conditions of opti-
mality for the problem (2.1) if there exists a Lagrange multiplier #w satisfying

D Wi Se i (D+ D W Sy (£)=0, (2.42)
weW, | (2.4b)

Wi [fo,: (X)—fo (X) =/ (X)4]=0, iel, (2.4c)
Wiin Lfi ®)—f(%)+]=0, iel, (2.4d)
f(®)+=0, (2.4¢)

where f(x),=max {f(x), 0}. Recall that (2.4) is a necessary condition for ¥ to
solve (2.1), cf. [1, 2]. We denote by W (%) the set of all multipliers i satisfying (2.4).

We shall also consider an auxiliary problem

minimize f(x). (2:5)
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If % is a solution of the above problem, then there exists a multiplier W satisfying

D £ (=0, (2.6a)
weW, w,=0, iel,, (2.6b)
Boen /i (D—f (B]=0, el (2.60)

Note that when (%, w) satisfies (2.6) and f(X)=0, then (X, w) is a Fritz-John
point satisfying (2.4). To exclude this situation, one may employ the following
Cottle constraint qualification, cf. [4]:

if f(£)=0 then there does not exist any W satisfying (2.6). 2.7

If the Cottle constraint qualification holds at X, then the Fritz-John conditions
(2.4) reduce to the Kuhn-Tucker conditions [1, 4]: there exists a Kuhn-Tucker
multiplier (4, 9) € R"X R™ satisfying

D sy D+ D6 S (9=0, (2.82)

i€l3 iel
(@,9)eUV, (2.8b)
4 [fo,i B)—fo(R)]=0, iel, : (2-8¢)
7, i(®)=0, iel, (2.8d)
S (#®=0, (2.8¢)
where UV={(u,v) e R"XR": (u,v)<0, ¥ u;—1}. To see this, note that (2.4) and

(2.7) imply that b=il
o= Z w,>0 for any Wwe W (%), (2.9)
i€lo

hence we may put
U=wW;[Wo, 1€ly, Ti=W;1,/Wo, I€l, (2.10)

to obtain (2.8) from (2.4). We denote by UV (%) the set of all Kuhn-Tucker multi-
pliers satisfying (2.8). Note that under the constraint qualification (2.7) this set is
nonempty and bounded at any Kuhn-Tucker point % [8].

REMARK 2.2. Instead of the Cottle constraint qualification, one may assume a weaker

condition at X satisfying the Fritz-John necessary condition of optimality:
w0=min{2 e W(x)}>0. 2.11)
i=Io

As noted above, (2.7) implies (2.9), which in turn is equivalent to (2.11), since W
and W (X) are compact. It is straightforward to check that if (2.11) holds, then
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the necessary conditions of optimality (2.4) and (2.8) are equivalent in the sense
that one may put W (x) and UV (X) into correspondence by using (2.10) and

w,.:a,./(z i+ ) 7)]) iel,, wH,,:@i/(Z i+ ) v,) (2.12)
JjeI

J€lo Jelo Jer

REMARK 2.3. If the constraint functions f; are convex, then the Cottle constraint
qualification reduces to the Slater constraint qualification (cf. [2,4]):

there exists a point X satisfying (&) <O. (2.13)

If additionally f, is convex, e.g. fo,:, i € Iy, are convex, then any Fritz-John point
X% is a Kuhn-Tucker point and any Kuhn-Tucker point solves the problem (2.1),
see [2].

We end this section by remarking that only certain subsequent results require
any constraint qualification. This is always explicitly stated. On the other hand,
various other assumptions are assumed to hold implicitly throughout the remain-
der of the paper.

3. The search direction finding subproblem

The method to be presented in the next section uses search directions gene-
rated as follows. Let x € RN and §>0 be given. We introduce two activity sets

I (x, )={i €Iy fo, () —fo B Zf(x) 4 —5}, 3.0
I(x, 0)={ieI:f,() 2 f(x), —6}.

Let B be a positive definite symmetric N X N-matrix. Then the following search
direction finding subproblem

1
minimize —<{Bd,d)+d, 3.2

(do, d)€R! X RN
subject to fo,; (x)—fo (¥) —f (%) +<f0,,i(x)9 dy=d,, iel,(x,9),
L) =f(®)s+{fi(x),d><d,, iel(x,9),

is a quadratic programming problem which satisfies the Slater constraint ¢uali-
fication, see [14, p. 259] and [15]; its solution (d, (x), d(x)) exists and is uniquely
determined by the following set of conditions:

d@W=-B" 3 wfe D+ Y Wafi @) \(3.3)
i€l (x, 8) i€l (x,0)
do ()=max{ max [fo,. () ~fo()=/()s+<Jo, s GHACN],

max [f; (x)—f(x)+ +<{f; (x),d(x))]},

iel(x,9)
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where W;, i €Iy (x,0), W4 [€1(x,0), are the possibly nonunique Lagrange mul-
tipliers for (3.2), which satisfy

.20, iely(x,8), W20, icl(x,0), (3.4)

A

i€lo(x,6) i€I(x,0)

Wi [fo,: () —fo () —f (%)« +<{ o, ; (x), d (X)) —do ()]=0, icly(x,0),
Wi s () = ()4 +f; (%), d(x))—do (0)]=0, iel(x,9).
If we define

3 w;+ E Wisn=1,

ﬁ’i:Os iEIO\IO (x’ 5)3 wi-i»n:Oﬂ ie[\[(x, 5)3 (35)
then we obtain from (3.3) and (3.4), cf. [15],

d(x)=-B"1 Y ifs @+ Y brenf; (), (3.6)
i€lg i€l
weW,

W; [fo,i (x)=fo (X)—f(x)+ +<f(;, g (x),d(x)) —d, (x)]=0, iel,,
Wign[fi () —f(X) +<fi' (x), d(x)) —dy (x)]=0, i€l
and

—do ()=(BA(x), A+ X W Lfo () ~fo, )+ ¥ Wianlf@s~fi@]. (G.T)
i€ly y = §

The Lagrange multiplier w also solves the following dual search direction sub-

problem

1 , .

mmimlze——| N, fo dOE Y Waafs ORF
min 2 | & ’ L ¢

wEeR i€l (x,6) iel(x,6)

+ N ml@ Lo @1+ S W [£()5—£ (],

i€lo(x,0) i€I(x,0)

subject to we W, w;=0, iel \J(x,9), w;;,=0, iel~I(x,9),

where H=B~! and |x|3=(Hx, x) for any x € R". Thus it may be more efficient
to solve (3.8) and to recover d, (x) and d (x) from (3.6) and (3.7). Hence it may
be easier to work with H=B~1! rather than with B. ‘

Now we compare the above search direction finding subproblems with exist-
ing methods. When n=1. i.e. when (2.1) is a standard nonlinear programming
problem, then the subproblems (3.2) and (3.8) are modifications of the subprob-
lems employed in the phase I-phase II feasible direction methods of Polak, Tra-
han and Mayne [14], which have B=H=I (an identity matrix) and = +oco. If
additionally f(x)<0, then we obtain the subproblems of Pironneau and Polak’s
methods of centers [10] and feasible direction methods [11]. Next, suppose that
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n=2 and m=0, i.e. (2.1) is an unconstrained minimax problem. Then we have
f(x).=0 and I=I(x,d)=o. In this case, the direction d (x) is computed as in
Pshenichnyi’s method of linearizations [14] if B=1T; when B approximates the Hes-
sian of an appropriate Lagrange function for (2.1), then d(x) is equal to the di-
rection obtained in Wierzbicki’s quadratic approximation method [16]; if addi-
tionally 6= +o0, i.e. I, (x,d0)=1,, then we have the subproblem of Han’s varia-
ble metric minimax method [3].

In general, (3.2) may be viewed as a quadratic approximation subproblem for
the function

P (X; x)=max {fo () —fo (x), £ (%)}, (3.9
which is the improvement function of the method of centers [10, 12], and d, (x)

may be interpreted as an approximate directional derivative of p at x in the di-
rection d(x), cf. [3, 14, 15].

4. The method

In this section we describe the method for solving the problem (2.1) and com-
ment on its possible implementations.

The algorithm

Step O (Initial data). Select a starting point x' € R, a final accuracy toler-
ance &=0, an activity lower bound §>0. a desired rate of convergence para-
meter y €[0,1), line search parameters m €(0,1) and 0<m; <m,<1. Choose ini-
tial values of an activity variable §'=6 and a convergence variable #'=>0. Let
B,=H,=1 (the identity matrix). Set k=1.

Step 1 (Direction finding). Compute (d§, d*)=(d, (x*),d(x*)) by solving (3.2)
with x=x*, B=B, and d=J* or, equivalently, by solving (3.8) with x=x*, H=H,
and 6=0" and then using (3.6) and (3.7).

Step 2 (Convergence test). If |d§|<e,, terminate.

Step 3 (Testing direct prediction). Let the improvement function at the k-th
iteration be defined by
pe()=max{fo (x)—fo (x*), f(x)} if f(x9=0, 4.1
p()=f(x) if f(x%>0.

If pp(x*+d*<p,(x¥) and |d5|<yn*, set the stepsize coefficient t*=1 and go to
Step 6. Otherwise go to Step 4.

Step 4 (Line search). Compute a stepsize coefficient 7*>0 satisfying at least

one of the following requirements:

(1) (Armijo’s rule). =2~ where i, is the smallest number i=0, 1, 2, ..., for
which p, (xX*4+271d") < p, (x)+m 271 df;
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(i) (Goldstein’s rule). If f(x¥)>0, then 7* satisfies either
P (xX5) +my T d§ < pp (XF+ T A< p (58 +my TR dE, 4.2)
or f(x*+i*d"<0. If f(x*)=<0, then #* satisfies (4.2).

Step 5 (Approximate or exact minimization at line search). Let #=x*+ f* g*,
Compute the stepsize coefficient t*>0 satisfying

FOE+EEdY<F(F) if f(@)>0, (4.22)
max { fo (x*+1*d*) —fo (%), f (X + ¥ d¥)y Smax { fo () —fo (x9), £ (3)}
if f(¥)<0. (4.2b)

Step 6. Set x*"'=x*+1*d" and #**'=max {yn¥, min (4*, —df)}. Choose &**1 =5
and a positive definite symmetric N XN matrix B, or Hys;=B;!,. Increase k
by 1 and go to Step 1.

A few comments on the implementation of the algorithm are in order.

(a) The magnitude of 6% controls the number of constraints in the direction
finding subproblems (3.2) and (3.8). Note that the gradients fy,; (x*) and f; (x¥)
must be computed only for J*-active functions, i.e. ie/l,(x*, 6 and iel(x*, %)
respectively. Thus small values of * can reduce the computational effort per itera-
tion. On the other hand, very small 6 may result in too small a stepsize. The
lower bound d>0 prevents this jamming. It also establishes a threshold for de-
termining the functions probably active at a solution. This suggests the following
strategy for changing ¢ (cf. [16]):

oFTi—max {5 /:(1’]“' 1)1/2}’

with {>0 being a scaling parameter.

(b) Now we comment on the line search rules. It is easy to check that, since
di<0 by (3.7) (B, is positive definite), if the algorithm does not terminate then
dE<0; hence the line search rules yield

FEEY<f (9 i F(0>0, (4.3a)
FEYH,.=0  if  fGN<0. (4.3b)

Thus if x* is infeasible, then the algorithm tries to find a feasible x**!; once
a feasible approximation x* is found, then the next approximations stay feasible
owing to (4.3b), and the phase II of the method works. Note that even at the
phase I, when f(x¥)>0, the direction ¢* is influenced by the objective function
if f(x*)< ¥ since then I, (x%, 6¥) is nonempty. On the other hand, the objective
function values are ignored at line searches until a feasible approximation is found.
In both phases, we try to reduce the number of problem function evaluations at
line searches. The requirements of Step 4 are generalizations of the well-known
convergent stepsize choices for standard algorithms, cf. [12, 14]. They can be met
by various efficient stepsize procedures, e.g. Wierzbicki’s procedure from [16].
The existence of a finite 7, at Step 4 (i) follows from the next section’s results.
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Under an additional assumption that the function p, (x*+2d*) is bounded from
below for t>0, finite termination of Wierzbicki’s procedure from [15] can be
easily established, thus providing a method for Step 4 (ii) (see also [12, 2.1.33 and
2.1.36]). At Step 3 we check if (=1 is acceptable. In general, small d¥ indicates
that x* is a good approximation to a solution, hence we try to set t*=1 at Step 3
if :he algorithm makes good progress, as measured by |d§| <y |di~*|. Step 5 al-
lows us to accept ¢* better than 7*; obviously, we may always take t*=¢*. In prac-
tice, one should monitor the requirements (4.2) while searching for 7* at Step 4.

(c) In this paper we do not consider details of the choice of the variable metric
matrices {B,}. Our global convergence analysis requires that we have

By |4 <(B.d* d*> and B,d"|<p,|d¥| @.4)

for some positive constants f; and ff,, for all k. Note that this property is much
weaker than the usual assumption required for showing convergence of guasi-
-Newton methods, viz. that the matrices {B,} should be uniformly positive definite
and bounded, cf. [3]. The simplest way to update B, is to use the identity matrix.
However, in order to obtain faster convergence, it is preferable to use B, that esti-
mates the Hessian L' (x*, w¥) with respect to x of the Lagrangian function for
(2.1):
L w= X wifo. )+ D) wisnfi (%),

L
I ief

m

where w* denotes the Lagrange multiplier # of the k-th direction finding subprob-
lIem, cf. section 3. Some specific updating schemes are discussed in [15]. We may
add that it is possible to ensure (4.4) by choosing initially some fixed numbers
p1€(0,1) and f,=1 and resetting B, to the identity matrix if (4.4) is violated;
in this case Step 1 should be repeated wuth B,=1.

5. Convergence

In this section we analyze global convergence of the method. In the absence
of convexity, we will content ourselves with finding feasible points that satisfy
the Fritz-John necessary conditions of optimality (2.4). Under additional con-
straint qualifications, these points will also satisfy the Kuhn-Tucker necessary con-
ditions (2.8). Naturally, asymptotic convergence results assume that the final ac-
curacy tolerance &,=0.

Throughout the paper we assume that the variable metric matrices satisfy
B |d¥2 <(B d¥, d¥y, (5.1a)
B d¥| < f, |d¥], (5.10)

for some fixed positive numbers f; and f,, for all k. We shall also use the fol-
lowing convention. Let w* € R®*" denote the Lagrange multiplier w of the k-th
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direction finding subproblem (3.2) solved at Step 1 of the method, cf. section 3.
Define

Pi= D) Wi, 9+ D) WhL 6. (5.2)

= &

By (3.3), (3.6) and (3.7), we always have
d*=~B ' pt=—H, p* (5.3)
whe W, (5.4a)
WeLfor i () —fo (M) =/ (x5« +< o, (x), d>—d]=0, iely,  (5.4b)
We L ) —f (9 +<F1 (59, D —dE]=0, i€l (5.40)
—d=(Be d,dY+ X Wi fo () =fo, () () 1+
<

+Zmem%wn (5.5)
Now, (5.1a) and (5.3) give
B |1d*? < (B d*, d>={—p", d*)<|p"| |d*|,

hence (f;>0) we always have

|d¥<1p"/B: . (5-6)
On the other hand, from (5.1b) and (5.3) we immediately get

[P1<p,1d". (5.7
Since w*=0, (5.5) yields —d§=(B,d*,d*), which together with (5.1a) implies

—di=p, |d¥2. (5.8)

From (3.3), we have

dg=max{ max [fo:(x)=fo () —f(x"):+ +<So,; (¥), d5],

i€ Io(xk, 65

max [f; ()= (). +{f (6, dD. (59)

i€l (xk, 6%)

If weW and % is a Fritz-John point, let
p(w, W(X))=min {|{w—w|:we W(Z)}.

First we consider the case when the algorithm terminates.

ProrosiTioN 5.1. If the algorithm terminates at the k-th iteration, then either
(%, W) is a Fritz-John point satisfying (2.4), i.e. §(w*, W(x"))=0, or x* is in-
feasible and (%, w)=(x*, w¥) satisfies the necessary conditions of optimality (2.6)
for the problem (2.5). If the Cottle constraint qualification (2.7) holds at F=x%,
then x* is feasible.
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Proof. Since |df|<e,=0, (5.8) and (5.7) imply that d*=p*=0. Then (5.2) and
(5.4) yield that (2.4a—d) holds for (%, w)=(x*, w¥). If f(x*)<0, then we also have
(2.4e) and thus (X, w) is a Fritz-John point. On the other hand, if f(x*)=
=f(x*), >0, then f5 ; (X)—fo (X)—f(X)+ < —f(£)<0; hence (2.4c) and Ww=0 yield

W=, -\, 6y (5.10)

But then (2.4a—d) reduces to (2.6). Now, if the Cottle constraint qualification
holds at £=ux*, then (2.6) cannot hold if /' (x*)>0. This completes the proof. [

From now on we assume that the algorithm does not stop and that it gener-
ates an infinite sequence {x*}. Let K={I, 2, 3, ...}. If £ is an accumulation point
of x*, i.e. x*>% as k—oo, k € K, where K is an infinite subset of K, we write
E. K

X ==,

We start with the following auxiliary result.

PROPOSITION 5.2. Suppose x*—-% and d*~>0. Then d(’;'—x—>0.
Proof. Since I, (x*, 0% €1, and f, (x*)=f,,; (x*) for some i€ ],, we always have
. fﬁzzak) [fo,: (&%) —fo (F) =F(x*) 4 +<fo, s (69, dD] < —f(x9) 4 +
+[dkl{11?Xifé,,~(xk)i- (5.11a)
On the other hand,
max  [fo,: () —fo (%) —f () +<fo, ; (%), d*D]=

€10 (xF, 6¥)
> —f(x¥), — ¥ max |fy , (). (5.11b)
i€l
Similarly, we deduce easily that

—[f M4 =f (M) =l max |f; (< max  [f;(x)—f (¥, +

ier iel (xk, 5% .
+CS1 9 VIS ~ [ () =/ (N +1d" max | £, . (5.12)

Then (5.9), (5.11) and (5.12) yield, since max { —f(x*), —f(x*); +f(x)}=—f(x*) . +
+£(x¥),=0, that

|d§| <|d* max {max |f, ,(x¥), max |f; (x*)[}. (5.13)

iclo i€l

Hence d¥ %50 follows from (5.13) and the continuity of the problem function gra-
dients. The proof is complete. .|
From the above proposition and (5.8), we deduce easily the following result.

PROPOSITION 5.3. Suppose x*~-% Then d*"-0 if and only if di-=-0.
Next we have the following convergence result.
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THEOREM 5.4. Suppose that (x*, w*) —1—(%()2, w) and d*550. Then cither (%, w) is a Fritz-
-John point, or X is infeasible and (%, W) satisfies the necessary conditions of opti-
mality (2.6) for the problem (2.5). If the Cottle constraint qualification (2.7) holds
at X, then X is feasible.

Proof. By Proposition 5.3, we have dg—"—»o. Additionally, (5.7) yields P,
Letting k approach infinity with k € K in (5.2) and (5.4), we obtain (2.4a—d.)
Therefore one may use the arguments in the proof of Proposition 5.1 to complete
the proof. )

Note that the above results do not depend on the line search properties. These

properties are essential for showing that d(’,‘~K—>O if xEox.
PROPOSITION 5.5. Suppose that x*~-% and dX<d,<0 for all k € K. Then for any
fixed number 7 €(0,1) there exists a number 7(/7)>0 such that

max { fo (xk+ td*) — fo (x¥), f (x*+1d")} < f(x*) . +mtdg for any t €[0,7(m)]  (5.14)
and any keK.

Proof. It follows from (5.2) and (5.6) that {d*};.x are uniformly bounded. Com-
bining this fact with the continuous differentiability of the problem function gra-
dients, we obtain, by [2, Appendix III, Section 3, Note 2], that the following esti-
mates are valid for ke K:

Jo, i K +td) —fo, i ()<t fy, (X9, d¥y+0, (1), i€l,, (5.15a)
[ G+ tdN) —f, (M) <t f; (), d¥y +o, (1), i€l (5.15b)
where o, ()/t—0 as t—+0+. By (5.9) and (5.152a), we have for 1 € [0, 1] and k € K:
Jo,i FF+1dV=fo i (XM +1 [d5—fo,: () +fo () +/(¥*) 1+ ]+ 0, ()=
Sfo ()M +tdi+o, (1), i€l (x5 %); (5.16a)
similarly, (5.9) and (5.15b) yield for #€[0,1] and k €K that
fi (X +d) < f(x%) . +tdE+o, (1), iel(x*,dY). (5.16b)

Let C=sup {|d*|max (|f, ,(x"), |f;(x")]):i€ly,jel, keK}. Note that C<+oo,
since {d*};. is uniformly bounded and P By (5.15), the definition of the ac-
tivity sets and the fact that 6*=6, we have for k e K

Jo,i (- td)—fo (M) f (X —0+1C+0, (1), iEIo\Io (x*,6%, (5.17a)
[iGF+tdDN<f(x¥) . —d+1tC+o, (1), ie[\]'(x", ). (5.17b)

The argument leading to (5.15) may be applied to the functions —f, ; and —f;;
hence we obtain for ke K

Jo,i FF+1d¥) 2, ; (XM=t fy , (x*), d*+0, (1), i€l (5.18a)
fi(xF+1d) = f; () + 1 (3, d*> +o, (1), i€l (5.18b)
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where 0, (1)/t—0 as 1->0+. Since f, (x*)=/f, ; (x*) for some i€l (x*, ), we ob-
tain from (5.18) : 3

max fo ; (X*+1d")= fo (x**) = 1C+0, (1), (5.192)
i€ 1o (xk, 59
max f; (xF+1d¥)=f(x*)—tC+o0,(1). (5.19b)
i€ (xk, 6%)

We may choose a number 7€[0, 1] such that

~0+1tC+o,(t)<—tC+o0,(t) for any tel0,7], (5.20)
since 0>0. Then (5.16), (5.17), (5.19) and (5.20) imply
max { fo (x*+td*) — fo (%), f(F+1d*)} < f(X¥) . +1dE+ 0, (1) (5.21)

for any 7 €[0,7] and k € K. Since m €(0,1) and d“<d,<0 for all k €k, it is
possible to choose 7(/1) €(0,7) such that for ke K

o, (Ot<(1—m)(=dy)<(1—m)(—dY) for all te]0,i(m)],
which implies
tdi+o, ()<mtdf  for any t€[0,7(m)], kek (5.22)

Combining-(5.21) and (5.22), we obtain the desired relation (5.14). The proof is
complete. &

PROPOSITION 5.6. Suppose that x*—-%. Then d*~-0.

Proof. In view of Proposition 5.3, we only need to show that d§~15—>0. Since
dg<0, this is equivalent to showing that for any fixed d,<0 we have df<d, for
only finitely many k € K. Assume that this is not true. We will deduce from it
a contradiction. Thus, with no loss of generality, suppose that d<d,<0 for all
kek.

(i) Suppose that t*=1 is accepted at Step 3 for infinitely many k € K. At such k,
we have |d§| <yn* and #**'=yp*. Since y=(0, 1) and {#*} is nonincreasing by con-
struction, we must have |d%|<|d,| >0 for some k € K. This contradicts df<d,<0.
Therefore we may suppose that the stepsize coefficient t* is computed at Steps 4
and 5 for all keK.

(ii) Suppose that f(x*)<0 for some k,. Then (4.3b) yields f(x*),=0 for all
k=ky. Let m=[1+max {m,, m,}]/2. Then Proposition 5.5 implies that there exists
a number 7>0 such that for almost all keK

max { fo (xX*+1d*)—fo (x5), f(x*+1d¥)} <mtdf for any te[0,7] (5.23)

since f(x*).=0 for k=k,. If 7* passes the Armijo test, then either 7*=1
or py (x*+27* d¥)y=max {fo (x*+27* d*)—f, (x*), f (x*+27* d*)} > pp (x*)+m 2F* dEi=
=m 28 d¥>m2i* d¥, hence (5.23) implies that 7¥>7/2. If 7* satisfies the Gold-
stein test, then max{f, (x*+7* d*)—f, (x¥), f(x*+i* d*)} =m, i* d§>mi* d, hence
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(5.23) yields #*>7. Therefore in both cases we have #*>7/2 for almost all k € K.
Now, f(x*),.=0 and the line search rules yield

max {fo (x** 1) =15 (x*), f(x** )} <min {m, m, } i* d5, (5.24)
which implies, since 7*>7/2 and d¥<d,<0, that we have
fo (V)< fo (X9 +min {m, m,} id,[2 (5.25)

for almost all k € K. Then (5.24) yields fo (x*T)<f, (x¥) for all k>k,, there-
fore, since f, is continuous ([2]) and x"—K-UE, we have

fo(x¥)=f(®) as  k-oo. -(5.26)

Since min {m, m,} ido/2<0 is fixed, (5.25) contradicis (5.26).

(iii) Now suppose that f(x*)>0 for all k. Then the line search rules of Steps 4
and 5 imply f(£)>0 for all k. One may argue as in part (i) of the proof above
to show that t*>7/2 and

SOFDZ () +min {m, m, } idy/2 5.27)

for almost all k € K, and that f(x**1)<f(x*) for almost all k, which leads to

S(xH)=7(x) as k-oo. (5.28)

But then (5.27) contradicts (5.28). The proof is complete. |
For the algorithm’s starting point x!, let

S(xY)={xeRY:0<f(x)<f(x)}. (5.29)

Note that S(x') is empty if x' is feasible.
Now we state our principal result.

THEOREM 5.7. Suppose that the Cottle constraint qualification (2.7) holds at any
X €S (x'). Then every accumulation point % of the sequence {x*} generated by the
algorithm satisfies the Fritz-John necessary optimality condition (2.4). Moreover,
if x*X>%, then

B (W, W (%))=0. (5.30)

Proof. Suppose that x*~>%. By Proposition 5.6, d“~-0. Owing to (5.4a), {w*t=w.
The compactness of W (see (2.3)) implies that any accumulation point of {W*}.x
lies in W and at least one such point exists. Let w € W be any accumulation
point of {w*},.x. In view of the algorithm’s rules, we always have f(x**") < f(x%),.
Hence f(X)<f(x'), (f is continuous). Suppose that f(X)>0. Then (2.7) holds at
%, hence Theorem 5.4 yields f(£)<0 — a contradiction. Consequently, % is fea-
sible. Therefore Theorem 5.4 implies that (X, w) is a Fritz-John point, i.e. we W (%).
Since W was arbitrary and W is compact, this proves (5.30) and completes the

proof. ]
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Let
| wh= 3" wk (5.31)

i€lo
and define estimates of the Kuhn-Tucker multipliers by
wi=whiwh, iel,, and vi=wk,  w,, i€l (5.32)

whenever wi>0. Let S(x")={xeR": f(x)<f(x*).}. Then we have the follow-
ing result on convergence of the Kuhn-Tucker estimates (z%, v%).

THEOREM 5.8. Suppose that the Cottle constraint qualification (2.7) holds at any
% € S(x"). Then every accumulation point % of the sequence {x*} constructed by the

method satisfies the Kuhn-Tucker condition (2.8). Moreover, if x*E%, then
B (5, ), UV (2))0. (5.33)

Proof. Since S(x)e S(xl) Theorem 5.7 yields (2.4) for .any accumulation point
w of {wk }kex, whenever x*~-%. If we show that wo= )} N w,>0, i.e. (2.9) holds, then

tclo

the desired conclusion (5.33) will follow from (5.30—32) and the results of sec-
tion 2. To obtain a contradiction, assume (with no loss of generality) that R
with 1W,=0. By Theorem 5.7, we have w & W (%). Since S(x!) is closed and
x* e S(x'), we obtain that the Cottle constraint qualification holds at % € § (x?).
By the results of section 2, Ww,=Wy>0, cf. (2.11), and we have a contradiction
with w,=0. The proof is finished. i

REMARK 5.9. Since di<0 at Step 4, it follows from the proof of Proposition 5.5
that (5.14) holds for m=m and 7, (m)>0, which proves that 7, <oo at Step 4(i).
A similar approach may be used for proving finite termination of Wierzbicki’s
stepsize procedure from [I15] for Step 4(ii) of the method.

6. Rate of convergence

In this section we show that under favourable conditions our algorithm con-
verges at least R-linearly. Our analysis generalizes the results of Pironneau and
Polak from [10], where the case of a smooth objective function f,, i.e. n=1, is
considered. To save space, we continually refer to [10] and use its notation, pro-
viding here essential modifications only.

For ease of reference, we list certain assumptions under the following hypothesis.
Hypothesis 6.1. The functions f, ;, i € Iy, and f;, i € [, are convex and twice conti-
nuously differentiable. The starting point x* is feasible and such that the set

B={xeRN: fo (x)<f, (x') and f(x)<0}

is compact. Moreover, fj is strictly convex in B, e.g. fy, 4, 7 € Iy, are strictly convex,
and the Slater constraint qualification (2.13) holds, i.e. the set C={x € RV: f'(x)<0}
is nonempty.
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In this section we shall always assume that Hypothesis 6.1 is fulfilled. It fol-
lows that there exists a unique X solving (2.1). By Remark 2.3 and the results of
section 5, we have {x*} = B and x*—»%. Moreover, if we denote for £>0

N(W(%),e)={we W:p(w, W(®)<e},
then we have, by (5.30), that for any ¢>0
wkeN(W(%),e) for almost all k. (6:1)
It follows from Propositions 5.3 and 5.6 that ’
. &0 as  k-oo. (6.2)
We shall also assume that there exist constants ¢>0 and m, € (0, 1) such that
my ly—xP<Ly—x,L" (x,w)(y—x)p forall x,yeB(x¢)
and weN(W(%),s), (6.3)
where B(X,e)={xeS:|x—x/<¢} and the Lagrangian L for (2.1) is deﬁnéd by
L@wy= Y wifo, (x)+ > wirfi(%). (6.4)

i€io i€l

We assume that the algorithm constructs the infinite sequence {x*} with y=0,
i.e. that no direct prediction steps are taken. Since x' is feasible, only the phase II
of the method works and we always have

e (x)=max {15 (x) —fo (x*), f(x)}. (6.5)
We shall start by estimating

= pp (1) — e (X9). (6.6)

ProrosiTioN 6.2. There exists a constant 7>0 such that
c*<idy for all k. ' (6.7)

Proof. Let M,=max{|f, ,(X)[+f; (X): xeB,icl,jel}.
Since

Jo,1 (X +1d)=fo ; (x")—{—t(f(;’ (x5, dS + 12 <dk7f(;:i @) d>=<fo, (x)+
+1<fo, (X, dS+1> M, jd*?,  (6.8)

where X lies on the segment joining x* and x*+¢d*, we obtain from (5.1a), (5.9)
and (6.8) that for 7€[0, 1] and iel, (x*, &)

Jo, i (F+td)<fo, (x4t [di—fo, i (X +16 (X +1(x9) 4 +
+12 M AP < fo () +f (69) 1 +tdg+2 My |d(G /B, .
In the same manner we obtain for 7€[0,1] and ieI(x¥, 5%

Si O+ 1d) S f(0) - tdE+12 M |dYG By -
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Now let My=max{|f, ;(*)|+|f;(x)|:x€B,icl, jel}. By (58) and &>, if
i€ I0N\J, (x*, 6%) then
Jo,i (X +1d)=fo ; (x*)+1 <f(l), (R, Ao, i (XYM, [d L fo () +
+f (M) =3+ M, (~df) (Bt
Similarly, for i eI\ J(x*, &) we obtain
Ji (F1d) < f (x84 =3+ 1M, (—dg)H (B}
Then (6.5) and the above four estimates yield
P (X +1d<p (X +mtds  for te[0,i%], 6.9
where mi=max {m,m,} and
t~*k=min {1, 5/[(—d§)* (Mo/(B)* +17 (—d), (1 —im) p1/M)}. (6.10)
Since no direct prediction steps are taken and f(x*),=p, (x*)=0, we may argue
as in part (ii) of the proof of Proposition 5.6 to deduce from (6.9) that 7*>7*/2
and that _
F=pp (X1 — p, F)<min {m, m,} i*d52. (6.11)
Next, it follows from (6.10) and d§—0 that there exists a positive constant < min X
X{m, my} */2 for any k; hence (6.11) yields (6.7). The proof is complete. i
Proceeding as in [10], let

o(x)=min{o: fo ; (X)—fo (x*)—0=<0, i€y, f;(x)—06<0, iel, xeB}. (6.12)

The following proposition is a straightforward extension of Lemma 2.7 from
[10], therefore we omit its proof.

ProPOSITION 6.3. Let 7% € R"*" be any solution of the dual of (6.12), i.e. of

m+n

max[ min {(1—2 wl-) 0+2 wi [fo,: (x)—fo (x")]+‘

w20 “(o,x)ER'XB =1 Py
+ X wa i) 613
iel
Then w*e W and p (W%, W(%))—>0 as k—->oc.
By convex duality theory, see Theorem 2.11 in [10], we obtain

o ()=min{ ' W [fo, ()—~fo (D+ D wh,, fi(). (6.14)

X€B “iero ief
Upon replacing x by % in (6.14) and noting that f(x) <0, we obtain
o ()< D fo (B —/o (] (6.15)
i€io
Next, from Proposition 6.3 and the results of section 2, cf. (2.11), we deduce that

. . Y -
lim inf M W>,>0,
i, *

k— o0 i€l
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which implies that, given any v e(0, 1), there exists a k,(r) such that

N 2o (1-0)  for all  k2ko (o). (6.16)
i€lp
Combining (6.16) with (6.15) we now obtain
(M) <wo (1 -1 [fo(x)—fo(x¥)] for all  k=k, (7). 6.17)

Generalizing Theorem 3.16 from [10], we get

PROPOSITION 6.4. Assume (with no loss of generality) that m,<pZ/B,.-Then
o ()= 2 [d*+L (B, d*,d*>/(fymy) for almost all k. (6.18)

Proof. From the relation (3.23) in [10] we obtain that for almost all k

o(@)=max inf { M wifo(0)~fo 9+ D' wirnfi ).

WEW yeB(z,8) iclo ier

Therefore for almost all &

c (N2 inf | 3 Wil (M) —fo (M (14 3 wEL G-

vEB(x,8) i€lo 7 i€l
—f ORI+ T W Lo, ) —fo, 1+ ) wh, LA G)—f: (]}

Expanding f, ; () —fo,; (x¥) and f; (»)—/; (x*) to second order terms and making
use of (6.1) and (6.3), we obtain for almost all &k

g (2 3 W fo,: () —fo (=7 () T+ 3T wh, [ 9~/ (). 1+

+ inf {3 W0 G Y WL,y =% o [y—22). (6.19)

YEB(x,8)  i€l, i€l
By deleting the constraint veB(%,¢) in (6.19) and using (5.2), we get
e (9= 3 Wi o, () ~fo I~/ 14+ N wh, [ (89— 941+

i€lo ier

~1p* P2 mo).  (6.20)

It follows from (5.1) and (5.3) that [p*|2< g7 |d** <{(B, d*, d*y%/B,. Hence (6.20),

the fact that B2/(8; me)=1 and that the first two terms in (6.20) are nonpositive,

together with (5.5) and (5.1a), yield (6.18). This completes the proof. B
We are now ready to state the main rate of convergence result.

THEOREM 6.5. Given any © €(0, 1), there exists a kq (v) such that for all k=k, ()
Jo () =fo (R)<[1— o Wo (1 =) B1/B3] [ fo (X)—fo (R)]. (6.21)

Proof. Since p, (x*)=f(x*), =0, Proposition 6.2 implies
Jo (¥ —fo (M <1idg. (6.22)
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From (6.17) and (6.18) we obtain for A=k, (7)

d’éslh moa (xk)/ﬁg <[Bimg o (1 ‘T)/ﬁ;] [fo (R)—fo (xM)]. (6.23)
Finally, from (6.22) and (6.23)
Jo (** 1) —fo () <[dmg Wo (1 =) B1/B31 [ fo (F)—fo (M), (6.24)

for k=k, (). Rearranging (6.24), we obtain (6.21). The proof is complete.

THEOREM 6.6. The sequence {x*} converges to X at least linearly.

Proof. Let we W(X). According to the Taylor expansion formula, for any x*
there exists a point y* on the segment joining x* and % such that

D Wi lfo, (M =fo,i @+ D) Wi /i (69— @)=
i€l¢ ier

=% 3] Mo @+ Y B i(D)> +

i€l icl
+3(F =%, L7 (0K, W) (5 X))~ (6.25)
Since W satisfizs (2.4) and x*—X, (6.3) and (6.25) give
2 1 [fo (9 —fo (B)]1+ Z B L () =/ () 12 mof2 |+ — 2.

Therefore, for almost all &

Ix*— % |2 < (2Wo/mo) [fo (x) =16 (F)] (6.26)
and our assertion follows from (6.21) and (6.26), thus ending the proof. -}

7. Modifications and extensions

In this section we discuss some modifications of the method.

We start by remarking that one may use 6= +oc in the algorithm, i.e.
Iy (%%, 0%y=1, snd I(x¥,d¥)=I for all k. Clearly, ths strategy is covered by our
preceding analysis.

If some x* happens to be feasible, e.g. x* is feasible, we may modify the
method to obtain a feasible direction algorithm that generalizes the Pironneau-
-Polak feasible direction methods [11]. It suffices to re-define the improvement
function p, in the algorithm’s description by putting

Pr ()=fo (x)—fo (xx)

and then to include additional stepsize requirements that f(x*+d*)<0 at Step 3,
S(x*+ 7 d*)<0 at Step 4, and to substitute (4.26) by the following:

fo(F+t*d)<fy () and f(x*+1*d9=<0. (4.26")
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These modified line search rules maintain feasibility of consecutive points. One
may check easily that all the preceding convergence results hold for this modifi-
cation; in particular — linear convergence is retained. ' .

Another modification concerns the line search and the stopping: criterion.
It consists in replacing in the algorithm’s description the variable df by the varia-
ble di=—(B,d",d"y=—{(H, p", p"y. From (5.5), we always have d*<d*<0. For
unconstrained minimax problems, this choice of 47(’,‘ at Armijo-type line searches
is strongly advocated by Han [3], who argues that it may provide larger stepsizes,
hence faster convergence. It is straightforward to check that the results of sec-
tion 5 still hold. However, we have not been able to establish linear rate of con-
vergence for this modification.

8. Conclusions

‘We have presented a phase I-phase II method for inequality constrained mini-
max problems that does not require a feasible starting point. The method generali-
zes some of the most robust and efficient feasible point algorithms for standard
nonlinear programming calculations [10, 11, 13, 14]. Global convergence of the
method has been established. The algorithm converges at least linearly when the
optimization problem is convex and certain regularity assumptions are fulfilled.
To the best of our knowledge, this seems to be the first implementable method
for nonlinearly constrained minimax problems which is both globally and linearly
convergent. ' '
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Dwufazowa metoda dla zadan minimaksowych z ogranicze-
niami nieréwnosciowymi

Przedstawiono nowa klase algorytmow do minimalizacji, przy skonfczonej liczbie ograniczen
nierownosciowych, nierozniczkowalnej funkcyi bedacej punktowym maksimum ze skonczonej ro-
dziny funkcji rozniczkowalnych w sposob ciagty. W metodach tych rozwiazuje si¢ kolejne zadania
programowania kwadratowego w celu generacji kierunkow poszukiwan. Zaproponowano kilka
praktycznych sposobow przeszukiwania kierunku. Metody nie wymagaja dopuszczalnego punktu
startowego. Wykazano globalna zbiezno$¢ proponowanych algorytmow. Przy dodatkowych zato-
zeniach wypuklosci, szybkos¢ zbieznosci metod jest co najmniej liniowa. Algorytmy daja si¢ fatwo
zaprogramowac. Uogoélniaja one szereg niezawodnych i efektywnych metod typu punktu dopusz-
czalnego dia standardowych zadafi programowania nieliniowego.

JIpyxda3uplii MeTON I 3a/a4i JMCKPETHOIO MHHHMAKCa
¢ orpaHm4eHHsiME B ()OpMe HepaBeHCTHh

TIpeacTaBieH Kiacc METONOB MUHUMH3ALUMH (DYHKLUH TACKPETHOIO MAKCHMYyMa IIPH HATHIHN
KOHEYHOT'O YHCIIA TJIAIKHX OTpaHHYeHHN B (hopMe HEpaBEHCTh. B METOMAaX HTEPATABHO PEINAOTCS
01342491 KBAJAPATHIECKOTO IIPOrPAMMUPOBAHUS TSI HAXOXICHHS HaIPaBIeHH crycka. BereHo
HECKOJILKO IPAKTHYECKMX CHOCOOOB PEryaMpOBKH Inara. MeTomsl He TPeOyoT HOMyCTHMOTO
HAYAJIbHOTO NMPUOIHKEHHS. Y CTAHOBICHO TI00AIBHYIO CXOAMMOCTh METOA0B. IIpH HODONHHUTE b=
HBIX IPEINIOKCHUSAX BBIYKJIOCTH, [I0KA3aHO JIMHCHHYEO CKOPOCTh CXOAMMOCTH. METOmbl JEerko
MpOrpaMMuUpyroTCs Ha 3BM. OHH 000OLIAFOT HECKONBKO POOACTHBIX H 3HHEKTABHBIX METONOB
THIIA JOITYCTHMOW TOYKHM UIA PELIeHMsl CTaHIAPTHBIX 3a/a4 HETHHEHHOIO IPOTPaMMUPOBAHHS.
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News and Announcements

Seventh European Meeting on Cybernetics and Systems Research
is organized by the Austrian Society for Cybernetic Studies,
to be held on April 24—27, 1984, at the University of Vienna,
Austria

The meeting offers plenary lectures and symposia on:

— General Systems Methodology

— System and Decision Theory

— Cybernetics in Biology and Medicine

— Cybernetics of Cognition and Learning

-— Cybernetics in Organization and Management

— Economic and Social Systems

— Ecological Systems

— Health Care Systems

— Fuzzy Sets

— Communication and Computers

— Artificial intelligence
Details of Submission:
Please send three copies of the full paper (up to 7 pages, single-spaced, maximum
2600 words) in English. Submissions should include the selected symposium. Pa-
pers must be received not later than September 1st, 1983.
Submissions and/or enquiries should be sent to the Chairman:

Professor Robert Trappl

Department of Medical Cybernetics

University of Vienna

Freyung 2/6

A-1010 Vienna

AUSTRIA

Mathematical Methods in Operations Research

Sofia, Bulgaria, October 24—29, 1983
organized by Institute of Mathematics with Computer Centre of the Bulgarian
Academy of Sciences.



Topics:

— Theory of Optimization Problems;
— Numerical Methods for Solving Optimization Problems;
— Applications and Program Packages.

Abstracts (1 page in camera ready form) should be sent before June 1, 1983 to:

Dr. A. L. Dontchev (Institute of Mathematics 1090 Sofia P.O. Box 373)
Bulgaria

Languages: Russian and English.



