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We develop a class of m~thods for minimizing, subject to a finite number of inequality 
constraints, a nondiff~rentiable function which is the pointwise maximum of a finite collection 
of continuously differentiable functions. The methods proceed by solving iteratively quadratic 
progranuning problems to generate search directions. Several practical stepsize procedures are 
also introduced. The method does not require a fellsible initial approximation to a solution. 
Global convergence of the algorithms is established. Under additional convexity assumptions 
the method is at least linearly convergent. The algorithm is conceptually simple and easy to 
implement. It generalizes several robust and efficient feasible point methods for standard non­
linear programming calculations. 

1. Introduction 

In this paper we present an implementable method for solving optimization. 
problems of the following type: minimize / 0 (x) subject to f(x)~O, where x ERN 

and / 0 and f are real-valued functions that are the pointwise maxima of two 
finite collections of continuously differentiable functions. The problem is usually 
called a constrained minimax problem in the literature and abounds with appli­
cations [2, 3, 6, 9, 15]. 

Recently much research has been conducted in the area of minimax optimiza­
tion. As expected, almost all the methods proposed until now tend to exploit the 
knowledge which is available for the differentiable case, i.e. when / 0 is continu­
ously differentiable. Demyanov's minimax methods [2] are based on Zoutendijk's 
[16] and Polak's [12] feasible direction methods for solving standard nonlinear 
programming problems. The algorithm of Madsen and Schjaer-Jacobsen [6] . for 
linearly constrained minimax optimization generalizes one of Zoutendijk's feasible 
direction methods [11, 16]. In [9] Panin presented an extension of Pshenichnyi's 
method of linearizations [14]. In this paper we introduce methods that generalizer 



56 K. C. KIWIEL 

three well-known methods for standard nonlinear programming calculations: Pi­
ronneau and Polak's method of centers [10] and their feasible direction method 
[11 ], and the phase I -phase II feasible direction method of Polak, Trahan and 
Mayne [14]. These last th ree methods are considered to be the most robust and 
efficient among the feasible point methods for standard nonlinear programming 
calculations [13, 14]. Therefore our methods are potentially superior to the methods 
of Demyanov [2] and Madsen and Schjaer-Jacobsen [6]. 

Our methods combine, extend and modify ideas contained in [3, 10, 14, 15]. 
Their derivation is based on the application of quadratic approximation me­
thods [3, 15] to the improvement function used in the modified method of centers 
[10, 1.2]. The algorithms are iterative in nature. They have search direction finding 
subproblems that are quadratic programming problems obtained by making a na­
tural piecewise linearization of the problem ,functions. The matrices in the qua­
dratic programming subproblems are preferably updated according to the rules 
used in variable metric algorithms [3, 15]. Specific variable metric updating schemes 
are not discussed here; they are a subject of on-going research. 

When an initial approximation to a solution is feasible, the algorithms proceed 
as feasible point methods and the objective function fo ·need not be evaluated at 
infeasible points. This is important in certain applications [6]. When the initial 
approximation is infeasible, the methods decrease constraint violation at each 
iteration while not completely ignoring the objective function. Each method ge­
erates a sequence of points whose accumulation points satisfy the necessary con­
ditions of optimality if some regularity assumption on the gradients of constraint 
functions outside the feasible set holds. However, we do not require .that the opti­
mization problem be normal, cf. [3], which is necessary for convergence of Panin's 
method [9] that uses an exact penalty function. Under additional convexity as­
sumptions on the problem, we show that the methods construct a sequence of 
points converging to the solution with a linear rate. This seems to be the first 
such result for feasible point methods for nonlinearly constrained minimax opti­
mization. 

A further modification of the ideas presented in th is paper has lead to a new 
implementable algorithm [5] for solving nondifferentiable problems of a more 
general nature, when fo and fare semismooth [7]. 

In section 2 we state the problem considered and its necessaxy conditions of 
optimality. The search direction finding subproblems are discussed in section 3. 
In section 4 we present the method and comment on its possible implementations. 
Section 5 contains results on global convergence of the methods. In section 6 we 
introduce additional regularity assumptions on the problem and establish linear 
rate of convergence of the algorithms. Section 7 provides some modifications. 
Finally, we have a conclusion section. 

R"~ denotes the N-dimensional Euclidean space with the usual inner product 

< ·, ·) and the associated norm I · J. 11 · 11 denotes the associated norm of a matrix. 
We use X; to denote the i-th component of the vector x. Superscripts are used 
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to denote different vectors, e.g. x 1 and x 2
. All vectors are column vectors and 

a row vector is denoted by the superscript T. However, for convenience a column 
vector in RN+n is sometimes denoted by (x, y) even though x and y are column 
vectors in RN and R" respectively. If F is a real valued function on RN, then F' 
denotes the gradient of F and F" the Hessian. 

2. Problem statement 

Consider the following optimization problem 

minimize / 0 (x), subject to f(x)~O, (2.1) 

where 

fo (x)=max/0 , i (x), f(x)=.maxf (x) (2.2) 
i EI 0 i El 

and / 0 , ,: RN-+R\ iEl0 ={1,2, ... ,n}, and f: ,RN-+R 1
, iEl= {l,2; ... ,m}, are 

continuously differentiable; N, m, n < + oo. 

REMARK 2.1 . If the initial approximation x 1 to a solution of (2.1) is feasible, i.e. 
x1 ES={xERN:j(x)~O}, then we may only require that/0 ,;, i E / 0 , be defined 
and continuously differentiable on S . 

Let 
m+ n 

W={w ER"'+": w ):O and ,2; wi = I}, (2.3) 
i=l 

We say that a point x ERN satisfies the Fritz-John necessary conditions of opti­
mality for the problem (2.1) if there exists a Lagrange multiplier ;ii satisfying 

i E I o i EI 

WEW, 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

where f(x)+ =.max {f(x), 0}. Recall that (2.4) is a necessary condition for x to 
solve (2.1), cf. [1, 2]. We denote by W (x) the set of all multipliers ;ii satisfying (2.4). 

We shall also consider an auxiliary problem 

minimize f(x). (2.5) 
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If x is a solution of the above problem, then there exists a multiplier w satisfying 

};wi+nf; (x) = O, 
i E [ 

1vi+n Lt: (x)-/(x)]=O, i el. 

(2.6a) 

(2.6b) 

(2.6c) 

Note that when (x, w) satisfies (2.6) and f(x)=O, then (x, w) is a Fritz-John 
point satisfying (2.4). To exclude this situation, one may employ the following 
Cottle constraint qualification, cf. [4]: 

if f(x) ~ 0 then there does not exist any 1v satisfying (2.6) . (2. 7) 

If the Cottle constraint qualification holds at x, then the Fritz-John conditions 
(2.4) reduce to the Kuhn-Tucker conditions [1, 4]: there exists a Kuhn-Tucker 
multiplier (ii, ii) ER" X Rm satisfying 

(ii, ii) E UV, 

ii;[/0 ,;(x)-fo(.X)]=0, iEl0 , 

f (x)~O, 
n 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

(2.8e) 

where UV={(u,v)ER"xRm:(u,v)~O, I; U;=l}. To see this, note that (2.4) and 
(2.7) imply that i= 1 

w
0
=}; w;>O for any wE W(x), (2.9) 

i Elo 

hence we may put 

(2.10) 

to obtain (2.8) from (2.4). We denote by UV (x) the set of all Kuhn-Tucker multi­
pliers satisfying (2.8). Note that under the constraint qualification (2. 7) this set is 
nonempty and bounded at any Kuhn-Tucker point x [8]. 

REMARK 2.2. Instead of the Cottle constraint qualification, one may assume a weaker 
condition at x satisfying the Fritz-John necessary condition of optimality: 

w0=min {}; w;: wE W(x)} >0. (2.11) 
i=Io 

As noted above, (2.7) implies (2.9), which in turn is equivalent to (2.11), since W 
and W(x) are compact. It is straightforward to check that if (2.11) holds, then 
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the necessary conditions of optimality (2.4) and (2.8) are equivalent in the sense 
that one may put W(x) and UV(x) into correspondence by using (2.10) and 

w;=fi1/(~ ui+ ~ vi)• i Elo, w;+"=v./(~ iiJ+ ~ vj) · (2.12) 
j E i o jET j E io j E ! 

REMARK 2.3. If the constraint functions/; are convex, then the Cottle constraint 
qualification reduces to the Slater constraint qualification (cf. [2,4]): 

there exists a point x satisfying f(x) <0. (2.13) 

If additionally / 0 is convex, e.g. / 0 ,;, i E 10 , are convex, then any Fritz-John point 
x is a Kuhn-Tucker point and any Kuhn-Tucker point solves the problem (2.1), 
see [2]. 

We end this section by remarking that only certain subsequent results require 
any constraint qualification. This is always explicitly stated. On the other hand, 
various other assumptions are assumed to hold implicitly throughout the remain­
der of the paper. 

3. The search direction finding subproblem 

The method to be presented in the next section uses search directions gene­
rated as follows. Let x ERN and <5>0 be given. We introduce two activity sets 

[ 0 (x, J)={i Elo :fo.; (x)-fo (x)~f(x)+ -J}, 

J(x, J)={ iEJ:/; (x)~f(x)+ - J}. 

(3.1) 

Let B be a positive definite symmetric N x N-matrix. Then the following search 
direction finding subproblem 

1 
minimize 2(Bd,d) + d0 

(do,d) ER 1 X RN 

subject to !o,; (x) -/0 (x)-f(x)+ + (f~.; (x) , d ) :5_d0 , i E 10 (x, J), 

/; (x)-f(x)+ + (f; (x), d) :5_d0 , i E I(x, J), 

(3.2) 

is a quadratic programming problem which satisfies the Slater constraint quali­
fication, see [14, p . 259] and [15}; it~ solution (do (x), d (x)) exists and is uniquely 
determined by the following set of conditions: 

d(x)=-B- 1
{ }; wJ~.r (x)+ }; wi +nf; (x)}, ,(3.3) 

iEio (x, 6) iEJ (x, 6) . 

do(x)=max{ max [fo ,;(x)-f0 (x)-f(x)++<J;,; (x),d(x)>], 
i Eio(x,6) 

max [/; (x)-f(x)+ +(!/ (x), d(x)>l}, 
I E I (x, 6) 
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where w;, i E / 0 (x, <5), 1V; +"' i E I(x, <5), are the possibly nonunique La grange mul­
tipliers for (3.2), which satisfy 

.2; w;+ .2; wi +n=l, 
iEJ0(x,o) i EI(x,o) 

tV; [fo . i (x)-fo (x) - f(x)++<f~. i (x), d(x)) -do (x)J=O, i E Io (x, o)' 

1V;+n [/; (x)-f(x)+ +<Ji' (x), d(x))-do (x)]=O, i E I(x, o) . 

If we define 

then we obtain from (3.3) and (3.4), cf. [15], 

d(x)=-B- 1 _2; tl\f~.t(x)+ _2; wi+nf;' (x), 
i E lo iEl 

tVE W, 

ll1; Uo,; (x)-fo (x)-f(x)+ + <f~. ; (x), d (x)) - d0 (x)]=O, i E 10 , 

1Vi+n[.{;(x)-f(x)++<l (x),d(x)) -do(x)] = O, iE!, 

and 

(3.4) 

(3.5) 

(3.6) 

-do(x)=(Bd(x),d(x))+}; w;[fo(x)-Jo,;(x)+ _2; tV;+nff(x)+-/;(x)]. (3.7) 
i Elo iEI 

The Lagrange multiplier w also solves the following dual search direction sub­
problem 

1 . . . I " ., c ) \' t·' c )12 milllffiiZe2 L..J Wuo, i X + / wi+n. i X H+ 
wER"'+" iElo (x, 0) i Etc;,O). 

+ }; wdfo(x)-fo,;(x)+f(x)+]+ t W;+nff(x)+-/;(x)], 
i E io(x,o) i!U(x,o) 

subject to WE W, wi = O, iEl0'-.J0 (x,<5), W;+ 11 =0, iEl~I(x,o), 

where H = B- 1 and J x ! ~=(Hx, x) for any x ERN. Thus it may be more efficient 
to solve (3.8) and to recover d0 (x) and d (x) from (3.6) and (3.7) . Hence it may 
be easier to work with H=B- 1 rather than with B. 

Now we compare the above search direction finding subproblems with exist­
ing methods. When n=l. i.e. when (2.1) is a standard nonlinear programming 
problem, then the subproblems (3.2) and (3 .8) are modifications of the subprob­
lems employed in the phase I-phase II feasible direction methods of Polak, Tra­
han and Mayne [14], which have B = H=l (an identity matrix) and O= +=. If 
additionally f(x)~O, then we obtain the subproblems of Pironneau and Polak's 
methods of centers (10] and feasible direction methods [11]. Next, suppose that 
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n~2 and m= O, i.e. (2.1) is an unconstrained minimax problem. Then we have 
f(x)+ = 0 and l = l(x, J) = 0 . In this case, the direction d (x) is computed as in 
Pshenichnyi's method of linearizations [14] if B= l; when B approximates the Hes­
sian of an appropriate Lagrange function for (2.1), then d (x) is equal to the di­
rection obtained in Wierzbicki's quadratic approximation method [16]; if addi­
tionally <5 = +oo, i.e. 10 (x, <5)= ! 0 , then we have the subproblem of Ran's varia­
ble metric minimax method [3]. 

In general , (3.2) may be viewed as a quadratic approximation subproblem for 
the function 

p (x; x)=max{f0 (x)-f~ (x),f(x)}, (3.9) 

which is the improvement function of the method of centers [10, 12], and d0 (x) 
may be interpreted as an approximate directional derivative of p at x in the di­
rection d(x) , cf. [3, 14, 15]. 

4. The method 

In this section we describe the method for solving the problem (2.1) and com­
ment on its possible implementations. 

The algorithm 

Step 0 (Initial data). Select a starting point x 1 ERN, a final accuracy toler­
ance sf ~ 0, an activity lower bound b > 0. a desired rate of convergence para­
meter y E [0, 1 ), line search parameters m E (0, 1) and 0 <m 1 < m2 < 1. Choose ini­
tial values of an activity variable <5 1 ~ b and a convergence variable 17 1 ~ 0. Let 
B1 =H1 = l (the identity matrix). Set k = 1. 

Step 1 (Direction finding). Compute (d~,dk)=(d0 (xk),d(xk)) by solving (3 .2) 
with x = x\ B= Bk and J=Jk or, equivalently, by solving (3.8) with x=xk, H = Hk 
and J=Jk and then using (3.6) and (3.7). 

Step 2 (Convergence test). If / d~ / ~ Bf, terminate. 

Step 3 (Testing direct prediction). Let the improvement function at the k-th 
iteration be defined by 

Pk (x) = max Uo (x)-fo (xk),J(x)} if f(xk) ~0 , 

Pk (x)=f(x) if f(xk) >0. 

(4.1 ) 

If Pk(xk+dk)<Pk(xk) and / d~ [ :::; y1J\ set the stepsize coefficient tk= l and go to 
Step 6. Otherwise go to Step 4. 

Step 4 (Line search). Compute a stepsize coefficient fk>O satisfying at least 
one of the following requirements: 
(i) (Armijo 's rule) . fk = 2-ik where ik is the smallest number i= O, 1, 2, ... , for 

which Pk (xk+ 2-i dk):::s;pk (xk)+m 2-i d~; 
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(ii) (Goldstein's rule). If f(xk)>O, then fk satisfies either 

Pk (xk) +mz fk d~::; Pk (xk+ fk dk)::;,pk (xk) +m1 fk d~, 

or f(xk+fkdk)::;O. If f(xk)::;o, then fk satisfies (4.2). 

(4.2) 

Step 5 (Approximate or exact minimization at line search). Let X'=xk+ fk dk. 
Compute the stepsize coefficient tk>O satisfying 

f(xk+tkdk)::;,j(xk) if f(:Xk)>O, 

max {fo (xk+ tk dk) -fo (xk),J(xk+ tk dk)} ::;,max {fo (xk)-fo (xk),J(.Xk)} 

if f(.Xk)-.:;,0. 

(4.2a) 

(4.2b) 

Step 6. Set xk+ 1 =xk + tk dk and 1Jk+ 1 =max {Yllk, min (1]", -d~)}. Choose Jk+ 1 ;::::: () 

and a positive definite symmetric NxN matrix Bk+ 1 or Hk+ 1 =B~\. Increase k 
by 1 and go to Step 1. 

A few comments on the implementation of the algorithm are in order. 
(a) The magnitude of Jk controls the number of constraints in the direction 

finding subproblems (3.2) and (3.8). Note that the gradients f~, 1 (xk) and J; (xk) 
illUSt be CompUted only for 0k-active functions, i.e. i E fo (xk, ok) and i E [(_Xk, Jk) 
respectively. Thus small values of Jk can reduce the computational effort per itera­
tion. On the other hand, very small Jk may result in too small a stepsize. The 
lower bound () > 0 prevents this jamming. It also establishes a threshold for de­
tennining the functions probably active at a solution. This suggests the following 
strategy for changing o (cf. [16}): 

Jk+ 1 =max {b, ( (11k+ 1 )1 /2}' 

with ( > 0 being · a scaling parameter. 
(b) Now we comment on the line search rules. It is easy to check that, since 

d~::;o by (3.7) (Bk is positive definite), if the algorithm does not terminate then 
d~ < 0; hence the line search rules yield 

f(xk+ 1)<f(xk) if f(xk)>O, 

f(xk+ 1)+=0 if f(xk)::;,o. 

(4.3a) 

(4.3b) 

Thus if xk is infeasible, then the algorithm tries to find a feasible xk+ 1 ; once 
a feasible approximation xk is found, then the next approximations stay feasible 
owing to (4.3b), and the phase II of the method works. Note that even at the 
phase I, when f(xk)>O, the direction dk is influenced by the objective function 
if f(xk)::;, Jk since then ! 0 (xk, Jk) is nonempty. On the other hand, the objective 
function values are ignored at line searches until a feasible approximation is found. 
In both phases, we try to reduce the number of problem function evaluations at 
line searches. The requirements of Step 4 are generalizations of the well-known 
convergent stepsize choices for standard algorithms, cf. [12, 14]. They can be met 
by various efficient stepsize procedures, e.g. Wierzbicki's procedure from [16]. 
The existence of a finite ik at Step 4 (i) follows from the next section's results. 
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Under an additional assumption that the function Pk (xk + tdk) is bounded from 
below for t>O, finite termination of Wierzbicki's procedure from [15] can be 
easily established, thus providing a method for Step 4 (ii) (see also [12, 2.1.33 and 
2.1.36)). At Step 3 we check if tk= l is acceptable. In general, small d~ indicates 
that xk is a good approximation to a solution, hence we try to set tk= 1 at Step 3 

if ~he algorithm makes good progress, as measured by j d~ ! ;:S;y j d~- 1 j . Step 5 al­
lows us to accept tk better than i\ obviously, we may always take tk=ik. In prac­

tice, one should monitor the requirements (4.2) while searching for ik at Step 4. 

(c) In this paper we do not consider details of the choice of the variable metric 
matrices {Bk} · Our global convergence analysis requires that we have 

(4.4) 

for some positive constants /31 and /32 , for all k. Note that this property is much 
weaker than the usual assumption required for showing convergence of quasi­
-Newton methods, viz. that the matrices {Bd should be uniformly positive definite 
and bounded, cf. [3]. The simplest way to update Bk is to use the identity matrix. 
However, in order to obtain faster convergence, it is preferable to use Bk that esti­
mates the Hessian L " (x\ wk) with respect to x of the Lagrangian function for 
(2.1): 

L(x,w)=}; wJ0 .;(x)+}; Wi+ 11 /;(x), 
i~l o i E [ 

where wk denotes the Lagrange multiplier 1v of the k-th direction finding subprob­
lem, cf. section 3. Some specific updating schemes are discussed in [15]. We may 
add that it is possible to ensure (4.4) by choosing initially some fixed numbers 
/3 1 E(O, I) and /32 '2.1 and resetting Bk to the identity matrix if (4.4) is violated; 
in this case Step 1 should be repeated wuth Bk=l. 

5. Convergence 

In this section we analyze global convergence of the method. In the absence 
of convexity, we will content ourselves with finding feasible points that satisfy 
the Fritz-John necessary conditions of optimality (2.4). Under additional con­
straint qualifications, these points will also satisfy the Kuhn-Tucker necessary con­
ditions (2.8). Naturally, asymptotic convergence results assume that the final ac­
curacy tolerance s1 =0. 

Throughout the paper we assume that the variable metric matrices satisfy 

f3 l !dk!2;:S;<Bkd'',dk), 

!Bk dk! ::s; fi2 !dk J, 

(5.la) 

(5.1b) 

for some fixed positive numbers /31 and /32 , for all k. We shall also use the fol­
lowing convention. Let wk ER'"+" denote the Lagrange multiplier w of the k-th 
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direction finding subproblem (3.2) solved at Step 1 of the method, cf. section 3. 
Define 

k '\1 kf' ( k) '\1 k f ' ( k) P = LJ W; O,i X + LJ Wi+n ; X · (5.2) 
i El a i EI 

By (3.3), (3.6) and (3.7), we always have 

(5.3) 

wk E W, (5.4a) 

w~ [!0 ,; (xk) - fo (xk) - f(xk)+ +(f~ . ; (xk), dk) -d~]=O, i E 10, (5.4b) 

w~ +n [.t; (xk)-f(xk)+ +<J; (xk), dk ) -d~]=O, i E I, (5.4c) 

-d~=(Bk dk, dk)+}; w~ Uo (xk) - fo,; (xk)+f(xk)+] + 
i Elo 

+}; w7+n[f(xk)+ - f;(xk)]. (5.5) 
i El 

Now, (5.la) and (5.3) give 

fJl ldk l2 .:o;_(Bkdk,dk)=( - p\dk).:o;_ lpklldkl, 

hence ([J1 >0) we always have 

ldk l .:o;_ IPk lffJl · 

On the other hand, from (5.lb) and (5.3) we immediately get 

/pkl .:o;_ fJz ldk /. 

Since wk~O, (5.5) yields -d~~ (Bkdk,dk), which together with (5.la) implies 

From (3.3), we have 

d~=max { max [!0 ,; (xk)-fo (xk)-f(xk) + +(!~,; (xk), dk)], 
iE l o (xk, ok) 

(5.6) 

(5.7) 

(5.8) 

max [f;(xk)-f(xk)+ +<J; (x:k), dk)]}. (5.9) 
iEI(xk, ok) 

If wE W and x is a Fritz-John point, let 

jj (w, W(x))= min{ lw-J-ii /: 1ii E W(.-i)}. 

First we consider the case when the algorithm terminates. 

PROPOSITION 5.1. If the algorithm terminates at the k-th iteration, then either 
(.'C, w) is a Fritz-John point satisfying (2.4), i.e. p (w\ W(xk))=O, or xk is in­
feasible and (.'C, J-ii)=(xk, wk) satisfies the necessary conditions of optimality (2.6) 
for the problem (2.5). If the Cottle constraint qualification (2.7) holds at x=x\ 
then xk is feasible. 



A phase I - pha,se II method 65 

Proof. Since Id~ I :::;;e1 = 0, (5.8) and (5.7) imply that dk=pk= O. Then (5.2) and 
(5.4) yield that (2.4a-d) holds for (.X, w)=(x\ wk). If f(xk):::;;O, then we also have 
(2.4e) and thus (x, w) is a Fritz-John point. On the other hand, if f(x!')= 
=f(xk)+>O, thenf0 ,;(x)-f0 (x)-f(x)+:::;;-j(x)<O; hence (2.4c) and . }ii~O yield 

(5.10) 

But then (2.4a-d) reduces to (2.6). Now, if the Cottle · constraint qualification 
holds at .~=x\ then (2.6) cannot hold ifj(xk)>O. This completes the proof. • 

From now on we assume that the algorithm does not stop and that it gener­
a:tes an {~,finite sequence {xk}. Let K= {l, 2, 3, ... }. If xis an accumulation point 
of xk, i.e. xk--+x as k--HJo, k E K, where K is an infinite subset of K, we write 
xk~-+x. 

We start with the following auxiliary result. 

PROPOSITION 5.2. Suppose xk~->x and dk~·->0. Then d~~-+0. 

Proof. Since [0 (xk, £5k) E I 0 and fo (xk) =fo,; (xk) for some i E [ 0 , we always have 

max [Jo,; (xk)-f~ (xk) -f(xk)+ + <f~,; (xk), dk)]:::;;-f(xk) + + 
iEio (xk, .;k) 

+ ldk l max I f~ , ; (xk) [ . (5.lla) 
i E I 0 

On the other hand, 

max [fo,; (xk)- fo (xk) -f(xk)+ +<!~, i (xk), dk) J;::;: 
iEio (xk, .;k) 

;::;: - f(xk)+ - ldk l max I f~,; (xk) J. (5.llb) 
iElo 

S1milarly, we deduce easily that 

- [J(xk)+-f(xk)J - ldk l max If; (xk) l :::;; max [.t; (xk) - f(xk)+ + 
i EI iEl(xk,.;k) . 

i E I 

Then (5.9), (5.11) and (5.12) yield, since max {-f(xk)+,- f(xk)+ +.f(xk)}=-f(xk) + + 
+ J(xk)+ =0, that 

I d~ I:::;; !dk l max {max I f~,; (xk), max 11; (xk) l} . (5.13) 
iElo i El 

H~nce d~-~-->0 follows from (5.13) and the continuity of the problem function gra­
dients. The proof is complete. • 

From the above proposition and (5.8), we deduce easily the following result. 

PROPOSITION 5.3. Suppose xk~-->x. Then dk~-+0 if and only if d~~-->0. 

Next we have the following convergence result. 

5 
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THEOREM 5.4. Suppose that (x\ W')..!:-~(.x, w) and dk~->0. Then either (x, w) is a Fritz­

-John point, or .X is infeasible and (x, w) satisfies the necessary conditions of opti­

mality (2.6) for the problem (2.5) . If the Cottle constraint qualification (2.7) holds 

at .X, then .X is feasible. 

Proof. By Proposition 5.3, we have d~~~o. Additionally, (5. 7) yields pk~>O. 
Letting k approach infinity with k E K in (5.2) and (5.4), we obtain (2.4a- d.) 
Therefore one may use the arguments in the proof of Proposition 5.1 to complete 
the proof. 11 

Note that the above results do not depend on the line search properties. These 

properties are essential for showing that d~~~o if xk~~.x . 

PROPOSITION 5.5. Suppose that xk~~.x and d~:S:;d0 <0 for all k E' K. Then for arty 
fixed number iii E(O, 1) there exists a number i(1n)>O such that 

max{/0 (xk+tdk)-f0 (xk),J(xk+tdk)}:S:;j'(xk) + +1ntd~ for any t E [0, i(1n)] (5.14) 

and any k EK. 

Proof. It follows from (5 . .2) and (5.6) that { dkh eK are uniformly bounded . Com­
bining this fact with the continuous differentiability of the problem function gra­
dients, we obtain, by [2, Appendix Ill, Section 3, Note 2], that the following esti­
mates are valid for k E K: 

fo , ; (xk + tdk)-fo . ; (xk) :S:; t (f~ . ; (xk), dk ) + o 1 (t), i E I 0 , 

/; (xk + tdk)-/; (xk) :S:; t(f; (xk), dk) + o1 (t), i E I, 

(5 .15a) 

(5.15b) 

where o1 (t) /t-+0 as t-+0+ . By (5 .9) and (5.15a), we have fortE [0, 1] and k E K: 

fo . ; (xk + tdk) :S:;fo , ; (xk) + t [d~-fo , ; (xk) + fo (xk) + f(xk)+] + o 1 (t) :S:; 

:S:;fo (xk) + f(x k)+ + td~ +o1 (t), i E I0 (x\ t5k); (5.16a) 

similarly, (5.9) and (5.15b) yield for t E [0, 1] and k E K that 

/; (xk+tdk):S:;f(xk) + +td~+o 1 (t), i E!(x\ t5k). (5.16b) 

Let C= sup {WI max ( If~ . ; (xk), If~ (xk) l) : i El 0,j El, k EK}. Note that C < +oo, 
since {dkh EK is uniformly bounded and xk~~.x. By (5.15), the definition of the ac­
tivity sets and the fact that t5k:?: iS, we have for k E K 

fo , ; (x k+tdk)-fo (xk):S:;f(x k) + -b+tC+o1 (t) , i EI0~I0 (x\ t5k) , (5.17a) 

f; (xk + tdk):S:;f(xk)+- J + tC+ o1 (t) , i E J~I(xk, t5k). (5.17b) 

The argument leading to (5.15) may be applied to the functions - fo ; and - /;; 
hence we obtain for k E K 

fo , ; (x k + tdk) ---:!0 ,; (xk):?: t (f~ . ; (xk), dk ) + 0 2 (t), i E 10 , 

/; (xk + tdk) :?:/; (xk) + t(f; (xk), dk) + o2 (t), i E I, 

(5.18a) 

(5.18b) 
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where o2 (t)ft~O as t~O+. Sincef0(xk)=Jo,i(xk) for some iEl0 (x\Jk); we ob­
tain from (5.18) 

max fo. i (xk+tdk)'?:./0 (xk)-tC+o 2 (t), (5.19a) 
i E Jo (xk, o') 

(5.19b) 

We may choose a number i E [0, 1] such that 

-6+tC+o1 (t)< - tC+o2 (t) for any t E [0, l], (5.20) 

since b>O. Then (5.16), (5.17), (5.19) and (5.20) imply 

max {!0 (xk+ tdk)-fo (xk),J(xk + tdk)} ::;;j(xk)+ + td~ + o1 (t) (5.21) 

for any t E [0, i] and k E K. Since mE (0, 1) and dg::;;d0 <0 for all k E K, it is 
possible to choose f(in) E (0, f) such that for k E K 

o 1 (t)ft5;(l-/ii)(-d0)5;(1-in)(-d~) for all t E [O,f(n""i)], 

which implies 

td~+o1 (t)5;mtdg for any tE[O, f(m)], kEK (5.22) 

Combining (5 .21) and (5.22), we obtain the desired relation (5.14). The proof is 
complete. • 

K K 
PROPOSITION 5.6. Suppose that xk-->x. Then dk- --'>0. 

Proof. In view of Proposition 5.3, we only need to show that d~~--'>0. Since 
d~:s;;O, this is equivalent to showing that for any fixed d0 <0 we have d~:s;;d0 for 
only finitely many k E K. Assume that this is not true. We will deduce from it 
a contradiction. Thus, with no loss of generality, suppose that d~::;;d0 <0 for all 
k EK. 

(i) Suppose that tk= 1 is accepted at Step 3 for infinitely many k E K. At such k, 
we have I d~ ! 5;y'lk and '1k +1 =Y'7k· Since y= (O, 1) and {17k} is nonincreasing by con­
struction, we must have I d~ I< Ido l> 0 for some k E K. This contradicts d~:::;; d0 <0. 
Therefore we may suppose that the stepsize coefficient tk is computed at Steps 4 
and 5 for all k EK. 

(ii) Suppose that f(xko)5;0 for some k 0 • Then (4.3b) yields f(xk)+=O for all 
k'?:.k0 • Let m= [1 +max {m 1 , m 2 }]/2. Then Proposition 5.5 implies that there exists 
a number f>O such that for almost all k E K 

smce f(xk).,.=O for k'?:.k0 • If [k passes the Armijo test, then either fk=l 
or Pk (xk+2ik dk)=max {!0 (xk+2r dk)-/0 (xk)J(xk+2ik dk)} > Pk (xk) +m 2ik d~= 
'=m 2fk d~ >in 2ik d~, hence (5.23) implies that fk '2:. f/2. If ik satisfies the Gold­
stein test, then max Uo (xk + r dk)-1~ (xk)J(xk + ik dk)} '2:.m2 ik d~ > inik d~, hence 
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(5.23) yields fk';::_ f. Therefore in both cases we have fk';::_ f/2 for almost all k E K. 
Now, f(X') + =0 and the line search rules yield 

max {!0 (xk+ 1)-/0 (xk),J(xk+ 1)}smin {m, md fk d~, (5.24) 

whic4 implies, since fk '2:. f/2 and d~ s d0 < 0, that we have 

(5.25) 

for almost all k E K. Then (5.24) yields fo (xk+ 1)sf0 (xk) for all k";::::k0 , there­

fore, since fo is continuous ([2]) and xk~-+x, we have 

fo (xk)-+fo (x) as k--+oo. . (5.26) 

Since min {m, m 1 } id0 /2 <0 is fixed, (5.25) contradicts (5.26). 

(iii) Now suppose that f(xk)>O for all k. Then the line search rules of Steps 4 

and 5 imply f(xk)>O for all k. One may argue as in part (ii) of the proof above 
to show that tk ";;:::: f/2 and 

(5.27) 

for almost all k E K, and that f(xk+ 1)sf(xk) for almost all k, which leads to 

But then (5.27) contradicts (5.28). The proof is complete. 

For the algorithm's starting point x 1, let 

Note that S (x1
) is empty if x 1 is feasible. 

Now we state our principal result. 

(5.28) 

• 
(5.29) 

THEOREM 5.7. Suppose that the Cottle constraint qualification (2.7) holds .at any 
xES(x 1

). Then ever).' accumulation point x of the sequence {xk} generated by the 
algorithm satisfies the Fritz-John necessary optimality condition (2.4). Moreover, 

if xk K -+x, then 

p(w\ W(x))~-+0. (5.30) 

Proof. Suppose that xk~~>x . By Proposition 5.6, dk~O. Owing to (5.4a), { wk} c W. 
The compactness of W (see (2.3)) implies that any accumulation point of { wkhEK 
lies in W and at least one such point exists. Let w E W be any accumulation 
point of {wkh EK· In view of the algorithm's rules, we always have f(xk+ 1) sf(xk)+. 
Hence f(x)sf(x 1)+ (f is continuous). Suppose that f(x)>O. Then (2.7) holds at 
x, hence Theorem 5.4 yields f(x)sO - a contradiction. Consequently, x is fea­
sible. Therefore Theorem 5.4 implies that (x, w) is a Fritz-John point, i.e. WE W(x). 
Since w was arbitrary and W is compact, this proves (5.30) and completes the 

~~ . 
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Let 

(5.31) 
- iEio 

and define estimates of the Kuhn-Tucker multipliers by 

U~=W~/Wo, iE/0 , and V~=W~+n/W0 , iE[ (5.32) 

whenever w~>O. Let S(x1)={xERN:f(x):Sf(x1)+}· Then we have the follow­
ing result on convergence of the Kuhn-Tucker esti'mates (u\ v"). 
THEOREM 5.8. Suppose that the Cattle constraint qualification (2.7) holds at any 
x E S(x1

). Then every accumulation point x of the sequence {x"} constructed by the 

method satisfies the Kuhn-Tucker· condition (2.8). Moreover, if x"...!...,x, then 

fi((u", v"), UV(x))~--'>0. (5.33) 

Proof. Since S (x 1
) E S (x 1), Theorem 5.7 yields (2.4) for any accumulation point 

w of {w~hEK• whenever xk~--'>x. If we show that w0 = 1; w, >0, i.e. (2.9) holds, then 
i Eio 

the desired conclusion (5.33) will follow from (5.30-32) and the results of sec-

tion 2. To obtain a contradiction, assume (with no loss of generality) that w"~--'>w 
with ip0 = 0. By Theorem 5.7~ we have wE W (x). Since S (x1) is closed and 
x" E S (x1), we obtain that the Cottle constraint qualification holds at .~ E S (x1) . 

By the results of section 2, w0 ::2: w0 > 0, cf. (2.11 ), and we have a contradiction 
with w0 =0. The proof is finished. • 

REMARK 5.9. Since d~<O at Step 4, it follows from the proof of Proposition 5.5 
that (5.14) holds for iii=m and f" (m)>O, which proves that ik<oo at Step 4(i). 
A similar approach may be used for proving finite termination of Wierzbicki's 
stepsize procedure from [15] for Step 4(ii) of the method. 

6. Rate of convergence 

In this section we show that under favourable conditions our algorithm con­
verges at least R-linearly. Our analysis generalizes the results of Pironneau and 
Polak from [10], where the case of a smooth objective function f 0 , i.e. n= l, is 
considered. To save space, we continually refer to (10] and use its notation, pro­
viding here essential modifications only. 

For ease of reference, we list certain assumptions under the following hypothesis. 
Hypothesis 6.1. The functions fo, i• i E / 0 , and!;, i E I, are convex and twice conti­
nuously differentiable. The starting point x 1 is feasible and such that the set 

is compact. Moreover, fo is strictly convex in B, e.g. fo , i• i E / 0 , are strictly convex, 
and the Slater constraint qualification (2.13) holds, i.e. the set C= {x E RN:j(x)<O} 
is nonempty. 

--------------- ---- --
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In this section we shall always assume that Hypothesis 6.1 is fulfilled. It fol­
lows that there exists a unique x solving (2.1). By Remark 2.3 and the results of 
section 5, we have {xk} c B and xk~x. Moreover, if we denote for e>O 

N(W(x),e )={wE W: p (w, W(x))~e}, 

then we have, by (5.30), that for ,any e>O 

wk EN ( W (x), e) f9r a:linost all · k. 

It fo~lows from Propositions 5.3 and 5.6 that 

d~~o as k~oo. 

. ,. 

. i, .(6:1) 

. (6.2) 

We shall also assume that there exist constants e>O and m 0 E (0, ·1) such that 

m0 [y-x [ 2 ~(y-x,L"(x,w)(y-x)) for all x,yEB(x,e) 

and w EN(W(x), e), (6.3) 

where B(x,e)={xES: [ x-x ! ~e} and the Lagrangian L for (2.1) is defined by 

L (x, w)=}; wJo,; (x)+}; W;+n.h (x). (6.4) 
iElo iE/ 

We assume that the algorithm constructs the infinite sequence {xk} with y=O, 

i .e. that no direct prediction steps are taken. Since x 1 is feasible, only the phase II 
of the method works and we always have 

Pk (x)=max Uo (x)-/ 0 (xk),J(x)}. (6.5) 

We shall start by estimating 

(6.6) 

PROPOSITION 6.2. There exists a constant f>O such that 

ck~ {d~ for all k. (6.7) 

Proof. Let M1 =max{ lf/~:~(x) fl + llf~'(x) [[ :xEB,iE/0,jE/}. 
Since 

!o, i (xk + tdk)=fo.; (xk) + t (f~. 1 (xk), dk) + t 2 (dk,f~:i (x) dk) ~fo, 1 (xk)+ 

+t(f~.t(xk),dk)+tz Ml [dk [z, (6.8) 

where x lies on the segment joining xk and x" + td\ we obtain from (5.1a), (5.9) 
and (6.8) that for t E [0, I] and i E / 0 (xk, l5k) 

fo,; (xk + tdk) ~fo, 1 (xk) + t [d~-/ 0 , 1 (xk) + / 0 (xk) + f(xk) ,. + 

+t 2 M1 fd"[ 2 ~/0 (xk)+f(xk)+ +td~+t 2 M1 [ dk i ~JP1 · 

In the same manner we obtain for tE[O, 1] and iEI(xk,()k) 

f 1 (xk+ tdk)-::;,j(xk)+ + td~+t 2 M1 fd"liJP1· 
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Now let M2==max{ lf~.i(x) l + l/~(x) l :xEB,iEI0 ,jEI}. By (5.8) and £5k;;:::(), .if 
i E Io~Io (x\ ok) then 

f~ . i (xk+tdk) =fo , i (xk)+t <f~ , i (x), dk)~fo , i (xk)+tMz ldkl ~fo (xk)+ 

+ f(xk) + -b + tM2 ( ~d~)~ /(/31 )+. 

Similarly, for i E""--l(x\ ok) we. obtain 

fi (xk + tdk)~f(xk)+ - b + tM2 ( -d~)1/(/31 )t . 

Then (6.5) and the above four estimates yield 

Pk (xk + tdk) ~ Pk (xk) + n1td~ for t'E [0, fk], (6.9) 

where Tii = max{m,mi} and 

t-k=min { 1, b/[( -d~)l (M2/(/31)1 +n1 (-d~), (l-1n) f3dM1 )} . (6.10) 

Since no direct prediction steps are taken and f(xk)+ = Pk (xk) = O, we may argue 
as in part (ii) of the proof of Proposition 5.6 to deduce from (6.9) that fk;;::: fk/2 
and that 

(6.11) 

Next, it follows f1:om (6.10) and d~--"'0 that there exists a positive constant f<min x 
x {m, md fk /2 for any k; hence (6.11) yields (6.7). The proof is complete. • 

PfOceeding as in [1 0], let 

a(xk)=min{a:f0 • ;(x)-f0 (xk)-a~O, i El0 , j; (x)-a~O, i El, x EB}. (6.12) 

"(he following proposition is a straightforward extension of Lemma 2.7 from 
[10], therefore we omit its proof. 

PROPOSITION 6.3. Let lt'k E R"' +n be any solution of the dual of (6.12), i.e. of 

m+n 

max[ min {(1 - }; wi) a+}; wiffo,;(x)-j0 (xk)]+
1 

w ?:. O (G' ,X) E R 1 X B i= l iEfo 

+}; wi+nh (x)]} (6.13) 
i E I 

Then 1:Vk E Wand p Uv\ W(x))--"'0 as k-"'oo . 
By convex duality theory, see Theorem 2.11 in [10], we obtain 

a(xk)=min{}; J:V7 [f 0 , ;(x)-f0 (xk)]+}; w;+,J;(x)} . (6.14) 
X E B i E/o iEI 

Upon replacing x by x in (6.14) and noting that f(x)~O, we obtain 

a (xk) ~ }; \v~ Uo (x)-fo (xk)] . 
i E l o 

(6.15) 

Next, from Proposition 6.3 and the results of section 2, cf. (2.11), we deduce that 

lim inf}; J:V7;;:::»'o>O, 
k-oo i E io . 

------------------ ~ --
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which implies that, given any r E(O, 1), there exists a k 0 (r) such that 

}; 1:q2w0 (1-r) . for all k2k0 (r). (6.16) 
iElo 

Combining (6.16) with (6.15) we now obtain 

a(X'):s;;w0 (1-r)[/0 (x)-/0 (xk)] for all k2k0 (r). (6.17) 

Generalizing Theorem 3.16 from flOJ, we get 

PROPOSITION 6.4. Assume (with no loss of generality) that m0 :::;; fJ~/ fJv Then 

a(xk)2fJ~ [dk+1;(Bkd\dk)j(fJ1 m 0 ) for almost all k. (6.18) 

Pro of. From the relation (3.23) in (10] we obtain that for almost all k 

a(X')=max in~ {.2.:' wJo;i(y)-fo(xk)+ .27 W;+nh(Y)}. 
wEW yEB(x,e) iElo iEI 

Therefore for almost all k 

a (xk) 2 in~ {}; w~ [fo.; (xk)-fo (xk)-f(xk)+] + .27 w~ +" [}; (xk)-
yEB(x, e) iElo iE[ 

- f(xk)+J+ 2.: w~ [Jo , ;(y)-!o , t (xk)J+ 2.: w~+" [}; (y)-}; (X')J}. 
iEJo i E[ 

Expanding fo.; (y)-fo,; (xk) and}; (y)-}; (xk) to second order terms and making 
use of (6.1) and (6.3), we obtain for almost all k 

a (xk) 2 2.: w~ Uo , ; (xk)-fo (xk)-f(xk)+ J + .I; w~+" [}; (xk)-f(xk)+] + 
iEio iEI 

+ in~ {( 2.: wU~, ;(xk)+ 2.: w~+J;(xk),y-xk) +m0 jy-xk i 2 /2}. (6.19) 
yEB(x, e) iEio i EI 

By deleting the constraint y EB(.-\:,8) in (6.19) and using (5.2), we get 

a(xk)2 2.: w~[/0 , ;(xk)-f0 (xk)-f(xk)+]+}; w~+n[};(xk)-};(xk)+]+ 
i Elo i El 

- jpkj 2/(2m0). (6.20) 

It follows from (5.1) and (5.3) that jpk j2 ::;;p~ jdk j2 :s;;(Bk d\ dk)fJ~/fJ1 • Hence (6.20), 

the fact that p;J(f31 m 0 ) 21 and that the first two terms in (6.20) are non positive, 
together with (5.5) and (5.1a), yield (6.18). This completes the proof. • 

We are now ready to state the main rate of convergence result. 

THEOREM 6.5. Given any rE (0, 1), there exists a k 0 (r) such that for all k2k0 (r) 

fo (xk+ 1 )-fo (.X)::; [1- imo Wo (1-r) fJdfJ~J ffo (xk)-fo (.X)}. (6.21) 

Proof. Since Pk (xk)=f(xk)+ = 0, Proposition 6.2 implies 

fo (xk+ 1
)-fo (xk):::;; id~. (6.22) 
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From (6.17) and (6.18) we obtain for k'C..k0 (r) 

d~s-,pl moa (xk)JP~ s-, [P1 mo wo (1-r)/Pn [j~ (x) -fo (~)]. (6.23) 

Finally, from (6.22) and (6.23) 

fo (~+ 1)-fo (~)-5, [imo Wo (1-r) fJdfJJ.J ffo (x)-fo (~)], (6.24) 

for k'2:.k0 (r). Rearranging (6.24), we obtain (6.21). The proof is complete. 

THEOREM 6.6. The sequence {xk} converges to x at least linearly. 

Proof. Let wE W(x) . According to the Taylor expansion formula, for any xk 
there exists a point yk on the segment joining xk and x such that 

j E/o iEI 

-/ k - ~ - J ' ( -) s, - J' ( -)> -"--._X -X, L.J W; O,i X+ L.J · Wi+n i X + 
iEio iEJ 

+1-<~-x,L"(y\tv)(xk-x)). - (6.25) 

Since w satisfies (2.4) and xk~x, (6.3) and (6.25) give 

2) 11\f!o(xk)-fo(x)]+ 2) wi+nff(xk)+ -f(x)+]'C..mo/2 1~-X / 2 • 
i El o iEl 

Therefore, for almost all k 

/xk- X/2 -5, (2w0 /m 0 ) f!o (xk)-/ 0 (x)] (6.26) 

and our assertion follows from (6.21) and (6.26), thus ending the proof. • 

7. Modifications and extensions 

In this section we discuss some modifications of the method. 

We start by remarking that one may use Jk= + oo in the algorithm, i.e. 
I~ (xk, Jk)=/0 snd I (xk, Jk) = l for all k. Clearly, ths strategy is covered by our 
preceding analysis. 

If some xk happens to be feasible , e.g. x1 is feasible, we may modify the 
method to obtain a feasible direction algorithm that generalizes the Pironneau­
-Polak feasible direction methods [11]. It suffices to re-define the improvement 
function Pk in the algorithm's description by putting 

and then to include additional stepsize requirements that f(xk+dk)-5,0 at Step 3, 
f(xk +fkdk)-5,0 at Step 4, and to substitute (4.26) by the following: 

(4.26') 
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These modified line search rules maintain feasibility of consecutive poi~ts. One 
may check easily that all the preceding convergence results hold for this modifi­
cation; in particular - linear convergence is retained. 

Another modification concen:is the line search and the stopping · criterion. 
It consists in replacing in the algorithm's description the variable d~ by the varia­
ble d~= -<B" d",d") = -(H11 p",p") . From (5.5), we always have d~:s;J~:s;o. For 
unconstrained minimax problems, this choice of Jg at Armijo-type line searches 
is strongly advocated by Han (3], who argues that it may provide larger stepsizes, 
hence faster convergence. It is straightforward to check that the results of sec­
tion 5 still hold. However, we have not been able to establish linear rate of con­
vergence for this modification. 

8. Conclusions 

We have presented a phase 1-phase 11 method for inequality constrained mini­
max problems that does not require a feasible starting point. The method generali­
zes some of the most robust and efficient feasible point algorithms for standard 
nonlinear programming calculations [10, 11, 13, 14]. Global convergence of the 
method has been established . The algorithm converges at least linearly when the 
optimization problem is convex and certain regularity assumptions are fulfilled . 
To the best of our knowledge, this seems to be the first implementable method 
for nonlinearly constrained minimax problems which is both globally and linearly 
convergent. 
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Dwufazowa metoda dla zadan minimaksowych z ogranicze­
niami nierownosciowymi 

Przedstawiono nOW<! klast; algorytJn6w do minimalizacji , rrzy sk01'1czonej liczbie ograniczen 
nier6wnosciowych, nier6:i:niczkowalneJ funkcJi bt;dqcej punktowym maksimum ze skonczonej ro­
dziny funkcji r6zniczkowalnych w spos6b ciqgly. W metodach tych rozwilt7Uje sit; kolejne zadania 
programowania kwadratowego w celu generacji kierunk6w poszukiwan. Zaproponowano kilka 
praktycznych sposob6w przeszukiwania kierunku. Metody nie wymagajq dopuszczalnego punktu 
startowego. Wykazano globalnlt zbieznosc proponowanych algorytm6w. Przy dodatkowych zalo­
:i:eniach wypukfosci, szybkosc zbie:i:nosci metod jest eo najmniej liniowa. Algorytmy dajq si~ Iatwo 
zaprogramowac. Uog6lniajq one szereg niezawodnych i efektywnych metod typu punktu dopusz­
czalnego dla standardowych zada11 programowania nieliniowego. 

)J,uyxl}la3HbiH MCTO,lJ, ,lJ,JIH 3a,LJ,a'IH ,lJ,HCKpCTIIOro MIIH11MaKCa 

C orpaHH'ICHHHMH B l}lopMC HCpaBCHCTb 

llpe,[(CTaBJieH KJiaCC MeTO,[(OB MHI!HMM:3al\HR <j>)'l{Kl\HI'l ,[(HCKpeTHOrO MaKCHM)'Ma IlpH HaJIH'Ufl{ 
xoae'!Horo '!Hcna rna,a:KHX orpaJ(H'Ielnd1 B <j>opMe HepaBeacrb. B Mero,a:ax JITepaTHBRO peruaiOTCl! 
no,a:3a,!l,a'IH: KBa,a:paTH:'!ecKoro nporpaMMHponaliHll ,a:nll HaxolK,!I;elillll ltanpasrreHlili cnycxa . Bse,a:eHO 
HecxorrhKO npaKTH'!ecmx cnoco6os peryJIRpOBKM: ruara. Mero,a:hr He Tpe6yiOT ,a:orrycTHMoro 
Ha'iaJThHOTO npH6moKeRHll. YcTaHOBJieHO TJI06aJThH)'IO CXO.,ll;RMOCTb MeTO,!I,OB. llpH ,[(OllOJIHM:TeJTh­
liblX npe,a:JIO)KeHI{liX BbiDfKJIOCTH, ,[(OKa3aliO JIRRefuiyiO CKOpOCTb CXO,[(HMOCTR. MeTO,[(bl rrerKO 
rrporpaMMHpyiOTCll lta 3BM. Olrn: o6o6w;a10T HeCKOJihKO po6acTHhiX H J<j><j>eKTHBHhiX MeTo,a:os 
Tlilla AOII)'CTHMOH TO'II£H ,[(!Ill pel.Ueffi!:jl CTaH,a:apTHbiX 3a,[(a'f HeJIJU{eMHOfO nporpaMMHpOBaHI(SI. 
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News and Announcements 

Seventh European Meeting on Cybernetics and Systems Research 
is organized by the Austrian Society for Cybernetic Studies, 
to be held on April 24-27, 1984, at the Univers!ty of Vienna, 
Austria 

The meeting offers plenary lectures and symposia on : 
- General Systems Methodology 
- System and Decision Theory 
- Cybernetics in Biology and Medicine 
- Cybernetics of Cognition and Learning 
-:- Cybernetics in Organization and Management 
- Economic and Social Systems 
- Ecological Systems 
- Health Care Systems 
- Fuzzy Sets 
- Communication and Computers 
- Artificial intelligence 

Details of Submission: 
Please send three copies of the full paper (up to 7 pages, single-spaced, maximum 
2600 words) in English. Submissions should include the selected symposium. Pa­
pers must be received not later than September 1st, 1983. 
Submissions and/or enquiries should be sent to the Chairman: 

Professor Robert Trappl 
Department of Medical Cybernetics 
University of Vienna 
Freyung 2/6 
A-1010 Vienna 
AUSTRIA 

Mathematical Methods in Operations Research 

Sofia, Bulgaria, October 24--29, 1983 
organized by Institute of Mathematics with Computer Centre of the Bulgarian 
Academy of Sciences. 



Topics: 

- Theory of Optimization Problems; 
- Numerical Methods for Solving Optimization Problems; 
- Applications and Program Packages. 

Abstracts (1 page in camera resdy form) should be sent -before June 1, 1983 to: 

Dr. A. L. Dontchev (Institute of Mathematics 1090 Sofia P.O. Box 373) 
Bulgaria 

Languages: Russian and English. 


