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The final state of a parabolic initial-boundary value problem is controlled by means of the 
boundary data. The solution is of bang-bang type. Replacing the parabolic equation by a differ
ence scheme we obtain a discrete control problem. For its numerical solution we develop a multi
-grid iteration. Numerical examples show that this method works efficiently. 

1. Introduction 

In Section 2 we consider the solution y=y (x, t; u) of a parabolic initial
-boundary value problem depending on the boundary data u. In order to approxi
mate a given function z E L 2 ( Q) by the final state y ( · , T; u ), one can try to mini
mize the cost function 

(1.1) 

The problem is well-posed if either o is positive or the admissible controls u are 
bounded. Often pointwise bounds ul> u2 are prescribed: 

u1 (t)~u(t)~u2 (t) for a.a. t E(O, T). (1.2) 

If u is pointwise bounded and if o vanishes in (1.1), the bang-bang principle ap
plies: for almost all t E (0, T) the optimal control u (t) equals one of the bounds 
u1 (t) or u2 (t). 

The discrete control problem is obtained by replacing the partial differential 
equation with a difference scheme. In case of o > 0 ( cf (1.1)) the discrete optimal 
control Un can be represented by 
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where Kn is "smoothing". Such equations "of the second kind" can be solved nu
merically by the multi-grid method of the second kind described in [2, 3J. The 
iteration is very fast if o is not too small, but its convergence rate deteriorates 
with o tending to zero. Thus, the limit o=O can be regarded as the worst case. The 
failure of the mentioned algorithm motivates the study of the bang-bang problem, 
i.e. of minimizing the cost function (1.1) for o=O. 

Section 3 contains the definition of the difference scheme, of the discrete cost 
function, and the discrete optimal control. We formulate some discrete counter
parts of the bang-bang principle in the continuous case. In particular we prove 
the uniqueness of the discrete solution. 

The new multi-grid iteration described in Section 4 is neither a generalization 
nor a modification of the multi-grid method mentioned above. It is also not re
lated to multi-grid algorithms used for elliptic problems (cf [4]). The algorithm 
presented in this paper is not restricted to bang-bang problems (i.e. to the case 
of o=O in (1.1)) as is for instance the numerical method of Glashoff and Sachs [1J. 

2. The Continuous Problem 

2.1. The Parabolic Control Problem 

Let .Q=(O, 1) be a space interval and (0, T), T>O, a time interval. The lateral 
boundary of Q=.Q,x(O, T) is denoted by l:=FX(O, T), where F={O, 1} is the 
boundary of .Q. 

We consider the parabolic initial-boundary value problem 
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It is only for simplicity that we assume the special forms of A and B. The coeffi
cients«, fJ may depend on (x, t) and B may be a mixed boundary operator. The 
Eqs (2.la, bl> c) can be replaced by inhomogeneous ones. The considerations of 
this paper hold for more-dimensional domains Q eRd, d> 1, too. 

If oc and fJ are sufficiently smooth and u f:.L2 (0, T), the solution y=y (x, t; u) 
of (2.1) is uniquely determined and belongs to H 312

• 
314 (Q). The trace satisfies 

y( · ,T;u)=y(u)it= TeL 2 ( Q). 

Hence, a bounded linear operator 

S: u e£2 (0, T)~y( ·, T; u) e£2 (Q) (2.2) 

is defined. 

2.2. Control Problem 

Let z e£2 (Q) be a given function. The control problem consists in minimizing 
the cost function 

over the set 

J(u)=(Su-z,Su-zh2(!1)= Jiy(x, T;u)-z(x)!Zdx 
f.l 

Uad={u f:.£2 (0, T): iu(t)i ~ 1 a.e. on (0, T)} 

of admissible controls. Since Uad is weakly closed we have 

(2.3) 

THEOREM 2.1. The problem J (u)=Min, 'U E u,d, has at least one solution (optimal 
controf) u* E Uad· 

CoROLLARY 2.2. In case of two optimal controls u*, u** e Uad• the equality Su*= 
=Su** holds. 

Proof. Set u(r):=u*+-r(u**-u*) and j(r);=J(u(-r)). Here, j is a parabola 
with minima at r=O, 1. Thus, j"(r)=2 US(u**-u*)lli2<m~O must hold implying 
S(u** -u*)=O. • 

2.3. Bang-Bang Principle 

The adjoint differential equation reads as 

-p,+A*p=O in Q 

Cp =0 on :E 

Pit=T =w in Q' 

(2.4a) 

(2.4b) 

(2.4c) 
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where 
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The "final value" we £2 (Q) determines a unique solution p=p (x, t ; w) E' H 1• 112 (Q) 
with trace Plx-o=p(O, · ;w) e£2 (D). Correspondingly, 

S*: w eL2 (Q)~a;(O) p(O)p(O, · ; w) e£2 (0, T) 

describes a bounded linear mapping. Repeated partial integration proves 

THEOREM 2.3. S* is adjoint to S: (Su, w)L2(n>=(u, S*w)L'(O,T)· 

(2.5) 

The property (2.6) described in the next theorem is a characterization of an 
optimal control. 

THEOREM 2.4. Let u* e Uad be an optimal control. Then a.e. on (0, T) one of the 
following two equations holds: 

[S*(Su* -z)](t)=O or u* (t)= - sign (S* (Su* - z)](t).. (2.6) 

If the first equation of (2.6) is valid on a set of measure zero, u* is called 
to satisfy the bang-bang principle. Hence, a bang-bang solution fulfils u*= 
= -sign [S* (Su*- z)] a.e. on (0, T). Under usual conditions ( cf Theorem 6 
of Glashoff and Sachs [1]) the following alternative holds: Either there is an 
(optimal) control u* e Uad with Su*=z or any optimal u* satisfies the bang-bang 
principle. The latter property is important because of 

THEOREM 2.5. The bang-bang principle implies uniqueness of the optimal control. 

Proof. Set q(u):=S*(Su - z) and assume that u* and u** are two optimal 
controls. Corollary 2.2 implies q(u*)=q(u**). By the bang-bangprinciple u*(t)= 
=-signq(u*)(t)=-signq(u**)(t)=u**(t) is valid for a.a. te{O,T). Thus, 
u* =u** proves uniqueness. • 

3. The Discrete Problem 

3.1. The Discrete Parabolic Initial-Boundary Value Problem 

Let Ax= If m and h=Tfn be the equidistant step widths of the intervals D= [0, 1] 
and (0, T], respectively. The counterparts of £2 (Q) and £2 {0, T) are the vector 
spaces Rm+l and Rn with the scalar products 
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m 

(w,z)m+ 1 :=Lfx.}; w(i)z(i) for w,zeRm+t, 
i=O 

n-1 

(u,v),:=h.}; u(j)v(j) for u, v e: R". 
J=O 

The components z(i) and u U) correspond to the values at x=i•Lfx and t=j•h, 
respectively. The coefficient functions IX (x) and {3 (x) of the differential operator A 
become 

1Xm(i) :=IX ((i-1/2) Lfx) (0~ i~m+ 1), 

Pm(i):={3(iL1x) (O~i~m), 

where IX is extended to the interval [ -Lfx/2, 1 +Lfx/2]. 
The spatial forward and backward differences are 

a_1: .. y (i,j)= [y(i+ 1,j)-y (i,j)J/Lfx, 

a;;. .. y (i,j)= [y (i,j)- y (i -1,j)]/Lfx, 

while the time differences are 

a;; y(i,.i)=[y(i,.i+1)-y(i,.i)J/h, 

a;; y (i,.i) = [Y (i,.i)- y (i,J - 1)1/h . 

The discrete analogues of the differential operator A and the boundary opera-
tor Bare 

B (. ·)-{ - a-_;xy(i,j) 
.:~ .<Y l,J - +a+ (" .) 

.:~xY l,j 

for i=O, 
for i=m . 

Let u,.= (u,.U) )~;;;~eR" be a given control. The discrete initial-boundary value 
problem 

a1; y(i,j)+A.:~xY(i,j)=O (O~i~m, 1 ~j~n), 

BJxy(O,j)=u,.(j- 1) (1 ~j~n), 

B.:~xY(m,j)=O 

y(i,O)=O 

(1 ~j~n), 

(O~i~m) 

. (3.1a) 

(3.lbo) 

(3.1bl) 

(3.lc) 

determines a unique solution y(i,j;u,.) for - l~i~m+l, 1~j~n. (3.1) is the 
implicit difference scheme. Note that auxiliary values y ( -l,j) and y (m+ I,j) 
corresponding to x= - Lfx and x= 1 + Lfx are involved. However, they can be 
eliminated immediately by means of (3.lb0 , 1 ). Hence, one obtains the following. 

REMARK 3.1. The vectors y1=(y(i,j))7'=o eRm+l are to be computed from 

y,~O, Ty;~YH +t r rj-l)l (3.2) 
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where t > 0 is a given constant and T is a given irreducible tridiagonal matrix 
having positive eigenvalues. 

3.2. Discrete Analogues of S and S* 

The discrete counterpart of S ( cf (2.2)) is the linear mapping 

Snm: U11. ERn~(y(i, n; un))r=o eRm+ 1 • 

Consider the discretization of the adjoint problem (2.4) by 

where 

a: p(i,j)-A~xp(i,j)=O (O~i~m, O~j~n-1), 

CA,.p(i,j)=O (i=O or m, O~j~n-1), 

p(i,n)=wm(i) (O~i~m), 

(3.3a) 

(3.3b) 

(3.3c) 

The solution of (3.3) corresponding to the final values Wm e Rm + 1 is denoted by 
p (i,j; wm). According to (2.5) we define 

s:,.: Wm eR"'+ 1 -+a,. (0) Pm (0) (p (O,j; w,.)~=~ e JRn). 

Note that a,. (O)=a (-Lfx/2) and Pm (0)= P (0). The schemes (3.1) and (3.3) are 
chosen in such a way that Theorem 2.3 remalnS valid for Snm· 

THEOREM 3.2. s:m is the operator adjoin! to Snm: 

3.3. Discrete Optimal Control .Problem 

The function z of (2.3) is to be replaced by a vector Zm e Rm+I, e.g. defined 
by zm(i)=z(i*Lfx), O~i~m. The set of admissible controls is 

u:a={veRn:lv(i)l~1, O~i~n-1}. 

Defining the discrete cost function by 

we seek the solution u: e u:a of 

(3.4) 

The minimizer u:e U~a is called (discrete) optimal control. As in Theorem 2.1 
and in Corollary 2.2 we have 
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THEOREM 3.3. Problem (3.4) has at least one solution u~ e U~d· Two optimal con-
l * ** U" · ,.r, S * S ** tro S Un, U11 E ad satZSJY nm Un = nm Un . 

Similarly, the discrete version of Theorem 2.4 holds: 

THEOREM 3.4. Let un be optimal. One of the equations 

s:"' (S,m u: -zm)(i)=O or u: (i)= -sign [s:,lsnm u: -zm)(i)] (3.5) 

hold for every i=O, 1, ... , n-1. 

Pro of. For fixed i define the unit vector e by e (i)= 1 and e (k)=O for k:P. 
d 

and set j(r):=lnm (un+re). Since d j(0)=2Ax s:m (S,m u: -zm)(i), Eq (3.5) is 
necessary for a minimum at r=O. r B 

The bang-bang principle implies u* (i)= ± 1 for a.a. t e (0, T) in the continu
ous case. The discrete counterpart "u,~(i)=±1 for all i=O, ... ,n..:..1" is wrong! 
In general, there are indices i with u;(i)e(-1, +1) and s;n(S,mun-zm)(i)=O 
according to (3.5). However, their number is bounded by m independently of n. 
Besides that, uniqueness holds as in Theorem 2.5. 

THEOREM 3.5. Assume that .!,,m does not vanish for the optimal control u:, i.e. 
S,m u::P.zm. Further, suppose that the ~fates y1 oc::(y(i,j))~=o eR'"+!, O~j~n, sai
isfy the second equation of (3.2) with a irreducible tridiagonal matrix T having 
01ily positive eigenvalues. Then the discrete optimal control u, is uniquely deter
mined and there are at most m indices i1 , ••• , im with -1 <u11 (iv) <+I. 
The assumption that T has only positive eigenvalues is not restrictive as can be 
seen from 

LEMMA 3.6. Let T be irreducible and tridiagonal. Then 
(i) All eigenva/ues of T are simple. In particular T is diagonizable. 
(ii) If T is a real matrix, all eigenvalues are real. 
(iii) If T is real and positive definite (i.e. (u, Tu)>O for u=O, but not necessarily 

symmetric), all eigenvalues are positive. 

The proof of Theorem 3.5 is prepared by several lemmas. 

LEMMA 3.7. Let i0 <i1 < .. . <i, be integers. An interpolating function of the form 
r 

f(x)= '"}; a. x'• is uniquely determined by r+ 1 value3 at different arguments xk>O, 
v=O 

O~k~r. In particular, f(xk)=O for all O~k~r implies a.=O for O~v~r. 

Proof. It suffices to prove the latter part. Assume f(xk)=O for O~k~r. If 
r=O, the result a0 =0 is obvious. Suppose that Lemma 3.7 holds for r-1 instead 

d 
of rand apply it to g(x):= dx (f(x)jx10 ). By RoBe's theoremg vanishes at r 

different arguments ~k e (xk, xk+ 1), O~k~r-1. By the inductive assumption, the r 
coefficients b.=a.(i.-i0 ) of g, l~v~r, vanish. Thence, a.=O follows for l~v~r. 

Then, a0 =0 is immediate. • 
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LEMMA 3.8. Let T be the matrix of Theorem 3.5 and e be the unit vector (1, 0, .. . 
. .. ,O)eRm+l, i0 <i1 < ... <i, be r+l integers, where r~m. 
Then the vectvrs {T- 1• e: O~v~r} are iinearly independent. 

r 

Proof. Assume that ,2 a. T- 1
• e=O. Let A. be an eigenvalue of T* with cor-

v=o 

responding eigenvector v=(v1)~=o eRm+l. By assumption, 

O=(v, i; a.T- 1•e) =(i; (a.),-lv v, e) =Ax i; av ;.- 1•v0 (3.6) 
v=O m+l v=O m+l v=O 

holds. 

T*v=A.v yields v1 ==(2v0 - T00 '00 )/T10, where T10 :;60 since T is strictly tridia
gonal. T1i denote elements of the matrix T. Thus, v0 =0 implies v1 =0. Similarly, 
the relation vk+ 1 =(2vk-Tkkvk-Tk-l•kvk_ 1)/Tk+l•k induces v2 =v3= ... =vm=0 in 
case of v0 ==0. Since v¥:0, 'l10 :;60 follows and (3.6) implies f(1/A.)=0, where 

r 

f(x)= I; a. x 1v. 
v=O 

By Lemma 3.6, there are m+ 1 different eigenvalues .A.". The previous considera
tion shows f(l/).k)=O, O~k~m. Since m~r, one concludes from Lemma 3.7 that 
Ov=O, O~v~r. Therefore, the vectors T- 1·e must be linearly independent. • 

LEMMA 3.9. Let O:;r:weRm+l and q=S:mw. Then, q(i)=O holds for at most m 
indices O~i~n-1. 

Proof. Assume that there are r+l>m indices i0 <i1 < ... <i, with q(iv)=O. 
Define u, by 

u,(i.):=a./t for O~v~m, u,(i)=O otherwise, 

where a. are arbitrary numbers and t is the same as in (3.2). Using the notation 
of Remark 3.1 we have S,.m U11=y, and we conclude from (3.2) that 

m 

S u - "' a T-n+iv e nm ·n- .L.,; v • 

V=O 

By Lemma 3.8, the vectors T-"+ 1•e, O~v~m, form a basis and we can choose 
the coefficients av such that S,.m u,.=w. The assumption on q and the construc
tion of u; imply 

O=(u,, q),=(u,., s:m w),=(Snm Um w)m+l =(w, w)m+l 

contradicting w:;r:O. Hence, the lemma is proved. • 
LEMMA 3.10. Snm u; ;i:zm implies uniqueness of an optimal control u:. 
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P r o of. Let u: and u:* be two optimal controls with difference dr.=u: - u~*. The
orem 3.3 shows q:=s:m (S,.mu: - zm)=S:m (Snm u:* -zm)· By Theorem 3.4, u: (i)= 
=u:• (i) implying d(i)=O must hold for all i with q (i)=FO. We know from Lem
·ma 3.9 that q (i) = O for at most 111 indices. Therefore, d (i)=FO may occur for at 
most m indices, say for i0 <i1 < ... <i" r<m. As in the proof of Lemma 3.9, 
S,.m d has the representation 

• 
r 

S,.md=t ,2; d(i.)r-n+iv e. 
V=O 

Since S,.m d= O by Theorem 3.3, Lemma 3.8 proves that all coefficients d (i.), 
O:::;;v:=:;;r, must vanish. Hence, d=u: - u:*=O is demonstrated. • 

The proof of Theorem 3.5 is given by Lemma 3.10, (3.5) and Lemma 3.9. 

3.4. Iterative Solution 

In the following we consider only discrete problems and therefore we omit 
the indices n and m: 

For the numerical treatment of the discrete problem (3.4) we shall develop an 
iterative method. Let u eR" be a given approximation of the optimal u*. We 
have to find a correction v* eR" with u+v*=u* or equivalently 

J(u+v*)=inf {J(u+v): v eR", u+v e U,:d}, u+v* e u:a · (3.6) 

Since 

where 

J(u+v)=J(u)+ (2q(u)+Kv,v )n, 

q(u):=S* (Su-z), 

K:=S*S, 

the problem (3.6) can be rewritten as 

I(v,q(u))=Min, veV(u) 

with 

I(v, q):=(2q+Kv, v),. 

and the set 

V(u) : ={v eR": u+v e u;d}= {v: -1-u(i) :=:;;v(i):::;; 1-u(i)} 

of admissible corrections. 

(3.7) 

(3.8a) 

(3.8b) 

(3.9) 

(3.10) 
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These considerations suggest the following framework of an iterative process: 

start: U0 E U~d given, 

iteration: ul given, 

compute v: approximation to solution of (3.9) with u=u1, 

(3.11a) 

(3.11b) 

(3.1lc) 

(3.1ld) 

In the step (3.1lc) we need qi: = q (ui). Definition (3.8a) yields ql+ 1 = ql + Kv 
with initial value q0 =q (u0

). This gives us the next formulation: 

start: u0 E u:d given, q0:=q(u0), 
iteration: u1, ql given, 

v: approximate solution of l(v, q1)=Min, v E V(ul), 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 

(3.12e) 

In Section 4 we shall propose how to perform step (3.12c). For step (3.12e) we 
refer to 

REMARK 3.6. It is not necessary to know the entries of the matrix K explicitly. 
The multiplication K*v is performed according to the definitions of K=S* Sand 
S*, S. Solve the discrete initial-boundary value problem (3.1) with un:=v re
sulting in y(i,j;v). Set Wm=y(·,n;v) and solve the adjoint problem (3.3). Then, 
K*v (j) =«m (0) Pm (0) p (O,j; Wm). 

4. The Multi-Grid Method 

The original problem (3.4) is solved if one is able to treat (3.9), i.e. if one can 
find the minimizer of I(v, q)=(2q+Kv,v)n. To find an approximation v we shall 
replace the expression (2q+Kv, v)n with a simpler one. By cancelling the quad
ratic term completely one would be led to "minimize I' (v, q): =(2q, v)n" which 
yields a gradient type method. The approximation v should be more accurate if 
we do not omit the quadratic term completely but substitute (Kv, v)n by some 
(K'v,v)n, where K'-;::,:.K. Such a matrix K' (and not only just one but a whole 
sequence of K; s) will in the sequel be understood to be generated by auxiliary 
grids. 

4.1. Auxiliary Grids 

We define I+ I 'levels' (i=O, ... , I) with step sizes 

h1=T/n; (O~i~l,n0 <n1 < ... <nt) 
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in the time direction, where for instance 

(4.1) 

The number n of the preceding section corresponds to the finest step width n1 • 

For the spatial direction we choose 

Ax1=1/m1 with m1 c::::.m0 Vn;/n0 (O::;;;i::;;;l) 

to ensure h1 = 0 (AxZ). The matrices Kn
1 

m
1 
= s:

1 
mt Sn, m

1 
are defined as in Section 3. 

The vector spac~s Rn1 (0 ::;;;_ i ::;;;_ l) are connectecl. with R"1 by prolongations 
n1 : Rn 1 ~R"1 and restrictions p1 : Rnt~R"1 • For i=l we define formally 

n1= p1= identity. (4.2) 

Fig. 3 

In case of n1 chosen according to (4.1) the prolongation n1 can be defined by 
piecewise constant interpolation: 

(n1v)(j)=v(k) for 0::(k::(n1-1,21- 1 k::(j::(21- 1 (k+l)-l. 

'I'_he adjoint mapping can serve as restriction: p1=n;. Its explicit representation is 

2 1-t 

(p1 w)(k)=21- 1 }; w(21- 1 k+j) (0::(k::(n1-l, w eR"'). 
J=O 

The products 

are operating in the finest grid. Definition (4.2) implies K1.=K., m,· Thus, K, equals 
K from (3.8b) if we identify n1 with n from Section 3. 

4.2. Two-Grid Iteration 

Consider the problem 

11(v, q):=(2q+K1v,v)n
1
=Min, v e V(u). (4.3) 

This problem is of the same form as the original problem (3.9), with K replaced 
by K1• Therefore, we can again apply the iteration (3.12) to (4.3). The undeter
mined part of the iteration (3.12) is the computation of v in step (3.12c). Since 
K1 c::::.K1_ 1 (i>l) is assumed, the problem 11 (v,q)=Min, veV(u), is close to 
/ 1_ 1 (v, q)=Min, v e: V(u). Hence, the approximation v of 11 (v, q) =Min can be 
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defined as the (exact) minimizer of I 1_ 1 (v, ql)=Min. The resulting two-grid meth
od at level i>O for solving 

reads as 
I 1 (v,q)=Min, ve V(u) 

start:v0 :=0, q0 =q given by (4.4); 

iteration: v1, q1 known; 

v: minimizer of 

I 1_ 1 (v, q1)=Min, v E V(u+v1); 

(4.4) 

(4.5a) 

(4.5b) 

(4.5c) 

(4.6) 

(4.5d) 

(4.5e) 

REMARK 4.1. (i) Put i=l, q:=q (u). Then the iterations (3.12) and (4.5) are equiv
alent up to step (3.12c/4.5c) if we identify u+v1 from (4.5) with u1 from (3.12). 
As stated above, the problem (4.4) coincides with the original problem (3.9). 
(ii) Let i e {0, 1, .. . , 1}. In step (4.5c) one approximates the solution of I (v, q1)= 
=Min, v 6 V(u+v1). The latter problem is equivalent to (4.4). 

4.3. Convergence of the Two-Grid Iteration 

The following lemma estimates the quality of the approximation v of step (4.5c) 

LEMMA 4.2. Let i E {0, 1, ... , /} and suppose 

IIK,-K,_111~et, (4.7) 

where 11 · 11 is the spectral norm of n1 X n1 matrices. Then for all u e u;d and all 
q f? Rn' the following estimate holds. The minimizers v* and v' * of the respective 
problems 

I 1 (v, q)=Min, I 1_ 1 (v', q)=Min, v, v' E V(u) 
satisfy 

I1('v'*, q) ~I1 (v*, q)+e, (llv*ll +!I'll '* ID llv* -v'* 11 ~I1 (v*, q)+8e1 (4.8) 

i.e. '1!'* yields the minimum of I; up to an error e1 ( llv*ll+llv'*li) llv*-v'*ll. 

P r o o f. The inequality 

I1(v'*, q)=I1_ 1 (v'*, q)+([K1 -K1 _dv'*,'1l'*)n1 ~I1 _ 1 (v*, q)+ 

+ ([K1-K1_dv'*,v'*)n
1
=I (v*, q) -([K1-K1_d(v*-v'*,v*)n

1 
+ 

-([K1 -K,_ 1 ]v'*,v* -v'*),., 

together with (4.7) implies I1 (v'*, q)~I, (v*, q)+e, (llv*ll+ llv'*ID llv*-v'*ll. The 
estimate by 8e, follows from the special choice of u:d. • 

One would expect e, =O (h~) for some K>O. Hence, the first iteration reduces 
the error of 11 to less than 8e,. Note that in the next iteration step the old error 
v* is replaced with the new error v* -v=v* -v'*. Hopefully, the differences v* -v'* 
is smaller than v' and v'*. Thus, the right-hand side of (4.8) is expected to be 
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smaller in the next iteration. Nevertheless, Lemma 4.2 does not imply convergence 
of the iteration (4.5). But convergence can be ensured by a slight modification: 

REMARK 4.3. Replace the steps (4.5d, e) by 

v1+ 1 :=v1+A.*v with A.* e [0, 1] minimizing / 1 (A.v, q1); (4.5d') 

qi+1 :=ql+),* K, v. (4.5e') 

Under the assumptions of Theorem 3.5 the modified iteration converges. 

Proof. Denote the function performed via the iteration by tp(<JJ):=vl+l. tp is 
not necessarily continuous but 11 (tp ( · ), q0

) is. (4.5d', e') ensures I1 (tp(v), q0 )~ 
~I1 (v, q0

) since tp(v) -v is a descent direction. There is a subsequence {jk} such 
that limvik =v*, limf1 (vik,q0 )=:I*. If v* would not be optimal, v**:=tp(v*) 
would differ from v* and yield I1 (v**, q0 )<I* (cf. Theorem 3.5). However, by 
monotonous convergence I1 (vi, q0

) t I* 

I1 (v**, q0 )= lim I1 (tp (v1k), q0 )= lim I1 (·vik+l, q0 )=I*. 
k->oo 

Hence, v* is optimal. The uniqueness of the optimal control implies lim vi=v*. 
An equivalent representation of the two-grid iteration is the following itera

tion minimizing / 1 (v, q0
): 

ili=arg min {(I; (vi, q0 ),v-vi)n, + (K1_ 1 (v-vi),v-vi)nJ, v1+ 1 :=vi. 
vEV(u) 

The modifivation (4.5d', e') corresponds to 

v1+ 1 :=vi +A.* (vi -vi), A. *=arg min I 1 (vi+ A. (vi -vi), q0 ). 

o< J.<l 

Convergence rates can be shown under stronger assumption on K 1_ 1 • Hughes 
[5, Theorem 3.1] proved that I 1 (vi, q0)-I1 (v*, q0)=0(1fj) if either 

O~(K1 _ 1 v,v)n1 ~(K1 v,'ll)111 for all v eRn1 

or 
~ llvii 2 ~(K1 _ 1 v, v)n,~c llvll2 , 0 <c~c<oo for all v ERn1

• 

The first condition is equivalent to liS", p1 vll~ IISn, vll if n1=p7 and is hard to 
prove. The second condition can be enforced by replacing K1 _ 1 with 

K;-1 +e1-1 I, B; -1 >0. 

Thus, ek=constfnk might for instance be a reasonable choice, since K 1 (i <I) are 
then still consistent with K1• 

4.1:1. Multi-Grid Iteration 

So far we considered a two-grid iteration for solving problem (4.4). ·Note that 
the auxiliary problem (4.6) at level i -I is of the same form as (4.4). Therefore, 
the same method can be applied for solving approximately ( 4.6) as long as i -I> 0. 

The multi-grid iteration at level i=O, . .. , l is defined recursivdy. For i=O (i.e. 
for the coarsest grid existing) solve the problem (4.4) by any (convergent) itera-



112 W. HACKBUSCH, TH. WILL 

tive method!). Assume that the multi-grid iteration at level i - 1 ~0 is already de
fined. Then one iteration step at level i reads as follows: 

vi, qi known; (4.9b) 

v: solution obtained by J1 iterations of the multi-grid method at 
level i-1 applied to (4.6) with zero as starting value; (4.9c) 

vi+ 1 :=vi+v; (4.9d) 

qi+ 1 :=ql+K1v. (4.9e) 

The choice of the number J1 will be discussed below. Practical values seem to 
be f.l=2 or p=3. 

As in the case of the two-grid iteration (4.5), the convergence of the multi-grid 
iteration (4.9) cannot be guaranteed. However, the modification mentioned in Re
mark 4.3 helps again: 

REMARK 4.4. Replace (4.9d, e) by (4.5d', e') and assume that the iteration at level 
i=O yields v with (q1, v) <J, i.e. v is a descent direction. Then, the multi-grid itera
tion with J1 ~ 1 converges for every i e {0, 1, ... , 1}. 

As in (1.2) the set V (u) can be characterized by the lower and upper bounds 
u1 = -1- u, u2 = 1-u, where 1 is the n1-vector with all components being equal 
to one. The following quasi-ALGOL program performs v steps of the multi-grid 
iteration (4.9) starting with v0 =0. 

multi-grid iteration for solving / 1 (v, q)=Min, u1 ~v~u2 

description of parameters: 
i: level number e {0, 1, ... , /}, 
v: desired optimal control (approximate value), 
q, u1, u2: given by the problem l 1(v,q)=Min, u1 ~v~u2, 
v: number of iterations. 

procedure mgm (i,v, q, u1, u2, v); 
if i=O then 
v:=approximate minimizer of "/0 (w,q)=Min, u1 ~w~u2" 
else 
begin v:=O; qq:=q; 

end; 

for k:= 1 step 1 until v do 
begin uu1 :=u1-v; uu2:=u2-v; 

mgm (i -1, vv, qq, uui, uu2, Jl); 
v:=v+vv; 
if k<v then qq:=qq+K1*vv 

end 

(4.10) 

'I For the numerical examples of Section 5 we minimized 10 (v, q) successively with respect to 
the components v (0), v (1), .. . , v (no -1). 
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For i=l, ul=-1, u2=1 (i.e. V(u)=ii:4 ), q=q(O) the problem (4.4) is equiv
alent to the odginal problem (3.4), ln

1 
,.

1 
(u) =M in, u e: u:a· Therefore, the latter 

problem can be solved by 
--------------------------------------

program for solving ln
1
m

1 
(u) =Min, ue U::a: 

begin array q, u, ul, u2 [0: n1-l]; 

end; 

q·- s* . *z . • -- nzmz m,, 
u1:=-1; u2:=+1; 
mgm (/, u, q, u1, u2, v); 
comment u is approximate solution 

4.5. Computational Effort 

(4.11) 

The subtractions and additions in (4.10) can be neglected compared with the 
performance of mgm and the multiplication K1·vv. Define W,: computational ef
fort related to multiplication K1 ·v as a unit. According to Remark 3.6, one has 

W1 =0 (n1 mt), ( 4.12) 

where d is the number of spatial coordinates (for our example: d= 1). Assuming 
n,~2n1 _ 1 and m,~y2m1 _ 1 (cf. (4.1)) we conclude that 

w,=21+ 412 w,_l (1 ~i~l). 

Let M 1,, be the effort required by v multi-grid iterations at level i, i.e. the expense 
resulting from calling mgm (i, ... , v). From 

M1,,=vM1 - 1 ,~<+(v-1) W, (l~i~/, v):l) 

and (4.12) we obtain 

where 
M 1,v=vp1

-
2 M 0 , 11 +vC1 W,-( 1 +: )(C,-1) W, , 

1-1 

C,= 2: (flf21+atz)l. 
i=O 

(4.13) 

(4.14) 

M 1, v is the computational work required by mgm in (4.11). For p=2 the con
stant cl is uniformly bounded by 2dl2f(2412 -1). Although Cz~OO for p=3, d=1, 
the values C1 increase very slowly. The following table shows C1 for different 
values of fl and /: 

~I 1 2 3 4 5 

2 

I 
1.000 1.707 2.207 2.561 2.811 

3 1.000 2.061 3.186 4.379 5.645 
4 I 1.000 2.414 4.414 7.243 11.24 

Values of C1 for d=l 

3 
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The number M 0 ,/l depends · on the iteration chosen at level i=O. It should be 
proportional to n1 ; thus it is asymptotically smaller than W1• This reason justifies 
the rough estimate 

(4.15) 

Numerical experiments showed that usually f1=2 or f1=3 are the best choice. 
For these values the number C1 is adequately small, so that the multi-grid itera

'-tion is relatively cheap in terms of the computational effort. 

5. Numerical Examples 

In the following we use grid steps hi, prolongations n 1, and restnctwns p1 

that are slightly different from those proposed in Section 4.I (but not necessarily 
better). Instead of (4.1) we set n1=21 (n0 -I)+ 1. n1 is the piecewise linear inter
polation, e.g. n1_ 1 is defined by 

(n1:- 1 v)(2j)=v(j) (O~j~n1 _ 1 -1), 

I 
(n1_ 1 v)(2j+ 1)=2 (v(j) +v(j+ I)) (O~j~n1 _ 1 -2). 

The restriction p1 equals almost the ad joint n; of n1, the difference residing in the 
fact that the components (Pi v) (0) and (p1 v) (n1 -1) are scaled in such a way that 
the constant 11cvector 1 is mapped into the n1-vector p1 1=1. 

a a . 
In the first example the differential operator L= - P Tx ~ Tx of (2.1) is de-

fined by 

{
1 if X~ 1/2, 

~(x)= I/2 if x>I/2, 

The function z is chosen as 

1 1 
P (x)=z + 4 sin (2nx). 

z(x)=x-1/2. 

The time step h1=T/n1 is defined by 

T=I, n0 =9, n1 =17, 11 2 =33, 113 =65. 

That means we have l= 3. The resulting solution at level I is 

u*(j)=+1 (O~j~28), u*(29)=0.338 ... , u*(j)=-1 (30~j~64). 

Functions u* together with q (u*) are shown in Fig. 5.1. 

(5.la) 

(5.lb) 

(5.lc) 

The multi-grid iteration with J1=2 resulted in ui~u*. The difference o= 
=Jn

1
m/u1) -Jn

17111 
(u*) is decreasing by a factor I/100 per iteration step: 

I 

j 19E-2 17E-4 17E-6 I7E-8 I7E-10 17E-12 < 1E-14 
5 6 7 I j 1 2 3 4 
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Thus, u 7 equals u* up to rounding errors. According to ( 4.15) the computation 
of u7 requires the same effort as 7C3 =15.4 initial-boundary values problems on 
the finest grid. The total CPU time2 > ·for · computing u 7 is less than 0.4s. If one 
would solve the discrete control problem (3.4) by some other method that re~ 
quires the entries of the matrix K-K 1 explicitly, one. would consume 1.1 s only 
for computing the matrix K. 

The second example is given by 

()((x)=fi'(x)=l, z(x)=8(x-l/2)2 -l, T=l. (5.2) 

For the same discretization parameter as above and by the same computational 
work one obtains u* and q(u*) as given in Fig. 5.2. It is atypical ::phen,omenp,n 

5 10 

-1 

Fig. 5.1. Optimal u'" and q (u*) for first example 

Fig. 5.2. Optima.l u* and q (u*) for second example 
Attention: q (u*) erroneously printed g.Vt*) in the figure 

that the values of q (u*) are close to zero. As a consequence the position of sign 
change is badly conditioned. By (3.5) the optimal control is badly conditioned, too. 

There may be several reasons for q (u:) being very close to zero: 
(i) Zm is almost in the image { Snm Un: Un E u;d}, 
(ii) Zm- Snm u: is OSCillating, . 
(iii) Zm is oscillating. 
In case (i) the smallness of Zm - Snmu: implies the smallness of q(u:)=S:m(S.mu: -zm). 
Wm=Snmu:-zm is the final value of the adjoint problem giving q(u:)=S:m Wm. 
Since parabolic eqttation damps oscillations, q (u:) is small in case (ii), too. By 

2 > The computations were performed on Cyber 76 of the Rechenzentrum der Universitat zu Koln. 
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the same argument the image Sn,. Un consists of smooth functions so that case (iii) 
leads to (ii). 

The numerical experiments showed that the proposed multi-grid iteration (with
out modification (4.5d', e')) is increasingly slow or even divergent if q (u:) be,. 
comes increasingly smaller. 
Acknowledgement. We have to thank E. Sachs and J. G. Dunn (North Carolina 
State University, Raleigh) for fruitful discussions. 
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Pewna metoda numei'Y.czua rozwi~zywania parabolicznego 
zadania typu bang-bang 

Dla r6wnania parabolicznego rozwa:i:a si41l zadanie sterowania brzegowego z funkcjonalem 
jakosci zale:i:nym od stanu koncowego. 

Rozwil!zanie zadania jest typu bang-bang. Aproksymuj~tc r6wnanie paraboliczne schematern 
romicowym otrzymuje si41l dyskretny problem sterowania. Dla numerycznego rozwi~tzania tego 
problemu opracowano iteracyjn!l metod41l wielosiatkowl!. Przyldady numeryczne wskazuj14 na 
efektywnosc metody. 

HeKoropLiii 'IIICJieiiiiLiii Mero~ pememm oapa6oJ11111eCKOi 
3~a.a TROa 6anr-6aur 

,ll;JUI uapa6oJIH'iecKoro ypauB:en;~ur pemaeTCa IqJaeBaJI 3a,ll.a'la ynpauneHII:ll c $YJ(KIUloHanoM 
!(A'leCTBa, 3aBli:C~ OT KOHe'Uioro COCTOllllllll. PemeHHe 3a,ll.a'm llBJUieTCll .nma. · 6a.Hr-QaHr, 
AnnpoKCHMHpyg uapa6om!'lecKoe ypaun:eHHe no pa3HOCTlloii: cxeMe, nonyqaeM MCKPeTHYID 3a

,n;a'IY ynpaBneH)m. ,ll;JUI 'i)icnemwro pemeBlla :noii: 3a,n;aqa pa3pa6oTaB: n-tepan:aoWI:htlt MHoro
CCTO'Il!l.tlt MeTO,ll;. lJ;HcJiellHble np)IMep:bl WIJIIOCTp:KpyroT 34>4>eKTimHOCT:b MCTO,D;a. 


