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A theorem on the continuity of implicit mapping related to Clarke’s generalized Jacobian
js formulatea and proved.

1. Introduction

We say that a mapping f: R"—>R" is locally Lipschitzian in an open subset
G < R" if for every x, € G there exists a neighbourhood Q (xo) = G and some
constant K, such that

S —fOI<K|x-yl, Vx,yeQ(xo), 1)

where || denotes the usual Euclidean norm.
The usual nXn Jacobian matrix of partial derivatives, when it exists, is de-
noted Jf (x). We topologize the vector space # of nXn matrices by the norm

[IM||=max |my;|, where M=(m;;), 1<i<n, 1<j<n.

DEerINTION 1. The generalized Jacobian of f at x, € G, denoted by df(x),, is the
convex hull of all matrices M of the form

M= lim Jf(x,), @

i— o

where the sequence {x;} converges to x, and f is differentiable at x; for each i.

PROPOSITION 1. 9f (x,) is @ non empty compact convex subset of M, Of (xo) < M

(see [1]).

DEFINTION 2. 8f (x,) is said to be of maximal rank if every M in 9f(x,) is of
maximal rank.
The following theorem is proved in [1].
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THEOREM 1. If 8f (xo) is of maximal rank, then there exist neighbourhwods U and V
of xo and f(x,) respectively, and a Lipschitzian function g: V—>R" such that

a) g (f(x))=x for every xeU,

b) /(e())=> for every yeV.

2. Theorem on the continuity of implicit Lipschitzian mappings -

We consider a topological space E and a mapping f of an open subset W< EX
X R" into R". Let f(a,b)=c for the fixed points ackE, beR", (a,b)c W and
ceR".

For fixed point x the generalized Jacobian of y—f(x, y) at a point b will be
denoted by d,f(x, b).

DEerINTION 3. We say that a function f(x, ) is locally Lipschitzian with respect
to y in W, if for arbitrary point (@, b) € W there exists a neighbourhood Q (a, b)
in W and the function y—f(x, y) is Lipschitzian when (x, y) € O (g, b) i.e. there
exists some constant d>0 such that

Lf G y1) —f (%, ¥2)| <O [y — .l
fOI' every (x’ yl)’ (xa y?.) EQ(Q, b)

THEOREM 2. Let a mapping f: W—R" satisfy the following conditions:
(«) f(x, ) is locally Lipschitzian in W with respect to y.
(B) 0,1 (x,b) is of maximal rank, for (x,b)e W,
(y) the mapping x—f(x, y) is continuous, for (x,y) € W,
then there exist neighbourhoods U and V of (a, b) and (a, c) respectively, and
a mapping g: V->R" such that
(1) g(x,z) is Lipschitzian with respect to z in V,
(i) g (x,/(x,))=y for every (x,y) €U and f(x,g(x,2))=z for every (x,2) €V,
(iii) the mapping x—>g(x,z) is continuous for (x,z)€V.

Proof. By Theorem 1 for a fixed (a, b) € W there exist neighbourhoods U, (b)
and V,(c) in R" of b and c respectively, and a Lipschitzian function g (e, z):
V.(c)»>R"* with Lipschitz-constant J>0, which has the following properties:

g(@f@y)=y VyeU.®)
fa,g(@2)=z VzeV, ().

The mapping x—>f(x, b) is continuous so that there exists also a neighbour-
hood 4 (a) such that

f(x,b)eV,(c) for arbitrary xeA4(a).

From the above considerations it follows that we can apply Theorem 1 at
the points (x,b) and z, where z=f(x,b) and x € 4 (a).
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Hence there exist neighbourhoods U, (5) and 'V, (2), which depend on x € 4(a),
and a Lipschitzian function g(x, &) such that

g (fu )=y VyeU.(), xed(@,
f(ng(68)=¢ VeeVi(n), xed(),
Let U, (0)=U,(0) n U, (b), V. (2)=V,(c) n V. (z) and
UB)= v T.(0); U®)< U, (b)

xed(a)

Vig= v Vi(@; V()< Valo)-

xeA(a)

At the begining we shall prove the theorsm in the neighbourhoods U= A4(a) x
xXU(®b) and V=A(@)xV{(c) in W of points (a,b) and (g, ¢) respectively, and
mapping g: V—->R"

QObviously, by Theorem 1 the mapping g (x, z) is Lipschitzian in ¥ with respect
to 9z with Lipschitz-constant §>0, since V{c)< V,(c), i.e.

Y{x,z),(x,2)e V=A@ xV{c)=z,z" e V(c)<= V (c)
and

le(x,2")—g(x,27)[<d|z' —2".

Now we shall prove (ii). Let (x,y)eU=A4(a)x U(b), then Ub)= u U, (d)
and there exists xeA(a)

Us®)2y, U()=U,(b)n Ux(d).
Hence we get
z=f(x,»)'e V() and g (x,f(x, )=y

On the other hand for arbitrary (x,&) eV, V=A(@)xXV(c), there exists
V. (2)=V,(c) " Vi(2), (x,&) € V,(z). Hence we obtain also

y=g(x,8), yeU,(d) and f[f(xg(x¢)=¢.

Now we shall prove (iii). Let (xy,2), (x,z) € V. We put yo,=g (X0, 2), y=g(x,2),
then we have

g (%0, f (o, )=y, g(x:f(x,3))=y. 3)
It follows that
g (%, 2)—g (%0, 2)=g (%, f (%, ) ) —& (X0,.S (%0, ) )+
+8 (x0,f (X0, ))— g (¥0,/(x,)) and
g (%, 2)—g (X0, 2)=g (%0,f (X0, ¥))— 2 (X0, / (%, ))- 4

Taking advantage of the fact that g (x, z) is Lipschitzian with respect to z
in ¥V we can obtain from (4) the following inequality:

lg (%, 2) — g (X0, DI <O f (%0, ¥) —f (6, . (%)
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Since the mapping f'(x, y) is continuous with respect to x in W, inequality
(5) implies the continuity of the mapping g (x, z) with respect to x in ¥, and
completes our proof. B
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O ciaglosci odwzorowania uwiklanego

Formuluje si¢ i dowodzi twierdzenia o cigglosci odwzorowania uwiklanego, zwiazanego z uogdl-
nianym jakobianem Clarke’a.

O HenpepLIBHOCTH HESIBHOIO OTOOpaKeHHs

DOpMYITEPYETCS B JOKa3BIBAETCS TEOPDEMA O HENPEPHIBHOCTHE HESBHOrO OTOOpaiKeHHMs, CBA-
3agHOoro ¢ obobmaemelv sikoOmarom Kiapka.




