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In this paper we investigate duality and stability relations for abstract convex minimization 
problems with constraints set described by a convex multifunction. The proposed duality gener
alize some of the existing dualization schemes by admitting various dualization parameters. The 
obtained form of a dual problem allows to derive easily some stability resUlts for dual solutions. 

Introduction 

In · this paper we present duality theorems for minimization problems of 
the form 
p inf{f(x): xeryo} 

where f:X~R is a real-valued function defined on a topological space X and 
r: Y ~xis a multifunction defined on a topological space Y, i.e. for every ye Y 
ry c 2x. Such formulation allows to consider in a unified way minimization prob
lems with different types of constraints (e.g. equalities, inequalities). 

Parameter y 0 E Y may be considered as representing certain quantities defining 
the problem whose effect on the solutions is of interest. For this reason we may 
refer to y 0 as a data vector. One of the most frequently exploited feasible set 
multifunctions r : Y~x is of the form 

ryo={x: g(x)~Yo} 

where g:X-+Y is a certain mapping. The formulation of P admits .also other, 
more general, choices of data, e.g. 

ry0 ={x: g(x,y0)~0} 

which stresses the fact that we consider as the data of the problem not only 
right•hand-side vector but also a left-hand-side mapping. 
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The problem P may be embedded, by a multifunction r in a family of 
perturbed problems 

inf {f(x); X E ry} 

where y reflects uncertainity in data due to errors of measurement or numerical 
representation. In the present paper we formulate the dual problem of P with y 
as a dualization parameter. The proposed duality generalize the schemes of Tind 
and W olsey [16] and the earlier one of Gould [7] by assuming more general de
scription of the constraints set and by admitting dualization parameters other than 
right-hand-side vectors. This last fact is of particular importance in stability prob
lems. 

The first section contains necessary definitions and facts about convex multi
functions. In the second section a dual program is formulated and its basic pro
perties are examined. In the third section we compare the dual formulated in this 
paper with Lagrangean dual of Kurcyusz (18] and Rockafellar (19]. The last part 
contains sensitivity analysis of dual solutions. The weak* compactness of dual 
solutions multifunction is also investigated. 

1. Convex multifunttions 

Let X and Y be any real linear spaces. In the sequel we consider a convex 
minimization problem 

p inf {f(x): X E ryo} 

where f: X-+ R is a convex function and r: Y-+ X is a convex multifunction, i.e. 

A.ryl +(1-A.)ryz c: r (.A.yl +(1-J,)h) 

for every y 11 y2 EYand A.E(O,l). 
If we denote by G (r) c: YxX the graph of a multifunction r · 

G(r)={(y,x)E Y x X:xEry} 

then convexity of r is equivalent to convexity of the set G (r). Namely, if 
(y11 x 1),(y2 ,Xz)EG(r) then (A.x1 +(1-A.)x2 ,AYt+(l-A.)y2 )EG(r) for every 
A.E(O,l) if and only if A.x1 +(1-A.)x2 Er(A.y1 +(1-A.)Yz) what amounts to 
convexity of r. The set dom r={yEY:ry¥:0} is called the dvmain of r. 

Convexity of r implies also convexity of the set ry for every y E Y. Multi
functions of this kind were considered by many authors, e.g. in the context of 
optimization by Borwein [2], Rockafellar [13], in application to stability problems 
by Robinson [11, 12]. 

An extended real-valued function jr: Y-+R=Ru {±oo} defined as 

jr(y)=inf{f(x): xEry} 

with the convention jr(y)= +oo whenever ry=0 will be called the perturba
tion function of the problem P. 
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PRoPOSITION 1. Let X, Y be any real linear spaces. If f and r are convex then the 
perturbation function jr of the problem P is convex. 

P r o o f. It is enough to observe that F: Xx Y-+ R defined as 

F(x,y)=. {
f(x) 

+oo 

xery 

x~ry 

is convex in x and y. Now the proof follows immediately from Theorem 1 of 
Rockafellar [19]. • 

la. Directions of recession. Recession multifunction 

Analogously to the recession cone of a convex function we can define, for ar
bitrary convex multifunction r: Y-+ X its recession cone ro+ as 

ro+={zE Y: rye r(y+A.z) for every y€dom r, AER, A~O}. 

PROPOSITION 2. Let X, Y be any real linear spaces. If r: Y-+ X is a convex multi
function then 
(i) ro+=o+ G(r) () {(y, x) E.YxX: x=O} 

where 0 + G (r) denotes the recession cone of G (r) 
(ii) ro+={z: rye r(y+z) for yedom r} 
(iii) ro + is convex. 

Proof. By definition (z, 0) eo+ G (r) n {(y, x) E YxX: x=O} if for every 
(y, x) E G (r) and every A~ 0 (y, x) +A (z, 0) E G (r). This is equivalent to the con
dition rye r (y + Az) for every y € dom r and every A~ 0 what proves the part (i) 
Part (ii) follows directly from Rockafellar [13, sec. 8]. Part (iii) is an immediate 
consequence of the fact that ro+ can be expressed as an intersection of two 
convex sets according to (i). Ill 

REMARK. It is ·worth noting that the definition of the recession cone JO+ of a con
vex function f: Y -+R, given by Rockafellar [13] is based on the epigraph of f 
and not on graph. So, the definition introduced above is more restrictive, when 
applied to function and give the set of all directions of constancy. 

Together with the recession cone ro+ we can consider also, for a given con
vex multifunction r its multifunction of recession o+r, o+r:Y-+X, defined as 

G(O+ r)=O+ G(r). 

If (z,t)EO+G(r) then (y,x)+A(z,t)EG(r) for every (y,x)eG(r) and A~O. 
Equivalently ry + te r (y + z) for every yE dom r, and consequently t E n r (y + z)"-
"'ry. By the last formula we obtain the inclusion yEdom r 

o+rze{tEX:te n r(y+z)'Sy}. 
yEdom r 

The following proposition is a straightforward consequence of the notions in
troduced above. 
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PROPOSITION 3. Let X, Y be any real linear spaces. Then zEro+ if and only 
ifOeo+rz. 

The following fact relates a feasible set multifunction to the recession cone 
of the perturbation function. 

PRoPOSITION 4. Let X, Y be any real spaces. If r: Y-+ X is a feasible set multi
function of the problem p then ro+ c o+ jr where o+ jr is the recession cone 
of the perturbation function. 

Proof. Ifzero+thenrycr(y+).z)forevery yedomrand).>O. It implies 
that inf{f(x): xery}):inf{j(x): xer(y+).z)} for every function f defined on 
X, yE do m r and ). ): 0. This is equivalent to jr (y + ).z) ~jr (y) for every yE dom r 
and ).):0. So, z belongs to the recession cone of jr. • 

lb. Dual relations 

Let us assume now that Y and U are two locally convex Hausdorff linear 
topological spaces in duality with respect to the bilinear form (y, u), y e Y, u e U 
with topologies compatible with this duality (i.e. functionals rp (y)=(y, u) and 
If/ (u)=(y, u) are continuous in these topologies). 

For arbitrary functional f: Y-+ R by its conjugate f*: U-+ R we mean 

f* (u)=SUP.veY {(y, u)-f(y)} · 

Moreover, let us denote by domf={y:f(y)< +oo} the effective domain of j, 
by Q0 ={u: (u,z)~O for every zeQ} the polar cone of arbitrary cone Qc Y 
and by cone C= {Ax:).): 0, x E C} the conic hull of arbitrary set Cc X. 

By Proposition 4 ro+ is contained in the recession cone of the perturbation 
function. The following proposition gives the dual relations. 

PRoPOSITION 5. Let Y, U be a dual pair of spaces. Then 

domjr* c cone domjr* c (r0+)0 • 

Proof. Let us consider SUP.vey{(y,u)-jr(y)} for arbitrary ue U and let 
z=t+k for arbitrary but fixed teY and kero+. Then (z,u)-jr(z)= 
=(t, u)+(k, u)-jr (t+k))=(t, u)+(k, u)-jr (t). Thus SUP.veY {(y, u)-jr(y)}): 
;;?;supz {(z, u)-jr(z)}):supkero+ (k, u)+(t, u)-jr(t). 

If there exists k ero+ such that (k, u)>O then supkero+(k, u)= += what 
implies jr* (u)= +oo. So, if u ~(ro+)0 then u ~domjr*. • 

2. Dual problem 

Denoting the class of all affine functionals defined on Y by Aff (Y) we introduce 

ff={FeAff(Y): Fy=(y, u)+u0 , u0 eR, ue(ro+)0
} 

Now we can define the dual to the problem P as 
supremize Fy0 

D subject to: f(x)): supy;xe r.v Fy for every x eX FE ff 



Duality and stability theorems 137 

Example 
Let us consider the problem 

P inf {f(x): b0 -g(x) ED} 

where f: X-'~>R, g:X-'~>Y is a mapping, b0 E Y, De Y is a closed convex cone. 
If we define multifunction r: Y-'~>X as rb={x: b-g(x) ED} then ro+=D and 
supb:xenFb=Fg(x) for every F belonging to §and the dual D takes the form 
of the dual proposed by Tind and Wolsey [16]. Namely, we obtain 

supremizep Fb0 

D subject to: f(x)~Fg(x) for every xEX FE§. 
Further specifications of functions f and g as linear gives usual dual pair 

of linear problems. Detailed calculations of this fact are contained in the paper 
of Gould [7, Th. 11]. 

REMARK. The condition u E (r0+)0 corresponds to the requirement on sign of 
dual variables. It is introduced in the definition of price functions F to indicate 
the analogy to the existing duals and play the same role as in [16] the require
ment for price functions to be nondecreasing. This condition excludes from con
siderations certain points where jr* takes +oo. In fact, such condition is not 
essential for the maximization in the dual problem and might be omitted. Similar 
observation was made by Gould [7] and also by Tind and Wolsey [16] and is 
motivated by 

PROPOSITION 6. The conjugate function of the perturbation function jr can be 
expressed by the following formula 

- jr* (u)=inf~ex {f(x)-supy:xery(y, u)} 

for arbitrary u E U. 

P r o o f. For every x EX and every u E U 

jr* (u)~supy:xery {(y, u) -jr(y)} ~supy:xery(y, u) -f(x). 

So, for every x eX and every u E U 

- jr* (u)~f(x)-supy:xery(y, u) 

and finally -jr* (u)~infxex {f(x)-supy:xery(y, u)}. 
On the other hand, for every yE Y 

inf~ex {f(x)-supy:~ery (y, u)} ~ 
~infxery {f(x)-supy;~ery(y, u)} ~jr(y)-(y, u). 

So, according to the last inequality 
inf~ex {f(x)-supy:xery(y, u)}~infyeY {fr(y)-(y, u)}=-Jr* (u). • 

Proposition 6 allows to formulate the dual problem D in the equivalent form 
D' as 

supremize <y0 , u)+uo 
D' subject to: -jr*(u)~u0 

uE(r0+)0 , u0 ER 
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By proposition 5, if u ~ (ro+)0 then jr* (u)= +oo. So, in other way, if there 
exists (u, u0 ) such that -jr* (u)~u0 then u E (r0+)0 • The formulation D' of the 
dual problem D admits a simple geometric interpretation. Namely, the problem 
D might be viewed as a problem of finding among all supporting hyperplanes of 
jr a such one which has the maximal value at y 0 • In fact, the condition - jr* (u) ~ 
?;: u0 can be rewritten as 

- supyer {(y, u) - jr(y)}~u0 
and the dual takes the form 

supremize (y0 , u) + u0 

D" subject to: jr(y)~(y,u)+u0 for every yE Y 
uE(r0+)0 , UoER 

For the sake of completeness we should notice that for a primal minimiza
tion problem of the form 

inf {f(x): X E ry0 , X E C} 

where C is a convex: subset of X ( C may represent the constraints of particularly 
simple form, e.g. x~O ·or the constraints which are not subject to perturba
tions) the dual D takes the form 

supremize Fy0 

D subject to: f(x)~supy;xsryFy for every xEC 
FE§' 

and the formula for JP• (u) from Proposition 6 may be restated as 

- Jr* (u)=infxEc {f(x)-supy; xery(y, u)}. 

Denoting by y (0) the optimal value of the dual problem · D we may formulate 

THEOREM 2.1 (weak duality) 
If x is feasible for P and F is feasible forD then jr(y0)~y(O). 

Proof. f(x)~supY :xen Fy~Fy0 • The first inequality follows from feasibility 
ofF, the second one follows from feasibility of x. Theseinequalities imply im
mediately jr(y0)~y(O). B 

Now we can formulate the two following properties. 
Property I. D is feasible if and only if jr (y)> -oo for every yE Y. 
Property 2. If y 0 belongs to the interior of dom r (interior in any admissible to
pology) and jr (y0 ) is finite then the problem D has a solution. 

These properties follow immediately from the formulation D of the dual and 
the conditions assuring existence of nonvertical support for convex functions. 

The question of equality between optimal values of P and D can be reduced 
to the question whether the equality jr (y0 )=jr** (y0 ) holds since 

sup {<Yo, u)+uo: - jr* (u)~u0 , u E(r0+)0
, u0 ER}= 

sup {(y0 , u) -jr* (u): u E(r0+)0 }= SUPueu {(Yo, u)-fr* (u)}=fP'* (Yo)· 

Corresponding theorems are contained in Rockafellar [19], Dolecki [5], Joly 
and Laurent [17]. 
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2a. Symmetry of the dual 

There e:<..ist several ways of introducing parameters in D. Here we perturb D 
by adding linear functional to the objective function f 

Let X and V be in duality with respect to the bilinear form (x, v) where 
xEX and vE V. 

A 'multifunction r*: V-+Aff(Y) defined as 

r*v={FEff: f(x)+(x,v)~supy;xeryFy for every XEX} 

will be called the dual multifunction of the problem P. 

Now we may introduce the perturbed dual problem Dv for v E V as 

Dv sup {Fy0 :FEr*v}. 

In these terms the problem D corresponds to the parameter v=O. Since f and r 
are assumed to be convex throughout this paper the dual multifunction r* is also 
convex by direct calculations. So, the dual perturbation function y: V-+ R de
fined as 

y(v)=sup{Fy0 : FEr*v} 

is concave with y (0) equal to the optimal value of D. 
If we recall that the recession cone of r* is equal to 

r*O+={tEV: r*vcr*(v+A.t) for everyvEdomr*, A.ER, },~0} 

then by similar arguments as in Proposition 4 r* o+ c o- y where o- y is the 
progression cone of y in the sense that z Eo- y if and only if y (v):;;;y (v+).z) 
for every v EV and ).~0. Basing on the similar arguments as in Proposition 5 
we obtain 

dom y* c (r* o+)* 

where (r* o+)* is the dual cone of r* o+' i.e. 

(r*O+)*={xEX: (x,t)~O for every tEr*o+}. 

If we denote by Aff (V) the class of all affine functionals defined on V then 
we may introduce 

&l' ={xEAff(V): x(v)=(x,v)+x0 , XE(r*O+)*, x 0 ER}. 

So, the dual to the problem D may be formulated as 
infimize x (0) 

DD subject to: Fy0 :(infv;Fer-vx(v) for every FEff 
XE&l' 

By calculations, similar to those of the Proposition 6, we obtain the formula 

-y* (x)=SUPFeJ'ii'{Fy0 -infv:Fer*v (x, v)}. 
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Thus the problem DD may be restated as 
infunize x0 

DD' subject to: x0 ~ -y* (x) 
XE(r*O+)*, X 0 ER 
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REMARK. The necessity of introducing the progression cone is motivated by the 
fact that the dual perturbation function is concave. This necessity might be omitted 
by passing to the minimization in the dual problem D . However the construction 
of the problem DD presents a straightforward way of constructing the dual for 
maximization problems. 

The following theorem establishes the symmetry of the proposed dualization 
scheme. 

THEOREM 2.2. The duality induced by D is symmetric in the sense that the optimal 
values of DD and P are equal under the assumption that the equality between opti
mal values of P and D holds. 

Pro of. The optimal value of the problem DD is equal to inf {- y* (x): 
xE(r•o+)*}=y**(O). On the other hand, according to the formula cited above 

-y* (x)=SUPFeF {Fy0 -infv: Fer•v (x, v)} ~ 

~Fy0 -infv:Ferov(x,v) for every FEF. 

So y* (x)~ -Fy0 -SUPv:Fer•v<x, -v). Thus, for the function conjugate to y* 

we obtain 

y** (v)~Fy0 -o(-v: r*- 1 F) 

for every FEF where r*- 1 F={v E V: FEr*v}. From this formula we obtain 
for v=O 

y** (O)~SUPF:e§ {Fyo-&(0: r*- 1 F)}=sup {FYo: FEr* O}=y (0). 

To get a bound from above for y** (0) let us observe that 

-y** (0)= -inf,ex-Y* (x)= -inf,exSUPFe§ {Fy0 -infv;FET•v(x,v)}~ 

~ -inf,ery
0 
SUPFeF {Fy0 -infv:Ferov(x,v)}= 

=SUP:rery
0 

{-infFe§ {Fyo-infv:Fer•v<x,v)} }~ 

~SUP,ery0 {-infFenv {Fy0 -infv:Fer•v<x,v)} }. 

If Fer*v thenf(x)+(x,v)~Fy0 for every xEry0 and consequently 

-(x,v)~f(x)-Fy0 

SUPv: Fer•v-(X, v) ~f(x) -Fyo 

Fyo -infv:~erov(X, v)~f(x) 

-infFer•v{FYo -infv: Fer•v (x, v)} ~ -f(x). 
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So finally -y**(O)~sup..,ery0 -f(x)=-fr(y0). Under the assumption that 
y(O)=fr(y0 ) what implies y**(O)=fr(y0 ). • 

2b. Solutions of the dual 

A convex function f: Y -+R is said to be subdifferentiable at y0 E Y if there 
exists u E U such that 

f(y)~f(yo)+(Y-Yo, u) 

for every yE Y, i.e. there exists a continuous affine minorant off which takes 
the value f(y 0 ) at y0 • Such an element u E U is called a .subgradient off at y0 • 

The following two theorems characterize the solutions of the dual problem D 
in terms of subgradients of the perturbation function fr at y0 • 

THEOREM 2.3. If u E U is a subgradient of fr at y0 then (ii, -fr* (u)) is a solu
tion of D. 

Pro o f. Let us observe firstly that the pair ( u, - fr* (u)) is feasible. As a sub
gradient of fr at y0 , u satisfies fr* (u)+fr (y0)=(y0 , u). So fr* (u) must be 
finite what implies that u E (ro+)0 and obviously u0 = -fr* (u)~ -fr* (u). The 
optimality follows from the relation (u,y0)-fr* (u)=fr(y0)+fr* (u)-fr* (u)= 
= fr (y0 ) what completes the proof. 8 

THEOREM 2.4. If the equality of the optimal values of P and D holds and (u, u0 ) 

is a solution of the dual problem D then u is a subgradient of fr at y0 and u0 = 
=-fr*(u). 

Proof. For every feasible pair (u, u0 ) we have (u,y0)+u0 ~(u,y0)+u0 =(u,y0)
-fr*(u)=fr(y0). By the definition of the conjugate function supyer {(y, u)-
-fr(y)}=- r(y0)-(u,yo). So for every yE Y (y, z1) -fr(y)~ -fr{y0)-(u,y0 ) 

what completes the proof. • 

3. Relation to other duals 

3a. Lagrangean duals 

For the problem P we consider the Lagrangean L: Xx U-+R defined as 

L(x, u)=f(x)-supy:xery(y, u)+(yo, u)=L(x, u,yo). 

The Lagrangean of this form was introduced by Kurcyusz [18] and was in
vestigated by Kurcyusz and Dolecki [6], Dolecki [5]. The dual pair of problems 
connected with L(x, u) can be written in the usual form as 

LP 

LD 

infxeX SUPueU L (x, u)=LPopt 

SUPueU infxexL (x, u)=LDopt 
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THEOREM 3.1. The problem LD is equivalent to D. 

Proof. The problem LD may be rewritten as SUPueu {(y0 , u) +infxex {f(x)
-SUPy;xery(y, u)} }. 

If infxex {f(x)-supy:xery (y, u) }= -oo for all u E U then Jr* (u)= + oo and 
D is infeasible so y (0)= -oo. Otherwise, there exists u E U such that infxex x 
x{f(x)-supy:xery(y,u)}>-oo. Accordingto the Proposition 5 such u satisfies 
also uE(r0+)0 soD is feasible and y(O)=sup{(y0 ,u)-fr*(u): uE(ro+)0}= 
=SUPueu {(yo, u)+infxex {f(x)-supy:xery(y, x)} }=LDow • 

Abstract minimization problems with perturbations were investigated also by 
Rockafellar [13, 19]. He considers a representation of the minimization problem P 
in the form 

inf,exF(x, 0) 

and the family of perturbed problems 

infxexF(x,y) 

where F: X x Y-+R is an extended-real-valued function with F(x, O)=f(x). The 
minimization over all the space X is obtained if we redefine the minimized func
tion f of the constrained problem P so that f(x)= +oo for x t/= ry0 , y 0 =0. The 
Lagrangean function K: X x U-+R connected with such family of perturbed prob
lems is defined as 

K(x, u)=infyeY {F(x,y)+(y, u)}. 

The Rockafellar's way of introducing perturbations in the form of function 
F(x,y) is rather general. It admits various forms of perturbations in constraint& 
set as well as perturbations in the minimized function. 

If we consider the problem P with y 0 =0 then the function F (x, y) connected 
with the family of perturbed problems Py is of the form · 

F(x,y)=f(x)+o(y: r- 1 x) 

where J_(y: r- 1 x)=O if y Er- 1 X and +oo otherwise, r- 1 x={y: X E ry}. For 
such a function F(x,y) the Lagrangean K(x, u) takes the form 

K(x, u)=infyeY {F(x,y)+(y, u)}=infyEY {f(x)+o(y: r- 1 x)+(y, u)}= 

=f(x)+infyeY {o(y; r- 1 X)+(y, u)}=f(x)-0* ( -u; r- 1 X)= 

=f(x)-supy:,xery( -u,y)=L(x, -u, 0). 

So, in this sense the dual problems derived from L (x, u) and K (x, u) and 
the problem D are equivalent. 

3b. Surrogate dual 

For the problem P a surrogate problem may be formulated as 

SP inf {f(x): Fy :::=:;supy:xer,.FY}=SPopt 



Duality and stability theorems 143 

where FE§'. It is an immediate observation that if X E ryo then Fyo ~ supy:xenFY 
and consequently fr(y0)~SPopt· If we denote 

v (F)=inf {f(x): Fy0 ~supy;:cery Fy} 

then the surrogate dual problem may be defined as 

SD sup {v (F): FE§'}. 

The dual of this form was introduced by Greenberg and Pierskalla [8] for 
nonlinear inequality type constraints and was investigated by many authors. ·Re
cently the basic properties of surrogate dual in infinite dimensional spaces for 
inequality type constraints were investigated by Sikorski [15}. We show here only 
the following equivalence result. 

THEOREM 3.2. If the equality fr (y0 )=LDopt holds then the surrogate dual prob
lem SD is equivalent to D. 

Proof SDopt =SUPFE.Fv (F)=supFE.F SUP;.;,. o inf {f(x)+.I.Fy0 - }, SUPy: :cery Fy} = 
=sup.,Eu inf:c~xL(x, u). Ill 

4. Stability results 

In the sequel we assume that the space of parameter Y is a Hausdorff topo
logical space satisfying the first countability axiom at y 0 with Wn as a countable 
basis of neighborhood at y 0 • In [1] the sufficient conditions for feasible set multi
function r at y 0 are given which assure for every continuous minimized func
tion f the upper semicontinuity of solutions at y 0 • We recall that for arbitrary 
subset D of a metric space X=(X, p) by its measure of noncompactness If/ (D) 

we mean the infimum of all those r~O for which D may be split to a finite num
ber of subsets {D;};= 1 , ... ,n u~= 1D;=D such that SUPv,zev, p (v, z)~r for each i. 

Moreover, if we denote by Inac ry0 = n U ry0 "'-ry the inner carrier of r at 
y 0 then we can state 

THEOREM 4.1 [1]. Let Y be a Hausdorff topological space that fulfills the first coun~ 
tability axiom, let X =(X, p) be a complete metric space and let r be u.s.c. and 
l.s.c. at y 0 E Y. Suppose furthermore that 

lim11 1Jf(B11)=0 and lnacry0 c ry0 

for B11= U ry0 ""- ry. Then for every continuous function f defined on X a solu-
:vewn 

tion multifunction M of the problem P 

My={xEry: f(x)~fr(y)} 

is u.s.c. at Yo· 
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The abreviations u.s.c. and l.s.c. are used for upper and lower semicontinuity 
respectively. 

One of the important consequences of the Theorem 4.1 is the following. 

THEOREM 4.2. If r: Y--+- X satisfies the assumptions of the Theorem 4.1 and jr (y0 ) 

is finite then there exists a neighborhood W of y0 such that for every y E W jr (y0 ) 

is finite. 

Proof. By contrary, let us assume, that in every neighborhood Wn there exists 
Yn such that tr (yn) is not finite. Only two situations should be considered: 

1. if jr(y11)=+oo then it is equivalent to the fact that ry11 =0 what amounts 
to the absence of l.s.c. at y 0 

2. if [r (yn)=- 00 then there exist { X 11 } ;;"= 1 X 11 E ryn such that j (Xn) tends to 
- oo; if { xn} ~= 1 contains a convergent subsequence with limit point x0 and 
Xo Eryo then f is not continuous at Xo; if Xo rf= ryo then r is not U.S.C. at y 0 ; 

and finally, if {x11};;"= 1 does not contain any convergent subsequence then r is 
not u.s.c. at y 0 • • 

So, in other words y 0 E int dom[r. Since tr is convex (according to the pro
position 1) the condition y 0 E int dom[r implies that jr is continuous at y 0 and 
there exists a neighborhood W of y0 such that tr is bounded from above on W 
(Bmndsted [3]). 

Now the stability of dual solutions follows immediately from the results of 
Moreau [9, 10] and Rockafellar [14]. Namely, we have 

THEOREM 4.3 [9] If f: Y -+-R is any convex function bounded from ab{)'/)e on some 
neighborhood of y0 (in any admissible topology on Y) then f is subdifferentiable 
at y0 and the set of subgradients is weakly* compact subset of U. 

This theorem generalize the well-known fact of boundedness of subgradients 
in every interior point of the effective domain of convex function in finite di
mensional case. As a corollary of Theorem 4.1 and 4.3 we may formulate the final 

THEOREM 4.4. If r: Y _.X and f: X--+-R satisfy the assumptions of Theorem 4.1 then 
the primal solution multi/unction M is u.s.c. at y 0 and the set of solutions of the 
dual problem D is weakly* compact. 

S. Generalizations 

Throughout the paper we considered convex primal problems assuming con
vexity of a minimized function f and a feasible set multifunction r. The most im
portant consequence of these assumptions was convexity of the perturbation func
tion Jr. 



Duality and stability theorems 

Let us observe firstly that the dual problem 
D supremize (y0 , u)+u0 

subject to: Jr(y)~(y,u)+u0 for every ye Y 
u e(ro+)0 , u0 eR 
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remains well defined if we remove the convexity assumptions. However, having 
in mind the geometrical interpretation of the dual problem, we cannot expect the 
existence of the nonvertical support closing the duality gap in nonconvex case. 
One of the usually treated way to avoid this difficulty is to consider larger classes 
of dual price functions ff. This approach, suggested by Gould in [7] was de
veloped by Dolecki and Kurcyusz in [6] and Dolecki [5]. The analysis of different 
price function classes ff and the resulting duals was also given by Tind and Wol
sey [16] for problems with inequality constraints. These ideas may be used also 
in the context of duality proposed in the present paper. 

There exist several ways of introducing dual multifunction r* to a given multi
function r. In finite dimensional spaces dual multifunction r* may be considered 
as a multifunction having the graph G (r*) which is the polar set of the graph 
G (r). The properties of such dual multifunction and corresponding pair of linear 
dual problems were analysed recently by Ruys and Weddepohl [20]. Most recently 
this idea was considered by Dolecki [21] in general spaces. 

The main tool explored in this approach is the notion of pairing (( ·, ·} be
tween arbitrary sets X and Y understood as an arbitrary function from the pro
duct space Xx Y into real numbers R. In particular, if Y is any set of functions, 
defined on X, then a pairing (( ·, ·} between X and Y may be defined as {x, y}= 
=y(x). If VI and c]> are any class of functions defined on X and Y respectively, 
and (( ·, ·}: Xx 1/f-+R (( ·, ·}: Yx c]>-+R are arbitrary pairings then the dual multi
function r*; llf-+c]> may be introduced as 

r* lfl={tpEc]>: ((y,tp}-((x,llf)):(O for every xeX and yer- 1x}. 

Taking the class c]>=ff and the class lfl= V (according to the notations intro
duced in section 2) and defining ((y, F}=Fy, ((x, v))=f(x)+(x, v) we obtain 

r*v={Feff: f(x)+(x,v)~supy:xetyFy for every xeX} 

which is the same as the dual multifunction introduced in the section 2a. 
The notion of the recession cone of multifunction, introduced in the section la 

of the present paper and appearing in the formulation of the dual problem D 
gives rise to the more detailed description of the set of price functions /F. It gives 
additional information about the structure of the set ff and might be explored 
in applications and further investigations. 
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Dualnosc i stabilnosc w wypuklych zadaniach minimalizacji 
warunkowej przy ograniczeniach zadanych multifunkcyjnie 

W pracy formulowany jest problem dualny dla abstrakcyjnych zadan minimalizacji warun
kowej, gdzie zbior ograniczen zadany jest multifunkcj'! wypukl<!. Proponowany schemat dualny 
umozliwia dowolny wybor parametru dualizacji, a takZe uog6lnia niekt6re, istniej'!ce schematy 
poprzez moi.liwie ogolnl} postac zbioru ograniczen. 

,ZJ;yam.HOCTL 11 ycTOH'IIIBOCTL B BLIRyl\:JILIX 3a,!J;a'laX ycJIOBHOU 
MDHHMII3aQHH npu orpauuqeHUHX 3a)J;aBHLIX B BH,!J;e 
MHOro3Ha'IHLIX oToopa~enuii 

B pa6oTe $QpMynnpyeTcH ~allhaaH npo6neMa ~ITH a6cTpaKTHb~ 3a~aq ycnoBROH NnrHR

Mll3arum, Kor~a M.tiolKecTBO orpruruqefUI.il: 3a.L\llHO B Blf~e Bhm)'Knoro MHoro3Ha'llloro oTo6pa
X<emm. IIpe~naraeMaJI ~a.IThHaH cxeMa II03BOITHCT IIPOBO.!UI1'h IIPOH3BOllhl!hl'H Bhl6op rrapa
MeTpa ~amnar.um, a TaiOKe o6o6m;aeT HeKOTOPhle cymec'fByrorrme cxeMhr nocpe~CTBOM B03-
MoiKlto o6m;ero B;a~a orpaffil:qeK!IH. 
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