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In the paper two simple algorithms for binary knapsack problem are considered: the sim­
plest algorithm (greedy algorithm without ordering of variables) and typical greedy algorithm. 
The probabilistic properties of the simplest algorithm are investigated. Recurrence equations 
describing the weight of knapsack in each iteration are obtained. These equations are then solved 
in the case of uniformly distributed weights of items packed into the knapsack and the distribu­
tion function of the knapsack weight is found. Next the mean value and variance of the knap­
sack weight as well as the knapsack value are calculated and asymptotic properties of them are 
investigated. Finaly, probabilistic behaviour of greedy algorithm is investigated using simula­
tion approach. A numerical experiment is described and the mean value of the knapsack value 
is estimated. Both algorithms are then compared. · 

1. Introduction 

The quality of approximate algorithms can be characterized by their accuracy 
and computational complexity. Usually these parameters of an algorithm are ana­
lysed in the worst case. Such analysis gives frequently too pessimistic conclusions. 
Such is for example the case with greedy algorithm for binary knapsack problem. 
One can practically observe pretty good behaviour of this algorithm although in 
the worst case its accuracy can be arbitrarily bad. 

This disadvantage of the worst case analysis is partially overcome by the pro­
babilistic analysis of algorithms. Unfortunately the latter is usually more com­
plicated and results published concern mainly simple probabilistic models (see 
[1], [2], [3], [9]). 

Most of the .results are obtained for asymptotic case (when the size of problem 
tends to infinity). Usually only average (in probabilistic sense) properties of algo­
rithms are analysed. 
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Recently there have been some attempts to perform more detailed probabi­
listic analysis for simple algorithms (see for example [7], [8], where the bin pack­
ing problem is considered). The goal of these attempts is to obtain not only some 
moments but also the distribution function for important parameters of alg-orithms. 
This is also approach presented in this paper. 

Two simple algorithms for binary knapsack problem are considered. The fin:t 
one is the simplest algorithm (sometime called greedy without ordering); the sec­
ond is the greedy algorithm. 

Most of analytical results concern the simplest algorithm. Recurrence equa­
tions for probabilistic distribution function describing the weight of knapsack in 
any iteration of the simplest algorithm are obtained (section 3). These equations 
are then solved in the case when weights of items packed into the knapsack are 
independent, uniformly distributed random _variables (section 4). Some properties 
of this solution are then analysed (section 5), which allows to calculate mean value 
and variance of the objective function value generated by the simplest algorithm 
(section 6). Asymptotic properties of the algorithm are also considered (section 6). 

It seems that it would be too difficult to repeat the same analysis for greedy 
algorithm. To have the possibility ·of comparing the behaviour of both algorithms 
the parameters of greedy algorithm are obtained by computer simulation and 
some analogues of analytical results presented earlier for the simplest algorithm 
are described. 

In the paper the following notation is used. Random variables are denotes . by 
capital Latin letters, their realizations by small letters. Symbol P { · } denotes the 
probability of event { · }. For random variables X by E (X) - their mean value 
and by Var (X) their variance is denoted. 
R is the set of real numbers. 
N denotes the set of natural numbers. 

2. The simplest algoritlun for binary knapsack problem 

Consider the binary knapsack problem 

where a,. c,, beR, i=I, ... , n. 

11 

max z= L c1 • x, 
1=1 

(I) 

An interpretation of (1) is the following: One has to pack a knapsack which 
can hold a maximum weight b. Each of n packed items has a weight a1 and a val­
ue c1• The goal is to fill the knapsack in such a way, that their weight does not ex­
ceed b and the total value of choosen items is maximized. 
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In probabilistic analysis of an algorithm one needs a family n of problems. 
These problems are created by assuming that a1, c;, i=I, ... , n, are the realiza­
tions of random variables A1 and C;, i=l, ... , n. Each possible collection of reali­
zations of A1 and C;, i=l, ... , n, defines an element of family n. Let H 1 (x)= 
=P { C1 ~ x} be the distribution function of random variable C1 and 

G1 (x)=P{A1 ~x} . 

Assume that A 1, i=l, ... , n, are independent random variables, 0<A1 ~b, and 
that b is a fixed constant,. Let X1, i=I, ... , n, be random variables corresponding 
to the decision variables of problem (1). The realizations of these variables are 
determined by an algorithm used to solve the problem (I). For k=l, ... , n, de-

k k 

fineS"= .2; A1 • X1, Z"= .2; C1 • X1 and lets" and z" be the realizations of S" and Z". 
i=l i=l 

The simplest algorithm for problem (I) proceeds in the following way: 
The simplest algorithm 
1° x1 :=1 

St: =at 
zl: =cl 

2° for k=2, ... , n do 
if sk-l +a"~b then 
xk: =I 

s": =sk-l +a" 
zk: =zk-l +c" 

else 
xk: =0 
s": =Si.-t 
zk: =zk-l 

It is easy to ~ee that the computational complexity of above algorithm is 0 (n). 
In the following section the distribution function of random variable Sk> 

k=l, ... , n, (which is interpreted as a weight of knapsack after k-th iteration of 
the simplest algorithm) is considered. 

3. Recurrence relations 

Assume that a1 ER, i= 1, ... , n. Without loss of generality we can take b= 1. 
Let F"(x)=P{S"~x}, k=I, ... ,n, xE[O, I]. 

LEMMA I. The following equations hold 

F1 (x)=G1 (x), x E [0, I] 

"' 
F"(x)= j [I+G"(x-t)-G"(l-t)]dF"_t(t) 

(2) 

0 

for k=2, ... , n, xe[O, 1]. 
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Proof. The initial condition F1 (x)=G1 (x), x E [0, 1] is an immediate con­
sequence of Step 1 o of the algorithm. 

For 2~k~n there are two possibilities: 
(i) Sk- 1 +Ak~ 1 and then Xk=1, Sk=Sk-l +Ak; 
(ii) Sk- 1 +Ak> 1 and then Xk=O, Sk=Sk-1 
This implies that 

P {Sk~x}=P {Sk~x and Xk=1}+P {sk·~x and Xk=O}= 

=P{S~c-1 +Ak~x}+P{Sk-l +Ak> 1 and Sr,-1 ~x} 

Random variables A;, i<k, and Ak are independent. Thus 

X 

(3) 

P{Sk~x and Xk=1}=P{Sk- 1 +Ak~x}= j Gk(x-t)dFk_ 1(t) (4) 
0 

An event Sk_ 1 +Ak>l and Sk_ 1 ~x is equal to the sum of events {t+A~<>1} 

and {Sk_ 1 =t} for all t~x, so 

P {Sk~x and Xk=O}=P{Sk-l +Ak>1 and Sk-1 ~x}= 
X 

= f P {t+A~<> 1} dFk- 1 (t) (5) 
0 

From (3), (4), (5) we obtain for k=2, ... , n. 

X 

P {Sk~x}= J [Gk(x-t)+ 1-GI<{1-t)]dFk-1 (t) • 0 

In the case of discrete variables A1 similar recurrence relations can be obtained. 
Assume a1 EN, i=l, ... ,n, and beN. 

Denote p~=P {Sk=i} 
I 

p"(i)=P {Sk~i}=}; p~ 

g~=P{Ak=i} 
Gk(i)=P {Ak~i} 

1=1 

In this case the following relations hold (see [10]): 

P1 (i)=G1 (i), i=l, ... , b 

' Pk(i)= _2; [l+Gk(i-j)-Gk(b-j)]p~-t, k=2, ... ,n, i=l, ... ,b 
J= 1 

Moreover, 
I 

P{Sk~i and Xk=l}= _2; Gk(i-j)p~- 1 

j=l 

I 

P {S~c~i and Xk=O}= ~ [1-Gk(b-j)]p~- 1 

J=l 

(6) 

(7) 

(8) 
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4. Solving of recurrence relathms in the case of uniform 
distribution of A 1, i=1, ... , n 

Consider at first a continuou~ case. Assume that 

\ 

[

0 for x<O 
G1 (x) = G(x)= x for x E [0, 1], 

1 for x>l 
i=l, .. . ,n 

LEMMA 2. If A 1, i= 1, .. . , n, are independent and (9) holds then 

Fk(x) = x\ k=1, ... ,n, xE[O,l] 

solves the recurrence relations (2). 

P r oof. Substituting in (2) Gk (x)=x for x E [0, I] we obtain 

F 1 (x)=x 
. ~ . 

FT<{x)=_{ xdFk _1 (t), k=2, ... ,n 
0 

151 

(9) 

(10) 

which immediately implies that Fk (x)=x\ k= 1, .. . , n, x E [0, 1]. Observe that 
the density function of sk is 

fk(x)=k·xk-1, xE[0,1], k=l, ... ,n (11) 

In the case when A1, i= 1, ... , n, are discrete, independent and uniformly dis­
tributed random variables a solution of (6) is the following: Assume 

gj=gJ=l/b, j=l, .. . ,b, i= l, ... , n 

Then 

pk (i)=(ifb)k' i=l, ... ,b, k=l, ... ,n (I2) 

ik - (i - 1)k 
k- i=l, ... ,b, k=l, ... ,n (13) p~ - --bk--, 

5. On the properties of solutions of (2) 

In the following we analyse some properties of obtained solutions of recur­
rence relations. At first we prove a theorem from which as a corollary we obtain 
the independence of events {Sk~x}, {X1=o1}, o1=0 or 1, i= 1, ... , k, and expres­
sions forP{X1=o1}, o1= 0 or 1, i=1, ... ,n. This allows us to find a mean value 
and variance of the value of knapsack and analyse asymptotic properties of these 
moments. 

Theorem. Let A 1, i=1, ... , k, be independent random variables uniformly 
distributed on [0, I] and D1=0 or 1" i= 1, ... , k. Then 

and 
1 i-1-(1-2)o; 

X 1=o., i=1, ... , k}=x" n . 
. l 
1=1 

(14) 



152 K. SZKATULA, M. LIBURA 

P r o o f. The proof is by induction. Denote 

} i-1-(i-2)01 
d1 (oh ... , o1)= fl i 

•=1 

Observe that according to (4), (5) for i=1 

P {S1 ~X and X1 =JI}=x01 

which coincides with (14). 

Assume that fer some j, 1~j~k-1, the formula (14) holds, i.e., 

P{S1 ~x and X1=o1, i=1, ... ,j}=x1 d(ol>···•J1) (15) 

We will show that this implies that (14) is fulfilled also for j+ 1, i.e., 

P {S1 ~x and x 1=o;, i=l, ... ,j,j+ l}=xJ+ 1 dJ+ 1 (o1, ... , oJ> oJ+ 1). 

Two cases are considered: 
(i) If o J+ 1 = 1 (it means that the iteni (j + 1) can be packed) then 

P {SJ+ 1 ~x and Xt=ht. i=l, ... ,j, XJ+1=1}= 

=P {S1 +AJ+ 1 ~x and X 1=01, i=1, ... ,j}= 
X 

= f GJ+ 1 (x-t)d,P{S1 ~t and X1 =o~> i=1, ... ,j}= 
0 

X 

= J (x-t)jr1- 1 dJCo1, ... , o1)dt= 
0 

1 
=x1+ 1 d1 (a1 , ••• ,o1)-. -

1 
=x1+ 1 dJ+l(ol, ... ,oj,oJ+l). {by (15) and (9)) 

;+ 

(ii) Similarly, for 01+ 1 =0 

X 

= f [1-GJ+dl-t)d,P {S1 ~t and X1 =o~> i=1, ... ,j}]= 
0 

(by (15) and (19)) • 

COROLLARY 1. 

P{Xk=1}=1/k, k=l, ... ,n 

P{Xk=O}=(k-1)/k, k=1, ... ,n. 

(16) 

(17) 

Proof. Taking x= 1 in (14) and summing over all 01> i=!=k, we obtain (16) 
and (17). • 
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CoROLLARY 2. The events {S~>~x}, {X1=o1}, i= 1, ... , k, are independent. 

Proof. From (14) and (10), (16), (17) we have 
t 

P{S"~x and X1=o1, i=l, ... ,k}=P{S"~x} n P{X1=o1} • 

i=l 

6. Mean value and variance of the knapsack weight and 
value for the simplest alg~uithm 

The results obtained in section 5 allows us to calculate mean value and vati­
ance of the weight (S") and the value (Z") of the knapsack generated by the sim­
plest algorithm in k-th step. Assume that 

A1, i= l, ... , n, are independent random variables uniformly distributed 

on [0, 1]. (18) 

From Lemma 2 we have F" (x)=x", k=1, ... ; n, x E [0, 1], hence for k=l, ... , n 

1 1 
E(St)= J xdF" (x)=kl 

0 + 
k 

Var(S")=E(S;)-E(S")
2
= (k+ 2) (k+ 1)2 

(19) 

(20) 

Using (19) and (20) one can now evaluate the probability that the random 
variable S" differs from its mean value by given e > 0. Substituting in well known 
inequality (21) (see [5]) Y=(S"-E(S")) 2

, R=e 2 

P {Y~R}~E(Y)/R (21) 

we obtain 

(22) 

Assume now that random variables A1, i=1, .. . , n, and CJ> j=1, .. . , n, are mutu­
ally independent, (18) holds and, moreover, that 

E(C1)= V=const, j=l, ... , n. (23) 

Then the mean value of the objective value (i.e., the value of knapsack) gener­
ated by the simplest algorithm in k-th step can be calculated as follows 

k k 

E(Z")=E(_27ctxt)= _2; E(Ci Xt)= 
i=l i= 1 

" . k 1 
=}; E(C;)E(X1)=(by Corollary 1)= V}; T (24) 

t= 1 i= 1 

This way we have proved the following corollary: 
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CoROLLARY 3. If A 1, i=1, ... , n, and C1, j=1, ... , n, are mutually independent and 
(18), (23) hold then the mean value of the objective function obtained by the sim­
plest algorithm is given by the following formula 

n 1 
E (Zn)= V· _2; i 

i=1 

71 1 
Observe that for large nE (Z,) behaves as logarithm of n because }.; -:- = 1n n + 

1=1 l 

+y+o(n), where o(n)-+0 if n-+oo and y~0.5772 is Euler's constant. Thus we 
have for large n 

E(Zn)= V(lnn+y)+o (n) (25) 

In a ~imilar way a variance of the objective value generated by the simplest 
algorithm can be calculated. 

Assume that 

E(c;)= W=const (26) 

and, moreover, the assumptions of Corollary 3 hold. Then for k=1, ... , n 

k k 

Var(Zk)==E(Zf)- (E(Zk))2 =E((_2; C;X;n- (E(_2; C;X;w== 
1=1 1=1 

k k k 

= L E(C1
2 X~)+}; }; E(Ct C1 X1 X1)+ 

1=1 1=1 J=l 
J.=t 

k k k 

- _2; (E(C1 X1)) 2
- _2; L E(C1 X 1)E(C1 X1)= 

i=l i=l J=l 
j,=t 

(by Corollary 2 and above assumptions) 
k k 

== L E(C1
2 )E(X1

2
)- L (E(C1)E(XJ)2 

i= 1 1=1 

1 
From Corollary 1 it is easy to calculate that E(X1

2)=-:-. Using (16), (17), (25), 
l 

(26) and above formula for Var (Zk) we obtain for k=n the following corollary: 

CoROLLARY 4. If A" i=1, ... , n, and C1, j=I, ... , n, are independent random 
variables and (18), (25), (26) hold then 

n 1 n 1 
Var(Z)=W ~ -- V 2 )1-

n L.J i "'-' i2 (27) 
i=l i=l 

n 1 n2 
Observe that for large n from the fact that}~~ 1~ i2=6 it follows that 

n2 
Var (Z,)= W(lnn +y)- V 26+ o (n) 
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7. Analysis of greedy algorithm for the knapsack problem 

The simplest algorithm is a very useful theoretical model but it can be hardly 
regarded as a practical method for solving binary knapsack problem. 

On the other hand, the greedy algorithm which differs from the simplest al­
gorithm by additional initial phase, is of great theoretical and practical import­
ance. This initial phase consists in ordering of items to satisfy the following con­
dition 

ci+l C; 
--:(-, i= l, ... ,n -1 
a;+l a; 

(28) 

After completing this initial phase greedy algorithm performs exactly as the sim­
plest algorithm. In the worst case greedy algorithm has time complexity O(n ·Inn). 
Observe that after initial phase random variables C;, A 1, i= 1, ... , n, are not in­
dependent anymore, which significantly complicates the analysis. For this reason 
we were not able to obtain for greedy algorithm theoretical results like presented 
above. Some equivalents of these theoretical results for greedy algorithm were 
obtained in the experimental way. 

Computational experiment was organized in the following way: For each size 
n= 100, 200, .. . , 1000, 2000, 3000, 5000, 50 random problems were generated as­
suming AI> C1, i=1, .. . , n, to be uniformly distributed on [0, 1] independent ran­
dom variables. Then mean value and variance of knapsack value were estimated. 
Let Vn denote a random variable, whose realizations are values of knapsack gen­
erated by greedy algorithm. Results of experiment suggested the following depend­
ence of the mean value of Vn on n: 

L(n)=A+BnT (InR(n)+C) (29) 

where A, B, C, R, T (T:( 1) are constants. 
Using methods of nonlinear regression these constants are determinated which 

allows to formulate the following conclusions. 
1° If A 1, Ci> i=l, ... , n, are independent, uniformly distributed on [0, 1] random 

variables, then E(Vn) can be approximated by the following formula 

E(Vd)~0.552+0.0l2 · y'n · (lnn+61.8) (30) 

Table 1 compares estimated mean values of E ( Vn) with values given by (30). 
High quality of approximation is observed for considered problem dimensions 
(the standard deviation is equal to 0.114). 

Another observation derived from the results of experiment is the following: 
2° Under the assumptions of Hypothesis 1 there exist a constant D>O such that 

Var(Vn)<D ·Inn 

For obtained data it is enough to take D=1.15 
Observe that if we assume that facts 1°, 2° hold for large n, then 

(31) 

(32) 



156 K. SZKATULA, M. LWURA 

and for e>O (from (21)) 

p {1-Vn -_E(_Vn) I>- e}~ _D_ 
Inn ~ "" e2 ln n (33) 

3° If (32) holds then the mean value of knapsack value Z,. can be regarded as re­
presentative for solutions which can appear. Compare that for the simplest 
algorithm we have 

Var(Z,.) 
!~~ E(Z,.) - const (34) 

Table 1 

estimated 
I 

absolute values 
n= mean values of L (n) value of dif· 

of v. ference 
I 

100 7.537 8.020 0.483 
200 11.546 11.438 0 .. 107 
300 14.016 14.033 0.017 
400 16.305 16.185 0.120 
500 18.004 18.088 0.084 
600 19.845 ~9.797 0.047 
700 21.214 21.402 0.188 
800 22.958 22.886 0.072 
900 24.166 24.282 0.116 

1000 25.524 25.604 0.080 
2000 36.838 36.596 0,241 
3000 44.779 44.636 0.143 
5000 57.793 57.881 0.080 

4° We can observe that the greedy algorithm is much better than the simplest 
algorithm. Formally this fact can be expressed as follows 

. E(Zn) 
hm E(V.)=O (35) 

n-.oo n 

A~cording to (25) and above observation the ratio ;~~~ tends to 0 as fast 

as yn. 

Conclusions 

The results presented in the paper concern very simple algorithms and proba­
bilistic models. Only for the simplest algorithm analytical result~ are obtained. 
Although it would be desired to have results of this type for more complex models 
there are some doubts whether similar approach can be sigt?.iiicantly extended. 
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The main difficulty lies in the dependence of random variables appearing in the 
model after ordering decision variables. The step of ordering is pretty common 
in greedy-like procedures and these algorithms seem to be intractable with the 
approach presented. On the other hand the algorithms which do not destroy ini­
tial independence of random data could be regarded as good candidates for per­
forming similar probabilistic analysis. 
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Analiza probabilistyczna prostych algorytm6w dla binamego 
zadania zaladunku 

W pracy rozwa±one Slt dwa algorytrny przybliwne dh binarnego zadania zaladunku (tzw. 
zadania pakowania plecaka): algorytm najprostszy (algorytm zachlanny bez porzqdkowania zmien­
nych) oraz typowy algorytm zachlanny. Wyprowadwne Sl! zaleinosci rekurencyjne opisujqce za­
pelnienie plecaka w kolejnych krokach algorytmu najprostszego i uzyskiwane s~ ich rozwi~zania 
dla r6wnomiernych rozldad6w prawdopodobienstwa wag ei<::ment6w. Wyznaczane S!!: wartosc 
srednia i wariancja funkcji celu generowane przez algorytm. Odpowiednie wielkosci dla algo­
rytmu zachlannego S!! uzyskiwane w eksperymencie obliczeniowym a nast<epnie oba algorytmy 
Sl! por6wnane. 
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BepOHTHOCTIIbrii auaJUI3 DpOCTLIX aJif'OpRTMOB ,[(JIB oyJieBoii 

3a.l"(a'lll o proi~3aKe 

K. SZKATULA, M. LIBURA 

B pa6oTe paccMoTpemr JJ;Ba npn6J1IDKe:mn,re anropJITMbl ,Z:t:Jll( pememm 6yneno:il: 3aJJ;a'!ll 

o proiOaKe na MaKCRM)IM: npocTe:il:I:r:mii: a.rrropH:TM (rpnM anropnTM 6e3 nepeynop.l!JJ;O'IliBaEll:.!l 

uepeMe:mn,rx) 1I o6:&!KHOBeH!lbl:il: rp:RM aJITopnTM. ,ll;AA npocreiimero aJITOPRTMa noJIY'leHa Be­

poJITHOCTHa.ll xapaKTepncnnca pe3Y.iibTaToB oqepe)l;JU,IX ero maroB. CoorBeTCTBYIO!l(aJI xapax­

TepncT!nca rpnJJ;n: anropuTMa nonyqeHa nyTeM qncnelmoro JKcnepaMeHTa. B 3aKJIIO'!liTeJib.t!oit 

qacrn pa6ot:&I cpanromaetc.ll rroneJJ;eEll:e o6onx aJITop!ItMOB JJ;JI.ll 6ynenou 3aJJ;a'Ill o piOK3aKe 

Ha Ma.KCJIMYM. 


