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Numerically stable algorithms for synthesis of full and reduced order state observers are pro­
posed. First the general problem of synthesis of state observers is posed and the set of all attainable 
structures of the observer is completely described. A constructive method for obtaining all solutions 
of the problem is proposed. The computational algorithm is based on the orthogonal canonical 
form of linear time-invariant systems and involves orthogonal similarity transformations only. 

1. Introduction 

In the synthesis of state observers as proposed in [1], [2] the following problems 
remained open: 

- description of the set of all observers that are attainable for a given system, and 
- development of a general method for obtaining all solutions of the equations 

for determining the observers' matrices. 
A complete solution of these problems was given in [3], [4]. However the general 

method proposed there is not always suitable for numerical computations since 
it involves transformations which are not numerically stable. Thus an important 
problem in the synthesis of state observers remains the creation of numerically 
stable algorithms for obtaining the observers' matrices. 

In the present paper an efficient computatio~al algorithm is proposed for synthesis 
of full and reduced order state observers. It involves only orthogonal transformations 
and is numerically stable. 
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2. Statement of the problem 

Consider the completely observable system 

x (t)=Ax (t)+Bu (t) 

y (t)=Cx (t) 

where x (t) eR", u (t) e: Rm, y (t) e= Rr, and rank C=r. 

(1) 

Under the assumption that only the output y (t) is available there arises the 
problem of synthesis of a state observer 

· z (t)=Fz (t)+Gy (t)+ Hu (t), z (t) e: Rq, 

where q=n (a full order observer), or q=n-r (a reduced order observer). 

The observer matrices satisfy the equations [2] 

and the relation 

TA-FT=GC, 

H=TB 

rank M (T)=n, 

where M(T)=T for q=n, and M(T)=[-~] for q=n-r. 

The matrix Fe Rq· q is chosen so that the system 

v (t)=Fv (t) 

of the dynamic error v (t)=z (t)- Tx (t) has a prescribed dynamics. 

(2) 

(3) 

(4) 

(5) 

(6) 

The set Eqc.Rq·q of all matrices Fe Rq·q such that equations (3), (4) have a so­
lution (T, G, H) satisfying (5), is called the set of attainable matrices of the system (6). 

~ A~~rding to this defir{ition the problem of determining all matrices (T, G, H), 
satisfying (3)-(5) for a FeEq, is said to be the general problem of synthesis of 
state observers (GPSO). The corresponding triple (T, G, H) is said to be the solution 
of GPSO. 

It is clear in view of ( 4) that only the determination of the matrices T, G satisfying 
(3), (5) is of interest. 

3. Solution of the general problem of synthesis of state 
observers 

Let s(n/r~s~n+l-r) be the observability index of the pair (C,A) : 
s=min {i: rank D 1=n}, where 

Dt=[CT, AT CT, ... , (A~i-1 CTJ. 
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Define the conjugate Kronecker indices r 1 , •.• , r. (r1 ~ . ; . ~r.~ I, r 1 + ... +r.=n): 

r1 =r, 
r;=rank D;-rank D1_ 1 , i e 2, s . 

Then the setofKronecker indices of(C, A) is {s1 , ... , s,}, s1 ~ ... ~s,~ I, s1 + ... +s,=n, 
whe"e s1 is the number of r;-s that are ~j. 

Let ti be the number of the integers from the set {r2 , . .. , r.}, which are ~j: t 1 ~ ... 

... ~t,,~I, t1+ ... +t,.=n-r. 
For each Fe Rq·q denote by ft> ... ,};.the degrees of the invariant polynomials 

ofF ordered by magnitude: /1 ~ ... ~.fk~I, / 1+ ... +./k=q. 
Now the set EqcRq·q can be completely described as follows: 

PROPOSITION [3], [4]. 
I. Let q=n. Then F f? En iff 

f 1 + ... +!£~s1 + ... +s; for each i=I, ... , k-I. (7) 

2. Let q=n- r. Then Fe En-r iff 

ft+ ... +_h~tl+ ... +t; for each i=I, ... , k-1. (8) 

The first part of the proposition is a result dual to the well known theorem of 
Rosenbrock [5]. 

As a corollary of part 2 of the proposition one obtains that Eq is the set of cyclic 
qxq matrices iff r2 =n-r, and in particular if r=l. 

The proof of the proposition is based on a constructive method for determining 
the matrices T, G satisfying (4), (5) [3], [4]. This method, however, is numerically 
unstabie which restricts the area of its implementation especially for high order 
and ill-conditioned problems. 

In the following section a numerically stable algorithm for synthesis of full and 
reduced order state observers is described. 

4. A numerically stable algorithm for syntheis of state 
observers 

4.1. Full Order Observers 

For q=n one can choose T=ln which corresponds to the so called identical 
observer. Hence the problem is to determine the matrix G from the equation 

A-GC=F, FEEn. ~) 

We shall consider the case when the dynamic properties of (6) are determined 
by the spectrum s (F) of F. 

Let sv=(sl> ... , sa; p 1 ±jq1 , ... ,Pb±jqb) be the desired spectrum of F, where 
sl> ... , sa are the real, and p 1 + jq1 , ... , Pb -jqb- the complex conjugate eigenvalues 
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ofF, a+2b=n. Hence we are going to solve the problem: Given sn find F and G 
such that (9) is valid, and and s (F)=sv. 

This is a useful modification of the problem considered in Sect. 3. Indeed, the 
determination of Tand G from (3) and (5) for Fe En yields a preliminary verification 
of the fact that FE En· If F is chosen with distinct eigenvalues than it is cyclic and 
surely FE Ew If however the desired matrix F has multiple eigenvalues than accord­
ing to the proposition it is necessary to check the condition (7) which requires the 
determination of the Kronecker indices of ( C, A). If finally the matrix F is chosen 
in companion form than the inclusion FE En is again guaranteed. In this case howe­
ver large coefficients of the characteristic polynomial (and hence large elements 
of F) may be obtained which shall deteriorate the solution. 

If r> 1 the above problem does not use the full freedom in the solution G of (9). 
That is why we shall consider only the case r = 1. If r > 1 then using a dyadic in­
jection G=gd (g ERn, dT eR') the problem is reduced to the case r=l. 

The pair (AT, CT) can be transformed to the orthogonal canonical form (A, C)= 
= (UT AT U, UT CT), where 

- r - ~~~-:--·-- -~~-~~-- - ---- - - -1 l-~~~1 A= --- · ·--. -- -- - --- - -- - ---- ' C= ' 
·:___ _____ __ ______ 0 

0 ~ an,ll-1 : all 

a'[eRn-i+l, c10 #0; a;,; - 1 #0, ie2,n, and UeRn·n is an orthogonal matrix. This 
can be done using n- 1 Householder reflections [6], [7]. The above reduction is 
numerically stable in the sense that the computed (A, C) is exact for a pair (AT+ 
+dA, CT +dC), where 

lldAll~ eps (6n2 +const. n) llAII, 
lldCII~ eps (6n+const) IICII, 

and eps is the relative machine precision of the computer used. 
Hence the problem is to find g, gT =UT G e R11

, such that the matrix A- Cg 
have the prescribed spectrum Sn. Obviously the problem considered is equivalent 
to pole assignment cf linear single-input systems. 

The pole assignment algorithm which is further discussed is based on the follow­
ing idea. Since the matrices A and Ac=A- Cg are in Hessenberg form and differ 
only in their first rows it is possible, by setting a desired pole, to find en eigenvector 
of the matrix Ac before computing g. Using sequences of plane rotations, belonging 
to the group of orthogonal transformations, all but the first elements of the eigen­
vector may annihilated. Then by necessity the first column of the transformed matrix 
Ac will have zero elements below the first one which must be equal to the desired 
eigenvalue. This gives an equation for the first element of the transformed matrix g. 
The key observation here is that after the transformation the matrices A and Ac 
remain in Hessenberg which permits to work by the same way at the next step. 
At each step the algorithm works with a subsystem of decreasing order and the 
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plane rotations are determined by the subsystem eigenvector. Since the subsystem 
matrices are in Hessenberg form their eigenvectors may be computed by solving 
triangular systems of linear equations. 

The n elements of g can be computed by the following algorithm: 

Step 1. The eigenvector v1 of ;(, corresponding to s1 , Ac v1 =v1 s1o may be 
determinined from 

(10) 
where 

and the matrix A is partitioned as 

A= [X::_·?~\] 
T1 : h1 

with T1 eR<n-I) · (n-I) being a non-singular upper triangular matrix. The last ele­
ment of v1 is non-zero and hence is chosen equal to 1. 

The linear triangular system of equations (10) may be solved by backward 
substitution. However the elements of the eigenvector may be computed simul­
taneously with the transformation of this eigenvector exploiting the fact that some 
of the previous elements are already annihilated. This reduces the number of the 
computational operations and improves the accuracy of the eigeil.vector. 

After annihilating the elements from n to 2 of v1 by plane rotations the trans­
formed Ac and C are to be in the form 

0 

where the n- 1 plane rotations are accumulated in the matrix Ql> and .1?) E 

e R<n-l)·(n-l) is a Hessenberg matrix. It follows from the complete observability 
of the pair (C, A) that c2 #0. 

Now the element g 1, gQ 1 =[gi> ... , gn], is determined from 

c1 gl =au -si, 

Cz gl =Gzt, 

(11) 

(12) 

where Q~ AQ1 = [au]- The equations (11) and (12) are algebraically consistent but 
in some cases (11) may be zero identity. That is why it is reasonable to determine g 1 

from 
gl=(au-st)fcl, if lfii~Ifzl, 

gl =azt/Cz, if lf1l < iczrl· 
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In this way as a result of step 1 one element of the transformed matrix g is ob­
tained and the problem is reduced to a problem of dimension n-1. 

Steps 2, ... , a. The next a-1 elements of g are determined. Every eigenvector 
is obtained as a solution of a 3-diagonal system of linear equations and the number 
of necessary plane rotations decreases with 1 at each step. 

Let Q2 , ••• , Qa be the transformation matrices at steps 2, ... , a. Denote by 
.A<a+ 1 ) e R(n-a) ·(n.-a) and .A~a+l) E R(n-a) ·(n-a) the lower right submatrices of the 

• T r- T r-matnces Qa ... Q1 AQ1 ••• Qa and Qa ... Q1 Ac Q1 .•. Qa resp. 

It is clear that using complex plane rotations the above technique may also be 
applied to determine the elements of g in the case of complex conjugate poles. 
However it is possible to solve the problem with slightly complicated technique 
using real arithmetic only. As a result the transformed matrix .A~a+ 1) will have 2 X 2 
blocks on its diagonal. This technique is described in following double step. 

Steps a+l, a+2. The computation of the real x 1 and the imaginery y1 parts 
of the complex eigenvectors x 1 +jy1 , x 1 -jy1 of the matrix .A~a+l), corresponding 
to the poles p 1 +jq1 , p 1 - jqt. may be performed by the equations 

where 

x,=[~']=E}~r-•, 

y, = [';)= [;] e ~r-•; 
and the matrix .A<a+ 1 ) is partitioned as 

with Ta+ 1 e R<n-a- 1 )·(n-a- 1 ) being non-singular upper triangular matrix. 

Steps a+3, a+4, ... , n-1, n. These steps are performed in the same way. 
As a result all elements of g are determined: g=[gt. ... , gn] QT where Q=Q1 Q2 ••• 

... Qa Qa+l,a+z ... Qn-t,n and Q11 is the transformation matrix at the double step i,j. 
Finally one obtains g=gUT. 

4.2. Reduced Order Observers 

Consider again the case r= 1, q=n -1. We shall carry out the synthesis of a re­
duced (n-1) th order observer under the assumption that the matrix FeEn_ 1 has 
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a desired spectrum sn. Thus the problem is to determine the matrices T e R<•-l)·rt, 
G e Rn- 1 and E e R<n- 1)·(n- 1) such that 

TA-FT=GC, 

rank[-~]=n, (13) 

s(F)=sn. 

Since rank T=n-1 we shall take G in the form G=TG, where G eR" is an 
unknown vector. 

Using the algorithm from 4.1 we can determine the matrices g e R 1 ·n, F11 e 
E R(•- 1 )·(n- 1 >, Fl2 e Rn-l and F22 ER such that 

(Ax Cg) Q=Q [ ~11 ;~:J, 
where s(F11 )=sn,F22 is chosen so that g=[g~>···•gn-l>O]Qr, and QeRn·n is 
an orthogonal matrix. 

Denoting Q= [Q1, Q2], Q1 e R•·(n-l) one obtains 

QT A- pT QT -QT -;>; 
1 - 11 1- 1 g~. 

The comparison of (13) and (14) gives the final solution in the form 

T=Qi, G=Qi g, F=F1~ . 

It remains to show that the condition 

from (13) is fulfilled. 

(14) 

(15) 

Suppose that (15) is not valid. Then since rank T=n-1 it follows that C=eT, 
where er eR•- 1 • Having in mind that 

AQ1- CgQl =Q1 Fu 
one obtains 

rank [CT, AT er, ... , (AT)".:._ 1 {;T]=rank Q1 [eT, Fu eT, ... , (F[1)"- 1 eT]~n-1' 

where F11 =F11 +er gQ 1 • This contradiction with the complete observability of 
(C, A) shows that (15) holds true. 

It must be pointed out that the obtained matrix Q1 (and hence the matrix T) 
depends only on the desired spectrum sn. 

4.3. Numerical Considerations 

The algorithm presented in 4.1 (and in slightly modified form in 4.2) has many 
common with the deflation techniques [8] used to eliminate a known eigenvalue 
from an eigenvalue problem. One of these techniques is of particular interest here. 
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If an approximated eigenvector is known it is possible. to construct an orthogonal 
transformation in order to produce a matrix of order one less than the original 
matrix that does not contain the eigenvalue corresponding to the known eigenvector. 
This technique is very stable even if the approximated eigenvector is far from the 
accurate one. 

The detailed numerical analysis shows that our algorithm has also very good 
numerical properties due to the fact that the computation of an eigenvector, its 
transformation and the determination of the matrix g corresponds to a small re­
sidual in the equation for this eigenvector. In this way the subdiagonal elements 
of the triangular form obtained are negligible which leadg to the numerical stability 
of the algorithm. 

It must be pointed out finally that in case of synthesis of reduced order observers 

the conditioning of the matrix [ ~-] depends only on the desired spectrum sD 

of the system (6) of the dynamic error. In most cases however the matrix [-~-] is 

well conditioned due to the fact that T contains n-1 rows of an orthogonal matrix. 
An approximate operation count for the algorithm shows that about 4n3 

floating point operations must be performed for the transformation 'of the system 
matrix. Adding to this figure the number of necessary operations for reducing the 
system into orthogonal canonical form one can find total of 6n3 operations. With 
respect to the array storage the algorithm requires 2n2 +6n working precision words. 

5. Conclusions 

An efficient computational algorithm for synthesig of full and reduced order 
state observers is proposed, based on orthogonal transformations only. The algo­
rithm is numerically stable with respect to the determination of the observers' ma­
trices and performs equally well with re'll and complex, distinct and multiple desired 
poles of the system of the dynamic error. It is applicable to ill-conditioned and 
high order problems and may be used for synthesis of state observers in continuous 
as well as in discrete systems. The algorithm is implemented as a FORTRAN pro­
gram which is used for solving various problems of different orders. 
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Numeryczny stabilny algorytm syntezy obserwatorow stanu 

W pracy proponuje si~ numerycznie stabilny algorytm syntezy obserwator6w stanu o pelnym 
i zredukowanym rz~dzie. Najpierw sformulowano og6lne zadanie syntezy obserwator6w stanu 
i opisano w pelni zbi6r wszystkich osi1tgalnych struktur obserwator6w stanu. Nast~pnie przedsta­
wiono metod~ otrzymywania wszystkich rozwi1tzan tak postawionego zadania. Algorytm nume­
ry=y oparty jest na ortogonalnej postaci kanonicznej liniowych uklad6w niezmiennych w czasie 
i wymaga jedynie zastosowania ortogonalnych przeksztalcen r6wnowa±nosciowych. 

lfucJieHHbrii yCTOH'IIffibtii aJirOpliTM CHHTe3a 

ua6JIIO~aTeJieH COCTOHHHH 

B pa6oTe rrpe,!l;JiaraeTC.ll 'IHCJieHHO YCTOWIHBbiH anropHTM CHHTe3a Ha6mo,!l;aTeJieH COCTO.l!Hll.ll 
rronnoro n pe,!J;YIII!poBannoro rropll,!l;Ka. BHa'laJie .PopMynnpyeTC.ll o6m;a.11 3a,!l;a'la CHHTe3a Ha6mo­
,!l;aTeneii COCTOl!Hll.ll ll OIIHCbiBaeTCll ITOJIHOCTbiO MHOlKeCTBO BCeX ,!l;OCTIDKHMbiX CTPYKTyp Ha6mo­
,D;aTeJieH COCTOl!Hll.ll. 3aTeM rrpe,D;CTaBJieH MeTO,ll; IIOJIY'leHIDI BCeX pemeHllH: TaK ITOCTaBJieHHOH 
3a,D;a'IH. lJHCJieHHbiH aJirOpllTM OCHOBaH Ha OpTOfOHaJibHOM KaHOHR'IecKOM BI(,D;e JIHHei!::H.biX CHCTeM, 
ITOCTO.l!HHl>IX BO BpeMeHH ll Tpe6yeT JIHilTh ITpHMeHeHHSI OpTOfOHaJThHI>IX 3KBHBaJieHTHl>IX rrpeo6pa-
30BaHHH. 



--- ---------------------- -


