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We minimize a perturbed quadratic form ( Ax, x> subject to the constraint IISx-yll<:;;e. We 
prove convergence criteria for optimal and approximate solutions, values and multipliers, extending 
some results of [10], where the case e=O was considered. This extends the G-convergence type 
criterion for quadratic forms to the constrained case. We obtain explicit error estimates either with 
a fixed e<O or as e-+0 (uniform with respect to the perturbations acting on A) for exact solutions 
and values. 

Introduction 

We consider tne convergent behavior of approximate and optimal solutions, 
Lagrange multipliers and optimal values for the following problem. We minimize 
a perturbed quadratic form <Ax, x) on some Banacn space subject to the fixed 
constraint IISx-yll::s;e. We assume that the perturbations acting on the operator A 
do not destroy its positive character. When e=O we get the problem considered 
in [10]. 

When e>O, the above problem is of interest in its own right. Moreover the 
following applications motivate this work and are related to this problem: per
turbation theory of constrained least squares, parameters evaluation from which 
the objective functional depends in quadratic constrained optimization, stability 
analysis of the linear regulator problem of optimal control theory with a constrained 
final state. The above problem with e>O may be also considered as a relaxed version 
of the quadratic optimization problem with affine constraint Sx=y (see [10]) when 
this equality constraint is enlarged for approximation or computational reasons. 

In the first section of this paper we describe the convergence of the optimal 
solutions, Lagrange multipliers and the optimal values of the perturbed problems 
toward the corresponding object<> of the unperturbed one. We show that this (strong 
or weak) convergent behavior is related to that of the equality constrained problem 



16 0. PEDEMONTE 

obtained in [10]. The weak convergence criterion thereby obtained (theorem 1) 
generalizes the G-convergence of quadratic forms in Banach spaces (see [9]) to the 
constrained setting and extends some of the convergence results of [10]. 

In the second section we obtain a convergence criterion for approximate or 
quasi-solutions. Moreover we show by an example that a suitable convergent be
havior for quasi-solutions requires stronger assumptions about the perturbations 
acting on the objective functional than for the optimal solutions. 

In the third section \\>e prove explicit estimates for the strongly convergent 
behavior of optimal solutions and values depending upon problem data, both for 
a fixed e~O and for e-+0 (uniformly with respect to the perturbations). Such quanti
tative information& may be useful in the analysis of the relaxation of the equality 
constraint (e=O) and in the se.1sitivity analysis for constrained quadratic problems. 
Related results in the finite dimensional setting may be found in [3] [6] and [71. 

In the fourth section we give an application to a perturbed linear regulator 
problem in the optimal control of ordinary differential equations with fixed plant, 
perturbed weighting functions in the cost functional and linearly constrained final 
state. 

Further results about the dependence of the solutions of quadratic optimization 
problems upon the data may be found in the references of [10]. 

Notations, problem statement and basic assumptions 

We are given a real reflexive Banach space X with dual space X*, an integer 
m>O, a real constant e~O, a bounded linear surjective map 

S: X-+Rm 

two positive numbers i'i, w and a sequence of linear bounded symmetric operators 

An: X-+X* n=O, 1, 2, ... 
such that 

(1) 

for every n=O, 1, 2, ... ,and x eX. 

Throughout this paper we shall denote by ( ·, ·) either the duality between X* 
and X or the usual scalar product on Rm, by __..the weak convergence an by__.. the 
strong convergence. 

Given ye R"' the n-th problem, n=O, 1, 2, ... ,is defined by minimizing 

J,. (x)=(An X, x) 
subject to the constraint 

IISx-yll:;(e (2) 

Here 11· 11 denotes the euclidean norm on R"'. The same notation will be used for the 
norm of X. The unperturbed problem corresponds to n=O, while the problems 



On perturbations of quadratic functionals 17 

defined by n= 1, 2, .. . , should be considered as perturbations, or approximations, 
of the unperturbed one. 

If e=O we get the problem of minimizing J,, (x) subject to the affine constraint 
Sx=y, see [10]. . 

Standard results 

Given n~O, yE Rm, e>O we shall use throughout this paper the following results. 
The constraint (2) defines a non empty closed convex subset of X (since S is onto), 
and J,, is a strictly conve11. function (by (1 )) with an unique absolute minimum point 
X 11 on such a set. Therefore X 11 is the only optimal solution of the convex programming 
problem of minimizing fn subject to the inequality constraint 

IISx- Yil 2 ~ e2 

Slater's condition ([1] p. 157) holds since S is onto (take x* witn Sx*=y). Then 
by the multiplier rule (see [1], corollary 1.2, p. 159) X11 is characterized by the existence 
of An such that the following optimality conditions hold 

[
An~O; 
(An Xm u)+J•n<Sxn-y, Su)=O, 
An (IISx~~- Yil 2 - e2)=0. 

for every u EX; (3) 

If IIYII~e then obviously Xn=O, the problem becomes trivial, with },n=O by (3) 
and injectivity of the adjoint operator S* of S. 

If IIYII > e and }'>,=0, then by (3) and (1) we get X 11 =0 which is not feasible. There-
fore A11 >0 and 

IISxn-Yii = e, Xn#O 

by the complementarity condition in (3). 
Moreover, in this case, by (3) 

(All Xm X11 )+An (Sx11 - y, Sx~~)=O 
with 

(SX11 -y, Sxn)#O. 

Hence the Lagrange multiplier An is always uniquely determined. 

1. Convergence of exact solutions 

(4) 

We show in this section weak and strong convergence theorems for optimal 
solutions, multipliers and values if e>O. We need the following. 

LEMMA 1. For any y e: Rm both sequences Xm A11 are bounded. 

Proof. Letting u=x11 in (3) and remembering (1) we get 

O=(An Xm Xn)+An (Sx~~ - y, Sxn)~ iX llxnii 2 -A11 (y, Sxn) 

2 
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hence 
(5) 

By Kuhn-Tucker's theorem (see [1], theorem 1.2, p. 157) we see that for every n 

for every x EX. In particular, by taking x* with Sx*=y, 

so by (1) 
e2 An~W 1/x*//2 

and the proof is finished by using (5), q.e.d. 

THEOREM 1. Assume that 

A;; 1 u _,. A0 1 u, for every u E; S* (Rm). 

Then the following holds 

(An Xm Xn)~(A0 x 0 , x0 ) (convergence of values); 

An~Ao (convergence of multipliers); 

Xn-'-Xo (weak convergence of optimal solutions). 

• 
(6) 

(7) 

(8) 

(9) 

P r o o f. Given ye Rm such that IIYII > e, by lemma 1 we get for some subsequence 

From (1) we see that An is an isomorphism, so condition (6) makes sense. As shown 
in [10] (proof of theorem 1, p. 253) we have equiboundedness of 1/A;; 1

//. By (3) 

An Xn+ An S* (Sxn- y)=O 
Thus 

(10) 
By writing 

An A;; 1 S* Y=(An-1) A,~ 1 S* y+1 (A; 1 S* y-A01 S* y)+1A01 S* y 

we see from the convergence of An1
, equiboundedness of A;; 1 and (6) that for a sub-

sequence 

Moreover 

AnA;; 1 S* Sxn=(J.n-1)A; 1 S* Sxn+1 A; 1 S* S(xn-x)+ 

+1 (A; 1 -A0 1) S* Sx+1A01 S* Sx 

and remembering Sxn~sx, for a subsequence we get 

J.n A;; 1 S* Sxn-'-AA0 1 S* Sx. 
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By compactness of S as well as by (3) and (10) we obtain 

.. t;:,::O; 

X (11Sx-yll2 -e2)=0 

A 0 x+XS* (Sx-y)=O. 

19 

This means by the optimality conditions (3) that X=A. 0 , x=x0 • By uniqueness of 
A.0 , x0 , we get (8) and (9) for the original sequence. Finally (7) follows from (4) by 
compactness of S, q.e.d.. • 

A persual of the above proof gives the following 

THEOREM 2. If 
A; 1 u---+A0 1 u, for every u E S* (Rm) 

then for every y E Rm we have 

(strong convergence of optimal solutions). 

Conditions (7), (8), (9) are not independent, for we can show 

(11) 

PRoPOSITION 1. If (7) and (9) hold for every y, then we have (8). If (8) and (9) hold 
then we get (7), for every y. 

Proof. Assume (7) and (9), for every y. 
By lemma 1 we have }.n---+A for some subsequence. Letting n---++oo in (3) with u=xn 
we get 

(Ao Xo, Xo)+.A: (Sxo-y, Sxo)=O. 

Then A=Ao if IIYII>e , while An=X=0=A0 if IIYII~e. This gives (8). If we assume (8) 
and (9), for every y, then Sxn---+Sx0 , and by (4), if llyll>e 

thus giving (7), q.e.d. • 
REMARK. By theorem I of tlus paper and theorem 1 of [10] we see that condition 
(6) is sufficient to ensure the weak convergence of optimal solutions, multipliers 
and values both if e=O (affinely constrained problems) and if e>O. As remarked 
in [10], condition (6) is an extension to this constrained setting of the convergence 

A;; 1 U--"-A() 1 u, for every u EX*, (12) 

which is a necessary and sufficient condition for the weak convergence of (unco
nstrained) minimum points over X for the functionals 

(An x, x)-(u, x), u EX*. 

Condition (12) is in turn equivalent to the G-convergence of An towards A 0 (see 
[2], [9], [11]). Analogously, condition (11) is sufficient for strong convergence of 
exact solutions both for e>O (theorem 2) and for e=O (theorem 2 in [10]). 

For a comparison with the perturbation theory of unconstrained quadratic 
optimization problems see [10], section 3, p. 256-257. 
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2. Convergence of quasi-solutions 

Motivated by practical and theoretical reasons, given o::>O we consider for 
any yE R 111 the set of quasi-solutions (of order o::) for the n-th problem, defined by 

Q11 (e, o::)={uEX: IISuxy[[=:::;e, 

<An u, u)::::;(An Xm Xn)+o::}. 

By (1), the set Qn (e, o::) is non empty and bounded. 
The convergence of quasi-solutions is described by the following 

THEOREM 3. Assume condition (12). Then 

(i) U11 E Qn (e, o::), u11....:..u0 for some subsequence imply that u0 e= Q 0 (e, o::); 
(ii) for every v0 E Q 0 ( e, o::), e* > e, o::* > o:: there exist Vn E Qn ( e*, o::*) such that v,.....:..v0 . 

P r o of. By (12) the quadratic forms (A 11 x, x) G-converge towards (A 0 x, x) 
on X equipped with its weak convergence (see [2], teorema 4.1., p. 150, which can 
be generalized to the' abstract case in a straightforward way). This mode of con
vergence amounts to the following (see [2], teorema 3.1., p. 145): 

~a) Z11 -"-Z in X implies lim inf (An Zm Z11)~(A0 z, z); 
(b) for every w EX there exists a sequence W 11 -"-W in X such that 

Hence .if Un is as in (i) then by (a) 

lim inf (A11 u,., u,.) ~ (A 0 u0 , u0 ) 

thus by (7) 

o::+(A 0 x 0 , x 0)=o::+lim (An Xn, x,.)~lim inf (A11 Um Un)~(Ao Uo, Uo) 

moreover Su11 -+Su0 • This proves conclusion (i). 
Let v0 be as in (ii). By G-convergence of the quadratic forms defined by An we 

can find points V 11 -"-Vo such that (b) holds and Sv11-+Sv0 • Hence for large n 

[[Svn-Yff::(e*, (A11 Vm vii)=:::;(Ao Xo, Xo)+ o::* 

thus proving (ii), q.e.d. • 

The following example shows that conclusion (ii) in theorem 3 does not follow 
by replacing (12) with (6). 

EXAMPLE. Let m=1, X=R2
, Su=(1, 0) u, A 0 =Cb2 ~) , 

An=C6
2 ~) if n~ 1. 

Then S* y=( ~), and A11-
1 S* oz.·=A0 1 S *v=( ~), for every v and n so 

condition (6) is satisfied. 
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If y=O, given o:>O and e~O, we see that 

Q0 (e, oc)={( ~:) E R 2
: jx1 j~e, xi+2x;~2o:} 

while for n~ 1 

Qn (e, o:)={( ~:) E R2
: lxtl~e, xi+4x~~2o:} 

so conclusion (ii) of Theorem 3 does not hold. 

3. Error estimates 

Given ye Rm we denote by X 11 (s) the unique optimal solution of the n-th problem, 
and by 

V 11 (s)=(Ar. X 11 (s), X 11 (s)) 

its value, e~O, n=O, 1, 2, .... 

We wish to estimate ll xn (s)-x 0 (s) ll and lvn (s)-v 0 (s)j under strong con
vergence of the optimal solutions (as in theorem 2). Moreover we want to obtain 
information about the quantitative behavior of X 11 (s) as e~O, estimating llxn (e)+ 
-X11 (0) 11 uniformly with respect to n. 

In the following lemma let us collect some standard results we shall need in 
the following estimates. 

LEMMA 2. 

(i) Thete exists a constant c > 0 such that 

liS* xii 2 ~C llxl l2 , far every x E Rm. 

(ii) Assume condition (11). Then 

{ 
m IIYII } 

q11 =SUp IIA; 1 S*v-A01 S*vll : llvll~-c- ~o 

(iii) For every n we have 

(13) 

(15) 

Proof. Condition (13) is well known since S is onto (see [8], p. 206). From (11) 
we get strong pointwise convergence of A,~ 1 S* toward A0 1 S*, which is uniform 
on compact sets by equiboundedness of IIA; 1 11. This proves (14). Given n, let T= 
=SA;; 1 S*. Then S is a symmetric operator such that 

c 
(Tx, x)=(A -:- 1 S* x, S* x>~- llxll2 

n (I) 

by (13) and (1). 
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Hence 

moreover 

(1) <r- 1 x, x)~-!lxll2 

c 

IIT- 1 II= sup {(T- 1 x, x): llxll=l} 

and this gives (15), q.e.d. • By using the constant c of (13) and q11 defined by (14) we get the following error 

estimates if e=O. 

THEOREM 4. Assume condition (11). Then 

IIXn (0)- Xo (0)11 ~ ( 1 + : IISII2
) qn, 

morefJver 
(1) 

l"-n (0) - vo (0)1~-IISII qw 
c 

Proof. For short notation put X 11 = Xn (0). By (3), p. 251, of [10], for any ye R"' 

we get 

x" - Xo = A; 1 S* [(SA; 1 S*)0 1 y - (SA0 1 S*)- 1 y]+ 

+(A0 1 - A0 1 ) S* (SA0 1 S*)- 1 y 

If U, V are isomorphisms then for all y 

IIU- 1 y - v-1 YII = IIU- 1 (U- V) v- 1 Yll 

and remembering (15) and (1) 

IIA; 1 S* [(SA; 1 S*)- 1 y-(SAo 1 S*)- 1 Ylll~ 

m IISII 2 m IISII2 

~--_ -II(A; 1 S* - A0 1 S*)(SA0 1 S*) - 1 Yll~ qn. 
~ ~ 

Moreover from (15) 

II(A,;- 1 -A01
) S* (SAQ" 1 S*) - 1 Yll~qn 

hence the first estimate follows. By (12) p. 255 of [10] we obtain 

lvn - v0 1 ~ I<[(SA,~ 1 S*)- 1
-· (SA0 1 S*) - 1

] y, y)l ~~I I( SA,~ 1 S*)- 1
11 x 

(1) 

x II(SA; 1 S* - SA0 1 S*)(SA0 1 S*) - 1 YII~-IISII qn, q.e.d. • 
c 

Given e>O and ye R"' the following estimate holds for optimal solutions. 

THEOREM 5. Assume that 

An U--t A0 u, for every u eX. 

---~-------------------



On perturbations of quadratic functionals 23 

Then for e>O and any n 

REMARK. For every g and x eX* 

A;; 1 x-A; 1 x=A,~ 1 (A0 -An) A; 1 X. 

This shows that the assumption in theorem 5 is equivalent (by equiboundedness 
of A;; 1) to 

A- 1 x-+A- 1 x for every xeX* 
n 0 ' 

and this is equivalent in turn to Mosco's convergence of the quadratic forms defined 
by A, (see [9]), of course implying (11). 

Proof of theorem 5. The functionals 

fn (x)= (An x, x), n=O, 1, 2, ... 

are equi-strongly convex on X by (1) as seen by 

In (tu+(1- t) v)~ tfn (u)+(l-t)f, (v)- at (1- t) [[u-v[[2 

for every u and v in X and t E [0, 1]. Then the conclusion is immediate by corollary 
2.1. p. 89 of [4], q.e.d. • 

We end this section by estimating [[x, (e) - xn (0)11 and fvn (e)-vn (0)[ uniformly 
in n. This relates in a quantitative way the linearly constrained quadratic problem 
(e=O) with the problems having e>O. The following estimate may be combined 
with the conclusions of theorem 5 to relate the error estimates about optimal so
lutions with constraint relaxation. 

The following lemma is well known ([5], VI.6.1, p. 487). 

LEMMA 3. There ·exists a constant k>O such that for every z E' Rrn we can .find v EX 

satisfying Sv=z and [[vf[~k [[z[[. 
By using the constant k of lemma 3 we get 

THFOREM 6. For every e>O, ye Rm such that [[y [[>e and every n 

kw 
fix, (e) - x, (0)[[ 2 ~--- IISII· IIYII e. 

rxc 

P r o o f. By proposition 2.2 p. 88 of [4] 

fi [fxn (e)-Xn (0) [[ 2 ~[fAn Xn (0)[[ inf { ffz-Xn (e)[[: Sz=y} (16) 

since by (1) the quadratic forms defined by A, are equi-strongly convex on X with 
a common strong convexity constant fi (and the choice u11 =Xn (0), notations of (7) 
p. 88 of [4], is admissible). 

By the optimality conditions (3) we know that 

lfSxn (e)-ylf =e. 
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Let wE X be such that Sw=y. By lemma 3 there exists Wn eX with 

Swn=S(xn (e)-w), llwnll~ke, 

therefore S (xn (e)-wn)=y, hence 

inf {llz-Xn (e) ll: Sz=y}~llwnll~ke. 

Thus by (16) 

ii llxn (e)-Xn (O)II 2 ~ke IIAn Xn (0)11. 

Using (3) p . 251 of [10] and (15) we get 

OJ 

II An Xn (0) 11~ IISIIII(SA; 1 S*)- 1 IIIIY I I~-IISIIIIYII, 
c 

q.e.d. 

(17) 

• 
COROLLARY 1. For some constant L, any n, any e with O<e~ 1 and a fixed -Ye Rm 
such that IIYII > e, 

Proof. We have 

(An (xn (e)-Xn (0)), Xn (e)-X11 (O))=Vn (e)-vn (0)+2(An X,. (0), Xn (0)-Xn (e)) 

The conclusion follows combining (1), theorem 6 and (17), q.e.d. • 

4. Application to the linear regulator problem 

We apply the results of the first section to the following constrained regulator 
problem. We wish to minimize the perturbed cost 

T 

J U (t)' Qn (t) U (t) dt, n=O, 1, 2, ... , 
0 

subject to the state equations 

{
X (t)=G (t) X (t)+B (t) u (t) 
X (0)=0 

and the final value constraint 

IIHx (T)-yll~e 

a.e. in [0, 1], 

(18) 

(19) 

(20) 

Here a prime denotes transpose, u (t) E Rq is the control variable, 1.1 EL 2 (0, T), 
x (t) e RP is the state variable, and Qn (t), G (t), B (t) are given matrices of the appro
priate dimensions, His a given m xp constant matrix, m~p, and yE Rm. 

We assume that GeL1 (0,T), BeL2 (0, T); QnEL"'(O,T), Qn(t) is symmetric, 
and there exist constants ii>O, w such that for every z E Rq, n=O, 1, 2, ... , and a.e. t 

ii lzl 2 ~z' Qn (t) z~w lzl2 

- - - - ------------------- - - ---
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Let F be a fundamental matrix for the uncontrolled plant x=G (t) x. Then 
given the control u e L 2 (0, T) the corresponding state x is given by 

By setting 

t 

x (t)=(Lu) (t)=F (t) J F- 1 (s) B (s) u (s) ds, 0~ t~ T. 
0 

X =L2 (0, T) (of Rq- valued vectors) 

(An (u)) (t)=Qn (t) U (t) 

Su=H (Lu) (T), u eX 

we obtain a particular case of the problem studied in section 1. 

(21) 

We wish to obtain direct sufficient conditions about the data of problem (18), 
(19), (20) to get weak or strong L2 (0, T) convergence of optimal controls and of 
optimal values under the perturbations acting on the costs (18) and described by 
the sequence Qn. 

Let us denote by C the linear subs pace of Rq spanned by the rows of the matrix H. 

COROLLARY 2. Assume that the control system (19) is completely controllable at 
timeT, and that rank H=m. Then a sufficient condition of weak convergence in L2 (0, T) 
of the optimal controls and values for every y is given by 

(22) 

in L 2 (0, T), for every c E C. 
Strong convergence of the optimal controls is obtained if strong convergence 

holds in (22). 

Proof. By theorem I we must check that (22) implies (6), with S defined by (21). 
Of course S is onto. Given u EL 2 (0, T) and v E RP we compute 

T 

L (u)(T)' v=(u, L ( · )(T)* v) = f u (t)' B (t)' F (t)'- 1 F (T)' v dt. 
0 

Thus, for every w eR"', and a. e. t E [0, T] 

(S* w) (t)=B (t)' F(t)'- 1 F(T') H' w. 

By (18) condition (6) becomes (22), q.e.d. • 
Of coune condition (22) may be far weaker than weak convergence of Q;; 1 

towards Q;; 1 as in the following 

EXAMPLE. Let p=q=2, m=T=l, G=B=(~ ~) 
H=(l, 0), Qn (t)=(WnO(t) Zn O(t))' where Wn, Zn are measurable functions such that 

O<a~Wn (t), Zn (t)~w 

for every n, and a.e. t. Then it is easily seen that (22) amounts to 
L 2 (0, 1), while no convergence condition is required about Z11 • 

1 1 
- ..... -in 
w, Wo 
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0 zaburzonych funkcjonalach kwadratowych z ograniczeniami 

Minimalizowana jest zaburzona wzgl~dem A forma kwadratowa <Ax, x> przy ograniczeniu 
IISx-yll <:;e. Dowodzi si~ warunk6w zbiezno&ci rozwi<!zan optymalnych i przyblizonych, wartosci 
fonny i mno:lnik6w, rozszerzaj<!c wyniki z pracy [10], w kt6rej rozwa:la si~ przypadek e= 0. Sta
nowi to rozszerzenie warunk6w G-zbieznosci dla form kwadratowych na przypadek z ogranicze
niarni. Otrzymano analityczne oceny bl~du zar6wno dia ustalonego e<O, jak i dla e->0 (jednostajnie 
wzgl~dem zaburzen oddzialywuj<!cych na A), w odniesieniu do dokladnych rozwi<!zan i wartosci 
formy. 

0 HapymeHHLIX KBa.zqJaTJI'IHLIX cjlynK~HOHaJiaX 

C orpaHH'IeiDIHMH 

MHHOMH3HpyeTCJI HapymeHHaJI I!O OTHOilleHHIO K A KBap;pRTH'IHRJI <iJopMa ( Ax, X) I!pH Orpa
HH'IeHHH IISx-y 11 <:;;e. ,[(oKR3biBRIOTCJI ycrromm cxo)J;HMOCTH orrTHMRJlbHbiX :a np:a6JIIDKeHHbiX 
pemeH!lli, 3HR'IeHllli <iJopMbl H MHOJKHTerrei!:, paciiiHpS!ll pe3yJ1bTRTbl pa60Tbl [10], B KOTOpOH pac
CMRTpHBReTCJI CJiy'IRH e=O. 3TO JIBJlJieTCJI paciiiHpeHHeM yCJIOBHH G- CXO)J;HMOCTH )J;JlJI KBap;pa
TH'IeCKHX <iJopM HR CJIY'fRH C orpaHH'IeHHJIMH. Ilorry'IeHbi RHaJIHTH'IeCKHe OL(e!IICH OIIIH6KH KRK 
)J;JIJI OIIpep;erreHHOfO e > 0, TRK H )J;JIJI e--+0 paBHOMepHO TIO OTHOilleHHIO K HapymeHHJIM, B03)J;eHCTBY· 
IO!IJ,HM HR A, B CpRBHeHHH C TO'IHb!MH pemeHHJIMH H 3Ha'IeHHJIMH <iJopMbl. 

-- -------------------------------------------------


