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We minimize a perturbed quadratic form {Ax, x> subject to the constraint ||Sx—y||<e. We
prove convergence criteria for optimal and approximate solutions, values and multipliers, extending
some results of [10], where the case é=0 was considered. This extends the G-convergence type
criterion for quadratic forms to the constrained case. We obtain explicit error estimates either with
a fixed ¢<0 or as e—0 (uniform with respect to the perturbations acting on A) for exact solutions
and values.

Introduction

We consider tne convergent behavior of approximate and optimal solutions,
Lagrange multipliers and optimal values for the following problem. We minimize
a perturbed quadratic form {(4x, x) on some Banacn space subject to the fixed
constraint ||[Sx—y||<e. We assume that the perturbations acting on the operator 4
do not destroy its positive character. When é=0 we get the problem considered
in [10]. ’

When >0, the above problem is of interest in its own right. Moreover the
following applications motivate this work and are related to this problem: per-
turbation theory of constrained least squares, parameters evaluation from which
the objective functional depends in quadratic constrained optimization, stability
analysis of the linear regulator problem of optimal control theory with a constrained
final state. The above problem with >0 may be also considered as a relaxed version
of the quadratic optimization problem with affine constraint Sx=y (see [10]) when
this equality constraint is enlarged for approximation or computational reasons.

In the first section of this paper we describe the convergence of the optimal
solutions, Lagrange multipliers and the optimal values of the perturbed problems
toward the corresponding objects of the unperturbed one. We show that this (strong
or weak) convergent behavior is related to that of the equality constrained problem
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obtained in [10]. The weak convergence criterion thereby obtained (theorem 1)
generalizes the G-convergence of quadratic forms in Banach spaces (see [9]) to the
constrained setting and extends some of the convergence results of [10].

In the second section we obtain a convergence criterion for approximate or
quasi-solutions. Moreover we show by an example that a suitable convergent be-
havior for quasi-solutions requires stronger assumptions about the perturbations
acting on the objective functional than for the optimal solutions.

In the third sectior we prove explicit estimates for the strongly convergent
behavior of optimal solutions and values depending upon problem data, both for
a fixed 20 and for e—0 (uniformly with respect to the perturbations). Such quanti-
tative informations may be useful in the analysis of the relaxation of the equality
constraint (¢=0) and in the seasitivity analysis for constrained quadratic problems.
Related results in the finite dimensional setting may be found in [3] [6] and [77.

In the fourth section we give an application to a perturbed linear regulator
problem in the optimal control of ordinary difterential equations with fixed plant,
perturbed weighting functions ia the cost functional and linearly constrained final
state.

Further results about the dependence of the solutions of quadratic optimization
problems upon the data may be found in the references of [10].

Notations, problem statement and basic assumptions

We are given a real reflexive Banach space X with dual space X*, an integer
m>0, a real constant >0, a bounded linear surjective map

S: X—-R"
two positive numbers &, w and a sequence of linear bounded symmetric operators

A X-X* n=0,1,2,...
such that
&x|?<{dn x, x) < olx]? )

for every n=0,1,2,..,and xeX.

Throughout this paper we shall denote by < -, - either the duality between X*
and X or the usual scalar product on R™, by — the weak convergence an by — the
strong convergence.

Given y € R™ the n-th problem, n=0, 1, 2, ..., is defined by minimizing
Jo ()=(4, x, x>
subject to the constraint
Sx—yl<e 2

Here || - || denotes the euclidean norm on R™. The same notation will be used for the
norm of X. The unperturbed problem corresponds to n=0, while the problems
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defined by n=1, 2, ..., should be considered as perturbations, or approximations,
of the unperturbed one.

If e=0 we get the problem of minimizing f, (x) subject to the affine constraint
Sx=y, see [10].

Standard results

Given n>0, y € R™, >0 we shall use throughout this paper the following results.
The constraint (2) defines a non empty closed convex subset of X (since S is onto),
and f, is a strictly convex function (by (1)) with an unique absolute minimum point
x, on such a set. Therefore x, is the only optimal solution of the convex programming
problem of minimizing f, subject to the inequality constraint

[18% — yl* < &?

s S R YA A

P

Slater’s condition ([1] p. 157) holds since S is onto (take x* witn Sx*=y). Then
by the multiplier rule (see [1], corollary 1.2, p. 159) x, is characterized by the existence
of 2, such that the following optimality conditions hold

=03
{Ay Xy wp+ 2,L8x,—y, Sup=0, for every ue X, 3)
I (8%, —II? —£*)=0.

If ||y||<e then obviously x,=0, the problem becomes trivial, with 4,=0 by (3)
and injectivity of the adjoint operator S* of S.

If ||yl >¢ and 4,=0, then by (3) and (1) we get x,,=0 which is not feasible. There-
fore 1,>0 and

1Sxs—yll=¢, x,#0
by the complementarity condition in (3).
Moreover, in this case, by (3)
<An Xas xn>+2n <an_y7 an>=0 (4)
with
{Sxy—, Sxup#0.

Hence the Lagrange multiplier 4, is always uniquely determined.

1. Convergence of exact solutions

We show in this section weak and strong convergence theorems for optimal
solutions, multipliers and values if ¢>0. We need the following.
LemMA 1. For any y € R™ both sequences X,, %, are bounded.
Proof. Letting u=x, in (3) and remembering (1) we get
0 =<An Xas xn>+/ln <an_y: an>> a ”xn”2 5, 2.,, <y» an>
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hence
@ [lxall < Aa IV IS )

By Kuhn-Tucker’s theorem (see [1], theorem 1.2, p. 157) we see that for every n
<An Xns xn><<An X, x)“l"ln (”S-x"'ynz —82) ]
for every x € X. In particular, by taking x* with Sx*=y,

04, x*, x*>— 1, &2
so by (1) ’
& <o [x*|?

and the proof is finished by using (5), q.e.d. |
THEOREM 1. Assume that

A7 u—A3'u, for every ue S*(R™). ©)
Then the following holds

{Ay Xy Xnp—>{ Ao X0, Xop  (comvergence of values); ™)
Mn—2o  (convergence of multipliers); ®)
X,—Xo (weak convergence of optimal solutions). )

Proof. Given y € R™ such that ||y||>e¢, by lemma 1 we get for some subsequence
A=A, x,—~% with 1>0, %€ X.

From (1) we see that 4, is an isomorphism, so condition (6) makes sense. As shown
in [10] (proof of theorem 1, p. 253) we have equiboundedness of [|4;'[. By (3)

An xn+z'n S* (an—y)=0
Thus
Xn=An ATt S*y—2, A7! S* Sx,. (10)
By writing
In A7t S* y=(Ay~2) AT* S* y+1 (A7 S* y—A* S* y)+7451 S* y
we see from the convergence of 4,, equiboundedness of 4;* and (6) that for a sub-

sequence
A AT S* y=JAG* S* y.

Moreover
A7t S* Sx,=(4,—1) A7 S* Sx,+1 A7 S* S (x,— %)+
I (A7 —AFY) S* Si+-TAGt S* S%
and remembering Sx,—S%, for a subsequence we get

Iy A1 S* Sx,—JA;' S* SZ.
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By compactness of S as well as by (3) and (10) we obtain

1=0;

2 (ISx—y|? —£?)=0

Ao X+1S* (SX—y)=0.
This means by the optimality conditions (3) that =1y, X=x,. By uniqueness of
Aos X, we get (8) and (9) for the original sequence. Finally (7) follows from (4) by

compactness of S, g.e.d.. E
A persual of the above proof gives the following

THEOREM 2. If
A7 u—Agtu,  for every ue S* (R™) 11)

then for every y € R™ we have
Xa—Xo (strong convergence of optimal solutions).

Conditions (7), (8), (9) are not independent, for we can show

ProrositioN 1. If (7) and (9) khold for every y, then we have (8). If (8) and (9) hold
then we get (7), for every y.

Proof. Assume (7) and (9), for every y.
By lemma 1 we have 1,— 1 for some subsequence. Letting n— 00 in (3) with u=x,
we get

(Ao X5 Xo)+A{Sx0—y, Sxop=0.
Then =1, if |[y||>e¢, while 1,=2=0=1, if ||y||<e. This gives (8). If we assume (8)
and (9), for every y, then Sx,—Sx,, and by (4), if [|y||>¢

}‘n=<An Xn» xn> <y—"Sxm an>-1_>10=<A0 X0, -x0> <y_Sx09 Sx0>~1
thus giving (7), q.e.d. By

REMARK. By theorem 1 of this paper and theorem 1 of [10] we see that condition
(6) is sufficient to ensure the weak convergence of optimal solutions, multipliers
and values both if é=0 (affinely constrained problems) and if ¢>0. As remarked
in [10], condition (6) is an extension to this constrained setting of the convergence

A7 u—A;'u, for every ue X*, 12)
which is a necessary and sufficient condition for the weak convergence of (unco-
nstrained) minimum points over X for the functionals

{4y x, x)—<u, xy, ueX*.

Condition (12) is in turn equivalent to the G-convergence of 4, towards 4, (see
[2], [91, [11]). Analogously, condition (11) is sufficient for strong convergence of
exact solutions both for é>0 (theorem 2) and for ¢=0 (theorem 2 in [10]).

For a comparison with the perturbation theory of unconstrained quadratic
optimization problems see [10], section 3, p. 256—257.
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2. Convergence of quasi-solutions

Motivated by practical and theoretical reasons, given «>0 we consider for
any y € R™ the set of quasi-solutions (of order «) for the n-th problem, defined by

0, (s, )={u e X: |Suxyl<e,
(A ty 4y <l Xy Xyt

By (1), the set Q, (¢, ) is non empty and bounded.
The convergence of quasi-solutions is described by the following

THEOREM 3. Assume condition (12). Then

i)  u, €0, (e @), uy—uy for some subsequence imply that uy € Qo (&, @);

(i)  foreveryvo € Qo (s, w), £* >¢, a* > o there exist v, € Q, (¥, o*) such that v,—vq.
Proof. By (12) the quadratic forms {4, x, x) G-converge towards <4, x, x)
on X equipped with its weak convergence (see [2], teorema 4.1., p. 150, which can

be generalized to the abstract case in a straightforward way). This mode of con-
vergence amounts to the following (see [2], teorema 3.1., p. 145):

(a) z,—z in X implies lim inf {4, z,, z,) =<4, z, z);
(b) for every w € X there exists a sequence w,—w in X such that

<An Dp, CO,,>—><A0 , 60>
Hence if u, is as in (i) then by (a)

lim inf (A, v, tyy=>{Ao to, to)
thus by (7) -

“+<A0 X0, x0> =0£—|—llm <An Xns xn>>hm inf <An Up, un>><A0 Uo, u0>

moreover Su,—Su,. This proves conclusion (i).
Let 9, be as in (ii). By G-convergence of the quadratic forms defined by 4, we
can find points v,—wv, such that (b) holds and Sv,—Sv,. Hence for large n
”S‘U,,—y”<8*, <An Uny ‘ZJ,,><<A0 X0 x0>+0£*

thus proving (ii), q.e.d. |

The following example shows that conclusion (ii) in theorem 3 does not follow
by replacing (12) with (6).

0: 1

1/2 0 .
A,,—( 0 2) if n>1.

ExAMPLE. Let m=1, X=R?, Su=(1, 0) u, A0=(1/2 0),

Then S* y=(g), and A 1S*¥p=4718 *7;=(27)

0 ), for every » and » so

condition (6) is satisfied.
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If y=0, given «>0 and ¢>0, we see that

Qo (s, oc)={( 2 ) € R?: |x,|<e, xf+2x§<2oc}
while for n>1

0, (s, a)={(2) € R?: |x,|<s, xf+4x§<2a}

so conclusion (ii) of Theorem 3 does not hold.

3. Error estimates

Given y € R™ we denote by x, (¢) the unique optimal solution of the n-th problem,
and by

Oy <S)=<Ar Xn (‘9)9 Xn (8)>
its value, €20, n=0,1,2, ....

We wish to estimate ||x, (e)—x, (¢)l| and |v, (¢)—v, (¢)] under strong con-
vergence of the optimal solutions (as in theorem 2). Moreover we want to obtain
information about the quantitative behavior of x, (¢) as e—0, estimating ||x, (¢)-+
—x, (0) || uniformly with respect to n.

In the following lemma let us collect some standard results we shall need in
the following estimates.

Lemma 2.
(1) There exists a constant ¢>0 such that
IS* x||>=c ||x||>, foF every x € R™ (13)
(i) Assume condition (11). Then

o |yl

q,=sup {HA;1 S*o—A;1 S* ol oll< }—»0 as n—-+0o.

(44

(i)  For every n we have
i
I(S4;* %)< —. 1s)

Proof. Condition (13) is well known since S is onto (see [8], p. 206). From (11)
we get strong pointwise convergence of A; ! S* toward 4, ' S*, which is uniform
on compact sets by equiboundedness of ||[4] *|l. This proves (14). Given n, let T'=
=SA4,;* S*. Then § is a symmetric operator such that

(Tx, xy=( 451 % %, % x>>— |12
by (13) and (1).
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Hence

(Tt 2 )<~ [P

moreover
IT=*|=sup {{T~* x, x): |x]|=1}

and this gives (15), q.e.d. =

By using the constant ¢ of (13) and ¢, defined by (14) we get the following error
estimates if e=0.

THEOREM 4. Assume condition (11). Then

15
1%, (0) — Xo (0)H<(1 i IISHZ) Gn>
&c
moreover
@
|7'n (O) —%o (0)|<7 ”SH n-
Proof For short notation put x,=x, (0). By (3), p. 251, of [10], for any y € R™
we get
Xy—Xo=A"1 S* [(S4;* %) ' y—(S4;* 8*)~ ' yl+
+(dgt—A45 ") §* (S45 1 $¥)~t y
If U, V are isomorphisms then for all y
Ut y=V-1yll=U- (U-P) V1)
and remembering (15) and (1)
4, * S* [(S4, 1 S¥)~1 y—(S45 ' $*)~* yllI<

olsP : ot @ ISP
S (4 §* =451 $) (45 5% YIS~ — -

Moreover from (15)
(4, 1 —A5 ") 8* (S4g 1 S*)71 ylI<¢n

hence the first estimate follows. By (12) p. 255 of [10] we obtain
|oa— ol S IK[(S4, * $*)~1—(S4g ' S*)7 ]y, WIS <S4, 1 $%)~ I

w
x [(SA4, * S*—S45*! 5%) (S4g* §%)~1 YIS IS ¢ g-ed. ]
Given >0 and y e R” the following estimate holds for optimal solutions.

THEOREM 5. Assume that

A u—>Ayu, for every uelX.
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Then for ¢>0 and any n

1
1% (&) = X0 (&) sz (A= Ao) %0 ().

ReMARK. For every g and x e X*
A7t x—Ag  x=A4;" (Ado—A) 45 x.

This shows that the assumption in theorem 5 is equivalent (by equiboundedness
of 4;1) to

Ayt x—»A;"x, for every xe X*
and this is equivalent in turn to Mosco’s convergence of the quadratic forms defined
by A4, (see [9]), of course implying (11).
Proof of theorem 5. The functionals

i (x)={4,x,x>, n=0,1,2,..

are equi-strongly convex on X by (1) as seen by

S (-1 =0)0)<tfy @)+ =) fu @)= 5t (1= 1) [u—o|?

for every u and v in X and ¢ € [0, 1]. Then the conclusion is immediate by corollary
2.1. p. 89 of [4], q.e.d. B

We end this section by estimating |lx, (¢) —x, (0)|| and |v, (¢)—=, (0)] uniformly
in n. This relates in a quantitative way the linearly constrained quadratic problem
(e=0) with the problems having ¢>0. The following estimate may be combined
with the conclusions of theorem 5 to relate the error estimates about optimal so-
lutions with constraint relaxation.

The following lemma is well known ([5], V1.6.1, p. 487).

LeMMA 3. There exists @ constant k>0 such that for every ze R™ we can findv € X
satisfying Sv=z and |o||<k |z|.
By using the constant k of lemma 3 we get

THEOREM 6. For every ¢>0, ye R™ such that ||y|>¢ and every n

e (5= 0 O < I Iy
n “vn Jil = G Y 2

Proof. By proposition 2.2 p. 88 of [4]
& [ () =% (0) [P 14y X Q)] inf {Jlz—2x, ()] : Sz=1} (16)

since by (1) the quadratic forms defined by 4, are equi-strongly convex on X with
a common strong convexity constant & (and the choice u,=x, (0), notations of (7)
p. 88 of [4], is admissible).

By the optimality conditions (3) we know that

1Sy () —yll =e.
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Let we X be such that Sw=y. By lemma 3 there exists w, e X with
Swa=S (%, () —w), |wall<ke,
therefore S (x, (¢) —wx)=y, hence
inf {llz—x, () : Sz=y}<wall<ke.
Thus by (16)
& [1%n (&) —Xu (O)|> < Kt || 4y X (O)]]-
Using (3) p. 251 of [10] and (15) we get

145 X, (0) IIIST 1I(SA; * S%)~ 7] Hyllsfci ISTHIYI amn
g.ed. B

COROLLARY 1. For some constant L, any n, any ¢ with 0<e<1 and a fixed y € R™"
such that ||y||>¢,

0<z, ()~1, (O)SLVE .
Proof. We have

{4n (xn (&) —xa (0))3 X (8) =X (0)) =0y (£) =2, (0)+2{4n X (0), X, (0)— 2y (¢))
The conclusion follows combining (1), theorem 6 and (17), g.e.d. B

4. Application to the linear regulator problem

We apply the results of the first section to the following constrained regulator
problem. We wish to minimize the perturbed cost

T

fu(t)' 0. () u(®)dt, n=0,1,2, ..., (18)

0

subject to the state equations

{J’c(t)=G(t)x(t)—}-B @ u@) ae. in [0,1], 19
x (0)=0

and the final value constraint
lHx (T)-yll<e (20)
Here a prime denotes transpose, u(¢) € R? is the control variable, ue L? (0, T),
x (¢) € R? is the state variable, and Q, (¢), G (¢), B (t) are given matrices of the appro-
priate dimensions, H is a given mXp constant matrix, m<p, and y € R™.
We assume that GeL* (0, T), BeL*(0,T); Q,€L> (0, T), O, (¢) is symmetric,
and there exist constants >0, o such that for every ze R%, n=0, 1, 2, ..., and a.e. ¢

&|z|2<2’ 0, () z< w |2/?
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Let F be a fundamental matrix for the uncontrolled plant x=G (¢) x. Then
given the control u € L? (0, T) the corresponding state x is given by

x ()=Lu) @)=F () ftF'l ()B(s)u(s)ds, O0<i<T.

By setting
X=IL%?(0,T) (of R1— valued vectors)

(An (u)) (t)=Qn (t) u (t)

Su=H (Lu) (T), ueX 21)
we obtain a particular case of the problem studied in section 1.

We wish to obtain direct sufficient conditions about the data of problem (18),

(19), (20) to get weak or strong L? (0, T) convergence of optimal controls and of
optimal values under the perturbations acting on the costs (18) and described by

the sequence Q,,.
Let us denote by C the linear subspace of R? spanned by the rows of the matrix H.

COROLLARY 2. Assume that the conirol system (19) is completely controllable at
time T, and that rank H=m. Then a sufficient condition of weak convergence in L* (0, T)
of the optimal controls and values for every y is given by

¢ F(T)F~'BQ;'-0;,1)—~0 22)

in L? (0, T), for every ce C.
Strong convergence of the optimal controls is obtained if stronmg convergence
holds in (22).

Proof. By theorem 1 we must check that (22) implies (6), with S defined by (21).
Of course S is onto. Given ue L? (0, T) and » € R” we compute

L (u) (T) v={u, L (+) (T)* 'v>=f u ()’ B() F ()~ F(T) v dt.

Thus, for every we R™, and a.e. t€[0, T
S*w)@)=B@)' F@)"*F({T") H' w.

By (18) condition (6) becomes (22), g.e.d. &
Of course condition (22) may be far weaker than weak convergence of Q!
towards Qg ! as in the following

EXAMPLE. Let p=g=2, m=T=1, G=Bs(é (1))

H=(1, 0), 0, (t)=<w"0(t) . O(t)), where w,, z, are measurable functions such that
n
O<agsw, (), z. )<
1 1
for every n, and a.e. t. Then it is easily seen that (22) amounts to e in
n 0

L? (0, 1), while no convergence condition is required about z,.
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O zaburzonych funkcjonalach kwadratowych z ograniczeniami

Minimalizowana jest zaburzona wzgledem A4 forma kwadratowa <{A4x, x> przy ograniczeniu
[[Sx—yll<e. Dowodzi sie¢ warunkéw zbiezno$ci rozwiazah optymalnych i przyblizonych, wartosci
formy i mnoznikdéw, rozszerzajac wyniki z pracy [10], w ktérej rozwaza si¢ przypadek eé=0. Sta-
nowi to rozszerzenie warunkow G-zbieznosci dla form kwadratowych na przypadek z ogranicze-
niami. Otrzymano analityczne oceny bledu zar6wno dla ustalonego e<0, jak i dla e—0 (jednostajnie
wzgledem zaburzen oddziatywujacych na A), w odniesieniu do dokladnych rozwiazan i wartosci
formy.

O HapyIeHHBIX KBAJPATHYHBIX (GYHKUIHOHAIAX
¢ OrpasuvYeHHsIVMH

MuHOMU3HEPYETCST HApYIIeHHAs IO OTHOIIEHWIO K A xBampaTtuyHas ¢opma {Ax, x) mpa orpa-
mnveHnn ||Sx—yi<e. JOKa3pBAIOTCA YCIOBWsS CXOOAMOCTH ONITHMANBHBIX W NPAOIEKESHHBIX
pemenuit, 3HaueHIit GOPMBI X MHOXHTENCH, pacmmpss pesynpTaThl pabotsl [10], B xoTopoit pac-
cMaTpuBaeTcst cyvyait é=0. OTo sSBISIETCS PACIIUPEHUEM YCIOBHI G — CXOOUMOCTH IJIss KBaapa-
THYECKHX (HOPM Ha Ciiyuaif C OrpaHumdyeHHsMH. I1OJyYeHBI aHAIUTHYECKME OLEHKM OIMMMOKA Kak
J7I51 OTIpeHeneHHoro ¢> 0, Tax u s é—0 paBHOMEPHO [0 OTHOIIECHHIO K HAPYIISHHSM, BO3IEHCTBY-
IOIUM Ha A, B CPDAaBHEHAY C TOYHBIME PEHICHUSIME ¥ 3HAYCHHSME (HOPMBI.




