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The arbitrary assignment of eigenvalues and eigenvectors via state variable feedback in the
case of large multivariable systems is considered. The system analysed is assumed to be a structured
one with state variables directly identifiable as belonging to fast, medium and slow modes of oscilla-
tion. The assignment of eigenvalues and eigenvectors are done individually for the smaller sub-
systems. Such an assignment is shown to approximately carry over to the composite system under
certain mild restrictions. The computational and conceptual simplicity of this design procedure
in modifying system dynamics is emphasized.

1. Introduction

One of the problems encountered in computing the control laws of a large scale
system is the numerical instability of the computational processes. This instability
may be directly traced to the ill conditioned nature of the system matrices involved.
A deeper look, at this problem brings to light the important fact that computations
are meaningful for dynamic systems only if the system to be controlled has time
scales of comparable order of magnitude. To cite an example, if a system representa-
tion combines within itself nanosecond responses with phenomena whose occur-
rences are measured in hours, then the numerical computation on the system for
determining optimal control laws invariably runs into difficulties. If it is possible
to segregate this system into sets of differential equations with each set associated
with time scales of comparable magnitude, then such a decomposition will con-
siderably ease the computational problems mentioned above.

Such a system is considered here, with state variables x (¢), y (¢) and z (¢) asso-
ciated with medium (i.e. intermediate between fast and low) fast and slow modes
of oscillation respectively. The system is described by the equations
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% () Ay Az Ags] [x(@) B,
S |8V () | =421 A2z Aos| |y @) |+ | B2 |u(?) )
vz (t) Asy Asz Ass] |z (1) B;

The sizes of the various vectors are as follows:

State variables x, y and z have dimensions », p and ¢ respectively. The input
vector u is an m — vector. All matrices are real and of compatible order. ¢ and u
are tags attaches to denote that y and z are state vectors associated with fast and
slow changing modes with ¢ very small (tending towards zero) and u very large
(tending towards infinity). For an unforced system with a structure similar to (1)
Desoer and Shensa [1] have characterized the system dynamics into three subsys-
tems wiz. Sy, Sy and Sg with reduced order governing equations as given in the
sequel. Each of these subsystems dominates during particular interval of time with
Sz, Sy and S holding sway respectively in the early, intermediate and final stage
of the evolution of state in time. The equations are:

Sp ey ()=A22y () )
Ax@) _[410 4] [x@
SM'[ 0 J‘[An Aiz] [y (t)] %
i Ay Ay Ais x ()
Ss : 0 =14y Az Az y®|. “)

uz (t) Az Asx Ass| | 2(D)

2. Properties of reduced order subsystems

All A12
A21 A22
Sp and S, are assumed to be nonsigular. For such systems, we recall here some
of the properties as derived in [1] and relevant in the present context. These are:

The matrices [4,,] and [ ] corresponding to reduced order subsystems

i) Sp, Sy and Sg are associated with p, » and g natural frequencies respecitvely.
ii) Let Adg={A1, 43, ..., 4,} denote the set of p natural frequencies of Sy obtained
with e=1 substituted in equation (2) and let 4, be a member of this set. 4,
is an eigenvalue of 4,, and let y; be the corresponding eigenvector. Then

for the composite system S,, p-number of eigenvalues, 1;, A, ..., 2, are
given by

’ }'i 1 "

i=‘8—+r 8,7‘- . =12, i p (5)

where r (g, 1/4) is holomorphic, but » (0, 0)=0 (1), uniformly for x#>1. Further the
leading term of expansion of the mode of §,, corresponding to A: is given by

(%}, ¥1» 2)T exp (4} t) where
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It is clear from (5) and (6) that as e—0 and u—«, the eigenvalues and eigenvectors
of the composite system S, tend to values given below

Z;—»Zi/a
(x> 1> 2)* =0, y;, O)T.

In otherwords, the eigenvalues and eigenvectors of S, (obtained after setting e=1)
carry over to the composite system S,, with some modifications.

i) Let ds={ p+1, dps2> ---» dpr 4} denote the set of g natural frequencies of S
obtained with u=1 substituted in equation (4). Let 1, be a member of this
set and let (x,, y;, z)T be the corresponding natural mode; thus

Ayq Ayp Ais X; 0
Az Az Ass »}=101. Y
Aszy Asy Azz—41 Zi | 0f

X

Then for the composite system S, g-number of eigenvalues A, , 2, ,, .r 4y,

are given by

V= A (~—1 —8) =p+1 + @8
; Fgl\=; —1, @ ;
” L P p+q )

where s is holomorphic. However s (1/u, ¢/1)=0 (1/4?) uniformly for e<1. Further
the leading term of the expansion of the mode of S, corresponding to 1; is given
by (x;, ¥y 2;)T exp (4; £). It is hence clear that as e—0 and y— oo the g-number of
eigenvalues of the composite system S,, become

’ Zi

and the eigenvectors of Sy (corresponding to eigenvalues (As)) carry over to the
composite system without any modifications.

iv)  Let Ay={A,1q415 > 4p1q+ns denote the set of n-natural frequencies of Sy;.
Let 4, be a member of this setand let (x], »;)7 be the corresponding natural

mode, thus
Auy—=4T Al ix 0
i SR 10
[A21 Azz] [J’i] [0] ( )

Let 2, be a natural frequency of the composite system S,, close to 4;, then

> phy
zi=ai+w(a,;), i=p-+a-H, o pt gt an
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where o is holomorphic in a neighbourhood of (0, 0), v (0, 0)=0, and v (¢, 1/u)=
=0 (¢, 1/p). Further the leading term of expansion of the natural mode of S,, cor-
responding to 1, is given by (x,, y;, z,)T exp (4; f) where

L |
Zi=7‘7(1431 xi+As2 y);  i=p+q+1, .. p+q+n (12
i

It is clear from (11) and (12) that as e—0 and p—o0 the eigenvalues and eigen-
vectors of the composite system S, tend to the following values

=2 (%, v 2)T= (x5, ¥, OO i=p+g+1, ..., ptgtn 13)

In otherwords, the eigenvalues and eigenvectors of Sy, carry over to the composite
system S,,, former without any change and latter with some modifications.

Ayy Asz
Az Az
the characteristic polynomials of the reduced order systems S, and Ss (with
set equal to / in the latter) respectively become less than n and g, indicating thereby
the presence of some eigenvalues which become infinity or multi-valued.

In case where submatrices [4,,] and [ ] are singular, the degrees of

3. Problem statement and outline of procedure

We are concerned herewith simultaneous eigenvalue and eigenvector assignment
of a large scale system S,, described by equation (1), using state variable feedback
of the form u ({)=K; x (t)+ K, y (t)+K; z (¢). This feedback results in a new system
S,, whose equations are as follows:

N X (1) Ay +Bi Ky A1p+B1 K, Ai3+B; K; x ()
Sept | &y @) | =1 A2:1+B: Ky Az;+B, K, Ay3+By K; y@®|. 14
uz () As1+B; Ky Asz+B3 K, Asz+B; K; z ()

The problem is to assign eigenvalues and eigenvectors for the above closed loop
system when ¢ and 1/u are very small, which in turn involves the determination
of the feedback matrix K=[K; K, K;]. A straightforward determination of K for
a given eigenstructure using Moore’s [2] technique, involves a system of dimension
(p+n-+q). We demonstrate below that the same problem may be tackled in a much
simpler manner by assigning eigenvalues and eigenvectors separately to individual
subsystems Sy, Sy, and Sy which have smaller dimensions. Hence there is consi-
derable saving in computational efforts by adopting such a procedure. Further,
the computational instability introduced because of widely varying time scales is
circumvented in such an approach. From the physical view point also, the steps
proposed for computation seem to be logical and appropriate. For example one
may visualise how, at the start of a transient phenomenon, the fast modes completely
dominate to the total exclusion of the medium and slow modes. Hence only the
submatrix K, in the feedback matrix K is operative during this period. This means
that K, may be directly calculated by considering S whicli:is a dynamic system




Eigenstructure assignment 31

of order p. As time progresses, the medium modes take over and at this stage the
feedback matrix involves both K; and K,. The system model appropriate at this
stage is Sy, and we can use this model to evaluate both K, and K,. Since K, has
already been determined, the calculation of K, is straightforward. Coming to the
third and final phase, system Sg represents the most appropriate model during this
period. The feedback matrix now involves all the three submatrices K;, K, and K,
out of which K; and K, have already been determined, leaving the computation
of K5 alone at this stage. Thus as the system evolves in time, we have progressively
represented the system dynamics by three different models Sy, Sy and S5 each
operative during a certain period. The reduced sizes of these models are thus fully
exploited in calculating separately K;, K, and Kj. Regarding the eigenvalues and
eigenvectors associated with these subsystems, their properties as recalled in section 2,
provide full justification for our procedure. Thus, the assigned eigenvectors of S,
S, and S5 with some modifications (to the first order of small quantities e and 1/x)
become identical to corresponding eigenvectors of the composite system S,,. As far
as eigenvalues of S, are concerned the set associated with S tends towards negative
infinity, the set associated with S,; remains virtually static and the set associated
with Sg moves asymptotically towards the origin. For systems having only fast
and slow modes, Porter [3] has assigned the eigenstructure using a slightly different
approach and this paper is an extension of Porter’s work to more general systems
possessing fast, medium and slow modes.

4, Application of method

As already stated in section 3, we assign independently the eigenstructure (eigen-
values and eigenvectors) of each of the subsystems Sy, Sy, and Ss. To begin with
we have the subsystem Sy defined by,

Sp: ey (1)=[A2,+B; K31y (1) 1s)
Let y e be a solution of (15) with e=1.
Hence
Ayer=[Ad,,+B, K,] ye** (16)
(A22—21,) y+B, K, y=0
1.6.
(42— A1, B,) [ > Ly, an
K,y
Set
and define
Sf,=[A22“‘li Ip-Bz]- (19)

Obviously [y’ w’]” belongs to the null space of S;,. We assume that (4, B,) is
controllable. If it is not so, the uncontrollable eigenvalues may be included in the
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set {4; ... 4,} chosen for the system. The eigenvectors {y,}, i=1, ..., p are arbitrary,
subject only to the condition that they are linearly independent and belong to their
respective null spaces of §7 . It is easily seen that

K, [y1 92 Yol=Iwy wa ... w] (20)
or
K, Y=W.
Hence
K,=wYy-1 (21)

The feedback submatrix K, is thus evaluated. Next consider the subsystem Sy,.
We have

3 [x ) _[A11+B1 K, A, +B; Kz] [x (t)} 22)
A 0 = A21+32K1 A22+BZK2 y(t) ’

Let [;] e’ be a solution of (22).

Hence
Z[x e Ay1+Bi Ky Aix+By Kz] [x o
0 Axi+B, Ky Axp-+B, Ky |y
(A1 —2L) Ay, B x
[A 11 n AIZ Bl} y =0. (23)
21 22 D2 Ky x+K, p
Set
K1 x+K2 y=7] (24)
and define
M__ (All_li]n) A12B1
Sﬁi‘[An Ay By @3)

Hence [x’ y’ ']’ belongs to the null space of S}’

We assume an arbitrary set of eigenvalues {1, ... 2,} subject to the condition that
unassignable eigenvalues are included in this set. The eigenvectors assumed as
before belong to Ker [S}] i=1, 2, ..., n and they are further chosen to be linearly
independent.

We have

Ky [x1 %5 oo Xl K [Y1 Y2 oo Yul=[v1 95 ... 9] (26)
or
K, X+K, Y=V.

Since K, is already determined from (21),

K, X=V-K, Y. 27
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Hence
K, =[V-K, Y] X! (28)

where the inverse of X is assured by choosing K, such that (4,,+B, K,) is
Hurwitz.

During the final stages of the response, the model appropriate for the system
is S5. We have

0 Ai1+Bi Ky Ai+Bi Ky Ai3+B K| [x(7)
Ss:| 0 |=|A421+B:Ky Ass+By Ky A +B Ks| |y ()] 29
uz (1) A31+B3 Ky Asx+B3; K, Az +B3K; z (1)
X
Let | y|e* be a solution of (29) with u=1.
z
Hence

Ay1+B K, Ai3+Bi K, As+B K| [x
0] 2ett= A21+.Bz Ky, Az;+B; K, Az3+B;K; y et
Az +B3 Ky Az +B3 K, Ass+B3; K5 |z

1.€.

s X
All AlZ A13 Bl

Azy Az A2z * B, 5 =0, (30)

z
|31 As dss=2, B |t

As before set

Ky x+K, y+K;3 z=r
and define

Ayy Aiz Ais B,

S§i= A21 A22 A23 B2 (31)

A31 A32 A33—ﬂ’i Iq BS
Clearly [x’ »’ z’ ']’ belongs to the null space of S;. There are g eigenvalues asso-
ciated with (29). The choice of these eigenvalues are not critical (except that they
should be stable) as in any case they migrate towards the origin for large x in the
composite system. We assume an arbitrary set of eigenvalues {4,, ..., 4,} subject to
the condition that unassignable eigenvalues are included in this set. The correspond-
ing eigenvectors may be arbitrarily chosen from Ker [S;fi] i=1, ..., ¢ with the pro-
viso that they are linearly independent. We have,

K [%1 X5 oo XK [Y1 Y2 o Y]+ K5 [21 22 v Z]=[ry P2 o 7]
ie. K; X+K, Y+K; Z=R. 32)

Since K; and K, are already known

K3=[.R'—K1 X—"Kz Y] Z_:l (33)
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where inverse of Z is assured if the matrix

[A11+B1 Ky A>+B K,

is nonsingular.
A21+B2 Kl A22+BZ KZ] g

Thus the three components of the feedback matrix Ky, K, and K; are determined
step by step with minimum computational effort.

5. Illustrative example

The above results can be illustrated by considering the state feedback control
of the multivariable linear system governed by respective state, output and control
lew equations

x (1) 1 2 -1 x®] [1 o0
y@Ol=|1/e 0 el ly@|+]10 1/elu(@ (34)
2(1) Yp =1p  Yu] lz@®] (e O
x (1]
o=} 7 7ol P@ @9)
lz@®]
and
[x ()
u®)=[K K, K;1|y ()] (36)
| z (1)

It is required to determine feedback matrices K;, K, and K3 to simultaneously
assign the eigenvalues of the medium, fast and slow subsystems as

Iu=—1
Ag=—1 37
As=—3

and their corresponding eigenvectors. Further it is required that the slow mode
associated with slow system be made unobservable in the output.

We assign 1y=—1 and choose the corresponding eigenvector from Ker [S7]
as follows:

1
For the problem, Ker [ST]=sp 01, 11;. Since [ Ky ]eKer [S¥] accor-
__1 _1 2y
ding to equation (17) we choose .
y 1.1 1
[sz—-'- =5l (33)
-1
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Therefore
i

We assign Ay=-1 and choose the corresponding eigenvector from Ker [S}/]
as follows:

1 1
on 1 0
For the problem, Ker [S;']=sp | nE 5
1 1
X
Since y e Ker [S¥] according to equation (23), we choose
K x+K,y
x 1
y 1
K, x+K,y T -4 (@0)
-1
G.e)
-4
K1 X+K2 y=[_— 1] .
Therefore
-5
Kl-—[ O] . “Dn

We assign As=—3 and choose the corresponding eigenvector from Ker [S}]
as follows:
For the problem

1

o] ]
Ker [Sf]=sp{| —1/5 |, 2/5 !
| |
(L J

—6/5| | —13/5
—4i5| | =75
®
Since i} e Ker [S7] according to equation (30), we choose

Ki x+K, y+K;z

X JRREN =
¥y 1
z ' 2/5
TR A ) T 2)
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(i.e.)

—13/5
K, x+K, y+K; z=[_7/é ]

Using (39) and (41) we get
K3=[_Z/2] ; 43)

Further the slow mode
ol Y 3 —1 “"5
[x"y' 2] eKer[l =N 0] (44)
and hence it becomes unobservable in the output.
The state feedback matrix becomes

(45)

K=[K1K2K3]=[_5 1 7/2].

0 -1 -1

The state equations of the closed loop system governed by equations (34), (36) and
(45) thus become

% (2) —4 3 52 x (@)
y@|=| 1l —1/e 0 y (@) (46)
@) -3 0 ©PRk]Lz0
with
1 0 5l
1}, 1, 1
0 0 2/5

as the medium, fast and slow eigenvector respectively. The corresponding eigen-
values are Ay=—1, Apg=—1/e and Ag=—3/u when e¢—-0 and u—oo.

The above assignment holds for small values of e and 1/u. This is demonstrated
by taking e=10"3 and u=103. Direct calculation for eigenvalues and eigenvectors
of the closed loop system (46) gives the following results:

The fast eigenvalue of the composite system A,=—1003.0027, is noted to be
nearly equal to Az/e== —1/10~3= —1000. Similarly fast eigenvector of the composite
system, given by

—0.0030
1.0000
—0.0001

is almost identical in direction to the assigned eigenvector of [0.0 1.0 0.0]". The
medium eigenvalue of the composite system, A,,= —0.989483, is noted to be nearly
equal to the assigned value of —1.0000. The corresponding eigenvector of the com-
posite system, given by

0.999

1.000

0.003
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is almost identical in direction to the assigned eigenvector of [1.0 1.0 0.0]". The
slow eigenvalue of the composite system, Ag=—0.00335, is noted to be nearly equal
As/p=—3/10%=—0.003. Similarly slow eigenvector, given by

1.0000
1.0000
0.3986

is almost identical in direction to the assigned eigenvector of [1.0 1.0 0.4]".

6. Conclusion

There are many engineering situations where a physical grasp of the problem
enables one to group together system variables according to their temporal be-
haviour as fast, medium and slow modes. For such structured problems, we suggest
a methodology for individually assigning eigenvalues and eigenvectors corresponding
to the three different modes alluded to earlier. For small values of ¢ and large values
of y it turns out that the composite system S,, under control laws derived for smaller
subsystems possesses eigenvalues and eigenvectors which are almost identical to
those for the smaller subsystems. Such a fortuitous property leads to considerable
computational economy. There is also a conceptual simplicity in visualising the
system transition from fast through medium to slow modes, with appropriate re-
duced order models representing the process at each stage. Further implications
of this approach in the context of the control of large scale system are now being
studied.
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Rozmieszczenie warto$ci wlasnych systemoéw wielowymiarowych
ze skladowymi szybko-, Srednio- i wolnozmiennymi

W pracy rozwazane jest rozmieszczenie wartosci wlasnych i wektorow wiasnych poprzez sprzgze-
nie zwrotne zmiennych stanu dla przypadku wielkich systemow wielowymiarowych. Zaklada sie, ze
analizowane systemy posiadaja wyrazna strukture wynikajaca z bezposredniego podziatu zmiennych
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stanu na szybko-, $rednio- i wolnozmienne. Rozmieszczenie wartosci i wektorow wihasnych jest
dokonywane osobno dla poszczegdlnycb mniejszych podsystemo6w. Pokazano, Ze rozmieszczenie
takie w przyblizeniu przenosi si¢ na calo$¢ zlozonego systemu przy do$¢ stabych warunkach.
Podkreslic nalezy obliczeniowa i metodyczna prostote proponowanej procedury modyfikacji
dynamiki systemu.

Pacnoperiesieniie cOOCTBEHHBIX 3HAYECHHMIT MHOTOMEPHBIX CHCTEM
¢ GBICTPO, cpefHe M Me/JIeHHO M3MEeHAIOMAMICSH
COCTABJISIIIMMHE

B pa6oTte paccMaTpuBaeTCsl pacipeneicHane COOCTBEHHBIX 3HAYEHMAM X BEKTOPOB IOCPSACTEOM
00paTHO CBS3M MEPEMEHHBIX COCTOSHAS IJIS CIydas 60bInaX MHOTOMEPHBIX cucteM. IIpennonara-
€TCA, YTO aHAIM3HPYEMBIE CACTEMBI 00JIANAT0T SIBHOM CTPYKTYPOM, BEITCKATOIICH U3 HEIIOCPEICTBE-
HHOTO pAa3elieHMsl IEPEMEHHBIX COCTOSHUS HAa OBICTPO, CPEAHE W MEJJICHHO W3MEHSIOIIUECH.
Pacupegenenue COGCTBEHHBIX 3HAYEHWI ¥ BEKTOPOB IPOU3BOAUTCH DA3LNENbHO s OTHENBHBIX
MEHBIIHEX HOACHCTEM. [IOKa3aHO, 9TO TAaKOe PaclpeleNieHre MOXHO HPHOJIH3UTEIBHO IEPEHECTH
Ha BCIO CJIOXHYIO CHCTEMY IpPHU HOBOJBHO CNIa0bIX yciaoBusX. ClemyeT HOMICPKHYTH BHIYACIHTEI b~
HYIO0, METOIWYECKYIO MPOCTOTY NpeaiaraeMoil IpOoLenyphl MONAMWKALMA IWHAMWKA CHCTEMBL




