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The arbitrary assignment of eigenvalues and eigenvectors via state variable feedback in the 
case of large multi variable systems is considered. The system analysed is assumed to be a structured 
one with state variables directly identifiable as belonging to fast, medium and slow modes of oscilla­
tion. The assignment of eigenvalues and eigenvectors are done individually for the smaller sub­
systems. Such an assignment is shown to approximately carry over to the composite system under 
certain mild restrictions. The computational and conceptual simplicity of this design procedure 
in modifying system dynamics is emphasized. 

1. Introduction 

One of the problems encountered in computing the control laws of a large scale 
system is the numerical instability of the computational processes. This instability 
may be directly traced to the ill conditioned nature of the system matrices involved. 
A deeper look, at this problem brings to light the important fact that computations 
are meaningful for dynamic systems only if the system to be controlled has time 
scales of comparable order of magnitude. To cite an example, if a system representa­
tion combines within itself nanosecond responses with phenomena whose occur­
rences are measured in hours, then the numerical computation on the system for 
determining optimal control laws invariably runs into difficulties. If it is possible 
to segregate this system into sets of differential equations with each set associated 
with time scales of comparable magnitude, then such a decomposition will con­
siderably ease the computational problems mentioned above. 

Such a system is considered here, with state variables x (t), y (t) and z (t) asso­
ciated with medium (i.e. intermediate between fast and low) fast and slow modes 
of oscillation respectively. The system is described by the equations 
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s.Jl: [e: ~~~] = [~:: ~:: ~::j [; ~:~] + [!~] u (t) 
Jlz (t) A31 A32 A33 z (t) _ B3 

(1) 

The sizes of the various vectors are as follows: 

State variables x, y and z have dimensions n, p and q respectively. The input 
vector u is an m- vector. All matrices are real and of compatible order. 8 and J1 
are tags attaches to denote that y and z are state vectors associated with fast and 
slow changing modes with 8 very small (tending towards zero) and J1 very large 
(tending towards infinity). For an unforced system with a structure similar to (1) 
Desoer and Shensa [1] have characterized the system dynamics into three subsys­
tems wiz. Sp, SM and Ss with reduced order governing equations as given in the 
sequel. Each of these subsystems dominates during particular interval of time with 
Sp, SM and Ss holding sway respectively in the early, intermediate and final stage 
of the evolution of state in time. The equations are: 

SF : 8Y (t)=A 22 y (t) 

SM: [x(t)]=[Au A12] [x(t)] 
0 A21 A22 y (t) 

2. Properties of reduced order subsystems 

[

X (t)] 
y (t) . 
z (t) 

(2) 

(3) 

(4) 

The matrices [A 22 ] and [ ~~: ~::] corresponding to reduced order subsystems 

SF and SM are assumed to be nonsigular. For such systems, we recall here some 
of the properties as derived in [1] and relevant in the present context. These are: 

i) Sp, SM and Ss are associated with p, nand q natural frequencies respecitvely. 

ii) Let AF={A1, .?.2, •.. , J.P} denote the set of p natural frequencies of SF obtained 
with 8= 1 substituted in equation (2) and let .?.1 be a member of this set. .11 

is an eigenvalue of A22 and let y1 be the corresponding eigenvector. Then 
for the composite system s.Jl p-number of eigenvalues, A.~, .1;, ... , A.~, are 
given by 

i=1,2, ... ,p (5) 

where r (8, 1/ Jl) is holomorphic, but r (0, 0)=0 (1), uniformly for Jl)d. Further the 
leading term of expansion of the mode of s.Jl corresponding to .1; is given by 

(x;, y;, z;y exp (A.~ t) where 

-------------------- -- - -- ---
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i=l,2, ... ,p. (6) 

It is clear from (5) and (6) that as e--+0 and p-+a, the eigenvalues and eigenvectors 
of the composite system S811 tend to values given below 

In otherwords, the eigenvalues and eigenvectors of SF (obtained after setting e= 1) 
carry over to the c9mposite system S,1, with some modifications. 

iii) Let As=Pv+l• J..P+ 2 , .. . , J..v+q} denote the set of q natural frequencies of Ss 
obtained with f1= 1 substituted in equation (4). Let J..i be a member of this 
set and let (x;, y~, z;)r be the corresponding natural mode; thus 

(7) 

Then for the composite system s." q-number of eigenvalues J..~+ 1 , },~+ 2 , ... , J..~+q 
are given by 

i=p+l, ... ,p+q (8) 

where s is holomorphic. However s (1/ f1, ej J.l)=O (1/ p 2
) uniformly for e~ 1. Further 

the leading term of the expansion of the mode of s." corresponding to ;..; is given 
by (x;, y;, z;y exp (J..; t). It is hence clear that as e--+0 and f.i.--+00 the q-number of 
eigenvalues of the composite system s.tl become 

i=p+1,p+2, ... ,p+q (9) 

and the eigenvectors of Ss (corresponding to eigenvalues (As)) carry over to the 
composite system without any modifications. 

iv) Let AM=Pv+q+l• ... , J..v+q+n} denote the set of n-natural frequencies of SM. 

Let J..i be a member of this set and let (x;, yy be the corresponding natural 
mode, thus 

[~~: -},t I ~~:] [~:]=[~]. (10) 

Let ;..; be a natural frequency of the composite system s." close to J..t, then 

i=p+q+n, ... ,p+q+n (11) 
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where v is holomorphic in a neighbourhood of (0, 0), v (0, 0)=0, and v (e, 1/ p)= 
=0 (e, 1/p). Further the leading term of expansion of the natural mode of Seu cor­
responding to A.; is given by ex;, y;, z;v exp (A.; t) where 

- 1 
z1,;,--:;;- (A31 x1+A32 y 1); i=p+q+l, ... , p+q+n 

jlAI 
(12) 

It is clear from (11) and (12) that as e~o and p~oo the eigenvalues and eigen­
vectors of the composite system s.ll tend to the following values 

i=p+q+1, ... ,p+ q+n (13) 

In otherwords, the eigenvalues and eigenvectors of S M carry over to the composite 
system s.ll, former without any change and latter with some modifications. 

In case where submatrices [A 22 ] and [ ~~: ~~:] are singular, the degrees of 

the characteristic polynomials of the reduced order systems SM and Ss (with J1 

set equal to 1 in the latter) respectively become less than n and q, indicating thereby 
the presence of some eigenvalues which become infinity or multi-valued. 

3. Problem statement and outline of procedure 

We are concerned herewith simultaneous eigenvalue and eigenvector assignment 
of a large scale system s.ll described by equation (1), using state variable feedback 
of the form u (t)=K1 x (t)+ K2 y (t)+ K3 z (t) . This feedback results in a new system 
s.ll whose equations are as follows: 

(14) 

The problem is to assign eigenvalues and eigenvectors for the above closed loop 
system when e and 1 I J1 are very small, which in turn involves the determination 
,of the feedback matrix K=[K1 K2 K3 ]. A straightforward determination of K for 
a given eigenstructure using Moore's [2] technique, involves a system of dimension 
(p+n+q). We demonstrate below that the same problem may be tackled in a much 
simpler manner by assigning eigenvalues and eigenvectors separately to individual 
subsystems SF, SM and Ss which have smaller dimensions. Hence there is consi­
derable saving in computational efforts by adopting such a procedure. Further, 
the computational instability introduced because of widely varying time scales is 
circumvented in such an approach. From the physical view point also, the steps 
proposed for computation seem to be logical and appropriate. For example one 
may visualise how, at the start of a transient phenomenon, the fast modes completely 
dominate to the total exclusion of the medium and slow modes. Hence only the 
submatrix K 2 in the feedback matrix K is operative during this period. This means 
that K2 may be directly calculated by considering SF whic(is a dynamic system 

--- -------------------------
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of order p. As time progresses, the medium modes take over and at this stage the 
feedback matrix involves both K1 and K2 . The system model appropriate at this 
stage is SM and we can use this model to evaluate both K 1 and K 2. Since K2 has 
already been determined, the calculation of K1 is straightforward. Coming to the 
third and final phase, system Ss represents the most appropriate model during this 
period. The feedback matrix now involves all the three submatrices K1 , K2 and K3 

out of which K 1 and K 2 have already been determined, leaving the computation 
of K 3 alone at this stage. Thus as the system evolves in time, we have progressively 
represented the system dynamics by three different models Sp, SM and Ss each 
operative during a certain period. The reduced sizes of these models are thus fully 
exploited in calculating separately K 1, K 2 and K 3 • Regarding the eigenvalues and 
eigenvectors associated with these subsystems, their properties as recalled in section 2, 
provide full justification for our procedure. Thus, the assigned eigenvectors of Sp, 
SM and Ss with some modifications (to the first order of small quantities e and 1/ /-l) 
become identical to corresponding eigenvectors of the composite system Sw As far 
as eigenvalues of S,ll are concerned the set associated with SF tends towards negative 
infinity, the set associated with SM remains virtually static and the set associated 
with -Ss moves asymptotically towards the origin. For systems having only fast 
and slow modes, Porter [3] has assigned the eigenstructure using a slightly different 
approach and this paper is an extension of Porter's work to more general systems 
possessing fast, medium and slow modes. 

4. Application of method 

As already stated in section 3, we assign independently the eigenstructure (eigen­
values and eigenvectors) of each of the subsystems Sp, SM and Ss. To begin with 
we have the subsystem Sp defined by, 

Sp: ey (t)=[A22+B2 K2] y (t) 

Let y eu be a solution of (15) with e= 1. 

Hence 

i.e. 

Set 

and define 

Jcyeu= [A 22+B2 K 2] yeM 

(A22-Alp)y+B2 K2y=O 

(15) 

(16) 

(17) 

{18) 

(19) 

Obviously [y' w']' belongs to the null space of Sf
1

• We assume that (A 22 , B2 ) is 
controllable. If it is not so, the uncontrollable eigenvalues may be included in the 
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set {).1 ... Av} chosen for the system. The eigenvectors {y,}, i= 1, ... , pare arbitrary, 
subject only to the condition that they are linearly independent and belong to their 
respective null spaces of sr

1
• It is easily seen that 

(20) 

or 

Hence 

(21) 

The feedback submatrix K 2 is thus evaluated. Next consider the subsystem SM· 

We have 

S- ·[x(t)]-[All+BtKt A12+B1Kz] [x(t)] 
M· 0 - A 21 +B2 Kt Azz+BzKz Y (t) · 

Let [;] eu be a solution of (22). 

Hence 

(22) 

[
(All- Aln) A12 Bt] [ ; ] =O. (23) 
Azt Azz Bz K +K 

1X zY 

Set 

(24) 

and define 

(25) 

Hence [x' y' v']' belongs to the null space of Sf. 

We assume an arbitrary set of eigenvalues { A1 ... 2n} subject to the condition. that 
unassignable eigenvalues are included in this set. The eigenvectors assumed as 
before belong to Ker [Sf] i = 1, 2, ... , n and they are further chosen to be linearly 
independent. 

We have 

(26) 

or 

Since K2 is already determined from (21), 

K 1 X=V-K2 Y. (27) 

--------------- ---- ------ ---
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Hence 

(28) 

where the inverse of X is assured by choosing K2 such that (A 22+B2 K2) is 
Hurwitz. 

During the final stages of the response, the model appropriate for the system 
is S5 • We have 

[ 

0 ] [A 11 +B1K1 A12+B1K2 
S5 : 0 = A 21 +B2K1 A22+B2K2 

pt(t) A31 +B3 Kl A32+B3Kz 

Let l~] '" be a solution of (29) with p~ 1. 

Hence 

i.e. 

As before set 

and define 

A12 A13 

A22 A23 

A 32 A 33 - Alq 

(29) 

(30) 

(31) 

Clearly [x' y' z' r']' belongs to the null space of Sf, There are q eigenvalues asso­
ciated with (29). The choice of these eigenvalues are not critical (except that they 
should be stable) as in any case they migrate towards the origin for large p in the 
composite system. We assume an arbitrary set of eigenvalues { ll1 , ... , llq} subject to 
the condition that unassignable eigenvalues are included in this set. The correspond­
ing eigenvectors may be arbitrarily chosen from Ker [Sf) i= l, ... , q with the pro­
viso that they are linearly independent. We have, 

K1 [x1 x 2 ... Xq]+K2 [y1 Y2 ... yq]+K3 [z1 z2 ... Zq]=[rl r2 ... l'q] 

i.e. K1 X+K2 Y+K3 Z=R. (32) 

Since K 1 and K 2 are already known 

K3=[R-K1 X -K2 Y] z- 1 (33) 

3 

-----------~-----------------------------
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where inverse of Z is assured if the matrix 

Thus the three components of the feedback matrix K1 , K 2 and K 3 are determined 
step by step with minimum computational effort. 

5. Illustrative example 

The above results can be illustrated by considering the state feedback control 
of the multivariable linear system governed by respective state, output and control 
lew equations 

and 

[
x (t)] [1 2 
y (t) = 1/s 0 
t(t) 1/p -1/p 

-1 ] [X (t)] [1 0 ] 
1/s y (t) + 0 1/s u (t) 
1/Jl z (t) 1/p 0 

[3 1 5] [X (t)] 
h (t) = 1 -1 0 y (t) 

. z (t) 

[

X (t)] 
u (t)= [K1 K 2 K 3 ] y (t) . 

z (t) 

(34) 

(35) 

(36) 

It is required to determine feedback matrices Kl> K 2 and K 3 to simultaneously 
assign the eigenvalues of the medium, fast and slow subsystems as 

AM=-1 
AF=-l 
As=-3 

(37) 

and their corresponding eigenvectors. Further it is required that the slow mode 
associated with slow system be made unobservable in the output. 

We assign AF= -1 and choose the corresponding eigenvector from Ker [Sf] 
as follows: 

For the problem, Ker [Sfj ~sp l [-n ' [_:]I· Since [ x: y l e Ker [SJ] accor­

ding to equation (17) we choose 

(38) 

----------------- --- ~ -- -
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Therefore 

(39) 

We assign AM= -1 and choose the corresponding eigenvector from Ker [S~l 
as follows: 

Fo• the pmblem, Ke• [S~[~sp ll =~l r =m 
Since [ ; ] E Ker [S~] according to equation (23), we choose 

K 1 x+Kzy 

(40) 

(i.e.) 

Therefore 

We assign As=- 3 and choose the corresponding eigenvector from Ker [Sf} 
as follows: 

For the problem 
f - 1 -

I o 
Ker [s;]=sp { -1/5 , 

1 -6/5 
l_-4/5 _ 

1 - l 
I I 
2/5 ~. 

-13/5 1 
_ -7/5- J 

Since [ ; ] E Ker [Sf] according to equation (30), we choose 

Kt x+K2 y+K3 z 

(42) 
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(i.e.) 

[-13/5] K1 x+Kz y+K3 z= _
715 

. 

Using (39) and (41) "'e get 

(43) 

Further the slow mode 

[
3 - 1 -

0
s] [x' y' z']' e Ker 

1 
_

1 
(44) 

and hence it becomes unobservable in the output. 

The state feedback matrix becomes 

(45) 

The state equations of the closed loop system governed by equations (34), (36) and 
(45) thus become 

[
x(t)] [ - 4 3 5/2 ] [x(t)] 
Y(t) = 1/e -1 /e 0 y (t) 
.i (t) - 3/ f1 0 (9/2)/ f-L z (t) 

(46) 

with 

as the medium, fast and slow eigenvector respectively. The corresponding eigen­
values are A.M=-1, A.F=- 1/e and A8 =-3/fl when e---+0 and fl.---+00. 

The above assignment holds for small values of e and 1/ fl· This is demonstrated 
by taking e=10- 3 and f1.=103 • Direct calculation for eigenvalues and eigenvectors 
of the closed loop system ( 46) gives the following results: 

The fast eigenvalue of the composite system A~= -1003.0027, is noted to be 
nearly equal to A.F/e= -1/10- 3 = - 1000. Similarly fast eigenvector of the composite 
system, given by 

[

-0.0030] 
1.0000 

-0.0001 

is almost identical in direction to the assigned eigenvector of [0.0 1.0 0.0]'. The 
medium eigenvalue of the composite system, },M= -0.989483, is noted to be nearly 
equal to the assigned value of - 1.0000. The corresponding eigenvector of the com­
posite system, given by 

[

0.999] 
1.000 
0.003 
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is almost identical in direction to the assigned eigenvector of [1.0 1.0 0.0]'. The 
slow eigenvalue of the composite system, ;.; =-0.00335, is noted to be nearly equal 
As/Jl= -3/103 = -0.003. Similarly slow eigenvector, given by 

[

1.0000] 
1.0000 
0.3986 

is almost identical in direction to the assigned eigenvector of [1.0 1.0 0.4]'. 

6. Conclusion 

There are many engineering situations where a physical grasp of the problem 
enables one to group together system variables according to their temporal be­
haviour as fast, medium and slow modes. For such structured problems, we suggest 
a methodology for individually assigning eigenvalues and eigenvectors corresponding 
to the three different modes alluded to earlier. For small values of s and large values 
of p it turns out that the composite system S,JJ- under control laws derived for smaller 
subsystems possesses eigenvalues and eigenvectors which are almost identical to 
those for the smaller subsystems. Such a fortuitous property leads to considerable 
computational economy. There is also a conceptual simplicity in visualising the 
system transition from fast through medium to slow modes, with appropriate re­
duced order models representing the process at each stage. Further implications 
of this approach in the context of the control of large scale system are now being 
studied. 
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Rozmieszczenie wartosci wlasnych systemow wielowymiarowych 
ze skladowymi szybko-, srednio- i wolnozmiennymi 

W pracy rozwazane jest rozmieszczenie wartosci wlasnych i wektor6w wlasnych poprzez sprz~ze­
nie zwrotne zmiennych stanu dla przypadku wielkich system6w wielowymiarowych. Zaklada si<l, :i:e 
analizowane systemy posiadajll wyrainll struktur<l wynikajllCll z bezposredniego podzialu zmiermych 
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stanu na szybko-, srednio- i wolnozmienne. Rozmieszczenie wartosci i wektor6w wlasnych jest 
dokonywane osobno dla poszczeg6!nycb mniejszych podsystem6w. Pokazano, :le rozmieszczenie 
takie w przyblizeniu przenosi si~ na calosc Zloionego systemu przy dose slabych warunkach. 
Podkreslic naleiy obliczeniow~ i metodyczn~ prostot~ proponowanej procedury modyfikacji 

dynamiki systemu. 

PacnpeAeJieiUie co6cTseHHLIX Juaqemtii MHoroMepuLlX cucTeM 

C 6LICTpO, cpeAUe H MeAJieUHO H3MeHHIO~HMHCH 

COCTaBJIH~IIMH 

B pa6oTe paCCMaTpHBaeTCll pacrrpe,ll;eJiemme C06CTBCHlll>IX 3Ha'ieHHil: R BCKTOpOB IIOCpC,ll;CTBOM 
o6paTHO:i!: CBSI3R rrepeMCHlll>IX COCTOliHIDI ,ll;Jlll CJIY'lall 60JThiilliX MHOfOMepHI>IX CHCTCM. llpe,ll;IIOJiara­
CTCll, 'lTO aHaJIR3HpyeMI>re CHCTCMI>I 06Jia,!J;aiOT l!BHOH CTpyrnypoil:, BbiTCKaiOIJ:(CH R3 HCIIOCpe,ll;CTBe­
HHOfO pa3,!J;eJieHHSI rrepeMeHlll>IX COCTOliHIDI Ha 6biCTpO, Cpe,ll;He H Me,!J;JieHHO H3MCHSIIOIIIHeCll. 
Pacrrpe,!J;eJieHHe C06CTBCHlll>IX 3Ha'leHHH H BeKTOpOB IIpOH3BO,ll;RTCll pa3,!J;CJThHO ,!J;Jlll OT,!J;CJThHl>IX 
MeHI>IImX IIO,!J;CRCTeM. llOKa3aHO, 'lTO TaKOe pacrrpe,!J;eJieHHe MO:lKHO IIpH6JIH3HTeJThHO nepeHeCTR 

Ha BCIO CJIO:lKHyiO CRCTeMY IIpH ,!J;OBOJThHO CJia6hiX YCJIOBHSIX. CJie,!J;YeT IIO,ll;'lepKHYTh Bhl'lRCJIHTCJib­
HYIO, MeTO,ll;H'leceyro IlpOCTOTY npe,ll;JiaraeMOH IIpO[(C,!J;Ypbl MO,!J;HcPRKa[(HH ,!J;HHaMRKR CRCTCMbi. 


