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The paper is concerned with a free boundary problem arising from the diffusion of oxygen in 
absorbing tissues. Assuming cylindrical symmetry of the problem, the local in time existence of 
a solution is proved by using a fixed point argument. The global existence is shown as well by con­
tinuation of the local solution. The paper extends known results concerning the case of plane sym­
metry. 

1. Introduction 

A kind of Cauchy type parabolic free boundary problems ansmg from the 
diffusion of oxygen in insulated living tissues, which simultaneously consume the 
oxygen has been considered in several papers (see e.g. [1], [2], [3]) mostly referring 
to the case of plane symmetry. A more realistic model of the diffusion consumption 
of oxygen in living tissues surrounding a blood vessel deals with cylindrical domains. 
Extension the results existing in the literature to the case of cylindrical symmetry 
is not trivial. This is the principal aim of the present paper. 

We state our problem as [1] does: first, suppose some fixed concentration of 
oxygen u0 is allowed to diffuse through a blood vessel into living tissues. A diffusion­
-consumption process will continue until a steady state is reached in which the 
oxygen does not penetrate further into the tissues. The supply of oxygen is then 
cut off and the surface is sealed. The living tissues go on consuming oxygen and 
as a consequence the surface bounding the oxygen containing region recedes to­
wards the sealed surface. This process can be given the following mathematical 
scheme, using nondimensional variables 

*) This work is supported by the Italian C. N. R. 
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u, 
L(u)=u,,+--ur=1, r0 <r<s(t), O<t<T; 

r 

u (r, O)=f(r), r0 <r<r1; 

u, (r0 , t)=O, O<t<T; 

u (s (t), t)=O, O<t<T; 

u, (s (t), t)=O, O<t<T; 

s (O)=r1. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Here f(r) represents the steady state concentration distribution of oxygen which 
solves: 

f" (r)+ f' (r) = 1, 
r 

It is easy to find that 

where r1 solves 

f(ro)=uo, 

j(r1)=0, 

f' (r1)=0. 

r2 -ri ri r 
f(r)=----ln-

4 2 r1 

r~ - ri ri r0 
----ln-=u0 (u0 , r 0 are given constants whose physical 

4 2 r 1 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

meaning is clear). (1.12) 

By simple calculation, we can find a unique root r1 >r0 for (1.12) and thus f(r) 
is well defined. 

In section 3, using the same approach as [3], based on a fixed point argument, 
we prove a local existence theorem for (1.1)-(1.6), which remains valid even for 
more general initial data. Before applying this approach, we establish in section 2 
the existence of the solution to a Stefan type free boundary problem in a cylindrical 
domain. We give also some continuous dependence results to be used in section 3. 

In section 4, using the results of [8], we investigate the continuation of the local 
solution to (1.1)-(1.6), and prove that the solution can be extended until all oxygen 
is absorbed. 

2. Some results for a Stefan type free boundary problem 
in a cylindrical domain 

We consider the existence property for a Stefan type problem in preparation 
for next section. But the results obtained here have their own interest. 
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LEMMA 2.1. Suppose g (t) is continuous in [0, T], u0 (r) is continuous in [r0 , r], Ju0 (r)l ~ 
~M (r1 -r), where M is a constant. Then there exists a triple (u (r, t), s (t), T) such that 

a) T>O, 

b) u (r, t) is continuous in Dr "'-._ {r0 , 0} and bounded in Dr; 
u, (r, t) is continuous for r0 <r~s (t), O<t<T; 
u,, (r, t), ut (r, t) are continuous in Dr={r0 <r<s (t), O<t<T}. 

c) s (t) is continuously dif+erentiable in (0, T) and continuous in [0, T], 

s (O)=rt. s (t)>r0 • 

d) 
1 

u,,+- u,-ut=O, 
r 

in Dr; 

u (r, 0)=u0 (r), r0 ~r~r1 ; 

u (r0 , t)=g (t), O<t<T; 

u (s (t), t)=O, O<t<T; 

Ur (s (t), t)= -s' (t), O<t<T. 

Proof. Take the Banach space 

where T 0 >0 and A>O are to be determined. 
Suppose T0 is small enough, such that 

Yt -Yo 
1',:0::::-­

o---=: 2A ' 

For any a (t) e B (A, T0), we can solve an initial-boundary value problem 

1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

L(u)=urr+-u,-ut=O in D~o={(r,t); r0 <r<a(t), 0<t<T0 } (2.7) 
r 

u(r0 ,t)=g(t), O,;;t,;;T0 ; 

u (r, 0)=u0 (r), r0 ,;;r,;;r1 ; 

u(a(t),t)=O, O,;;t,;;T0 • 

(2.8) 

(2.9) 

(2.10) 

In order to estimate ur (a (t), t), we introduce the function v (r, t) as the solution of 

v (r0 , t)=H (r1 -r0 ), O<t<To; 

v (r, 0)=H(r1 -r), r0 <r<rt; 

v(a(t),t)=O, 0<t<T0 

h { JJg\lc [0, T 0 ] M} 
w ere H=max -r -r , • 

Jl-JO 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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It is easy to obtain, by the maximum principle applied in D~o that Vr (r, t)~O. 
1 

Thus, L (u-v) =- -vr (r, t)~O and u~v on the parabolic boundary of D~ . Using r o 

the maximum principle once more, we deduce 

u (r, t)~v (r, t), (r, t) E D~o. 

Similar arguments used for -u (r, t) yield 

- u (r, t)~v (r, t), (r, t) E D~o. 

These results imply that 

Ur ( (1 (t), t)J ~ Jv, ( (1 (t), t)J, 

because of (2.10) and (2.14). 

From Lemma 1 in [4], we obtain 

(2.15) 

We see when T0 tends to zero, the right-hand side of this inequality tends to 2H. 
Thus, there exists a positive <5 < 1 which depends only on A, r0 , r 1 such that: 

Jvr (a (t), t)J~3H, if T0 <b< l. 

{ 
llgllc [0, T 0 ]} { llgllc [0, 1] } 

But lf=max --- ~max ---,M so if we choose A large enough 
r1 -r0 r1 -r0 

so that 

f 9 ilgllc o, TJ 9M\j 
A~max )----, 

l Yt-Yo 

we finally have 

(2.16) 

Now we define an operator f on B (A, T0 ) such that: 

[ 

t ] 1/2 
[/(a)] (t)=ro+ (r1 -r0)

2
- 2 [ (a (r)-r0) Ur (a (r), r) dr (2.17) 

where u (r, t) is the solution of (2.7)-(2.10). Because of (2.16), when T0 is sufficiently 
small, (2.17) is well defined. 

Setting dlt=u, "f/" = r-r0 in the Green's formula 

J J ("f/Ldlt-d/JL*"f/)drdr= J dlt"f/dr+("f/dltr-dlt"f/r+ dlt:)dr, (2.18) 
n~ av~ 

- - - -----------------
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we can obtain 

t 0" (t) t 

- J (a (r) - r0) u, (a (r), •) dr= - J (r-r0 ) u (r, t) dr+ J g(•) d•+ 
0 ro 0 

'' U (r •) 
+ J (r - r0)u0 (r)dr - r0 J J-ri-drd•. 

ro D~ 

Thus: 

[ 

o-00 t 

,f(a)(t)= ro + (r1 - r 0)
2 - 2 J (r - r0)u(r, t)dr+ 2 J g(•)d•+ 

ro 0 

' ' u(r, •) ]112 
+2 J (r - r0 ) u0 (r) dr - 2r0 J J - r-2 -dr d• . 

ro D'f 

We derive a few properties of,/: 

(1) ,/ maps B (A, T0 ) into itself. 

Denote h(t)= ,f(a(t)), we have from (2.17) 

h (0) = r1 • 

When T0 is small enough, from (2.19) and (2.16) we also have 

r 1 +ro 
h(t)~ - 2- . 

We get from (2.19), after differentiating both sides, 

- 1 
h' (t) = h () · (a (t) - r0 ) • u, ( a(t), t), 

t - ro 

then from (2.6), (2.16) and (2.20) 

2 3(r1 - r0 ) A 
ih' (t) i ~--·--·-=A . 

r 1 -r0 2 3 

Thus h (t) E B (A, T0 ) . 

(2) ,/ is contractive. 
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(2.19) 

(2.20) 

(2.21) 

Suppose a 1 (t) , a2 (t) E B (A, T0 ), the corresponding solutions of (2.7)- (2.10) 
are u1 (r, t), u2 (r, t). From (2.17), (2.20) and (2.21 ), it follows that 

(rl-ro) l/ .. (r)Cat) - ,f(a2)1 ~ l ,/ (at)+,t(a2)-2rol·l,/(al)-,t(d2)1~ 

I 
<X (t) I I {J (t) l 

~2 J (r - r0 )[u1 (r,t) - u2 (r, t)]dr +2 J (r - r0)u1 (r,t)dr + 
~ aOO 

IJJ u1 (r,'t')-u2 (r,•) I IJJ u1 (r,•) I + 2r0 2 dr dr: +2r0 - -2 - dr d• . 
r r 

Ar Hr 

{2.22) 
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Here we use the following notations 

IX (t)=min ( 0'1 (t), O'z (t)), 

{J (t)=max ( a1 (t), O'z (t)), 

j=k, if {J (t)=O'k (t), k=1, 2, 

A1={(r,-r); r0 <r<1X(t), 0<-r<t}, 

B1={(r, -r); IX (•)<r<{J (-r), G<-r<t}. 

We solve the problem: 

l(w)=O, -eo<r<+eo, 0<t<T0 ; 

w (r, 0)=0, -eo<r<+eo; 

A 
W (IX (t), t) =3lla1 - O'zllc[O, t], O<t<To. 

where l denotes a parabolic operator with smooth coefficients which is defined 
in the strip [0, T0 ] X (--eo, +eo) and 

L=.L, for r=r0 • 

The solution of this problem can be represented in the form 

t 

W (r, t)= J A, (-r) F(r, t, IX (-r), -r) di 
0 

where r is the fundamental solution for the operator L and 

while J.± (t) satisfies 

f J.+ (t), 
A. (t) -

r - lA_- (t), 

if r<IX(t); 

if r>IX(t). 

1 t 

w(1X(t)±0 ,t)=+2A.+ (t)+ J J.+(-r)FP(IX(t),t, 1X(TJ,-r)d-r. 
0 

(2.23) 

An estimate for rP (see [5], p. 406) and a useful lemma (see [6], Lemmd 7) allow 
us to get 

.?.1 (t)::::; C lla1 - O'zllqo, t], 

where C depends on only A, T0 , r 0 • 

From (2.23), (2.24), it can be found: 

a(t) t lla1-a2llqo,t] ,;-J (r-ro) w (r, t) dr:::; cl J V d-r=2C1 V t llal- O'z!lqo, t]' 
r c 0 t - T 

Jf
w(r,-r) J1 lla1-azllqo,t] . ; -
--drd-r:::;C2 , / d-r=2Czvtlla1-azllcro,t1 , 

A, r o V t - -r 

(2.24) 
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(J (t) t 11 11 

J J 
al-a2 C[O,t] ./-

(r-ro) w (r, t) dr=C3 .I dr=2C3 V t Jla1- azllcro. t], 

"(t) o V t-r 

where C; (i= 1, 2, 3, 4) depend only on r 0 , rl> A. But from the maximum principle, 
we have 

[u1 (r, t)-u2 (r, t)J'(w(r, t), (r, t)E=A1 

:and 

I ui (r, t)l '( w (r, t), (r, t) <B1 • 

So, we assure that the right-hand side of (2.22) can be estimated by lla1 - a2 [lqo, ToJ 

and finally obtain: 

where K < 1, whenever T0 is small enough, say, T0 '( o0 , with o0 depending on r 0 , r 1 , A 
only. (2.25) means that / is contractive. 

{3) / has a fixed point s (t) in B (A, T0). 

Owing to the properties (1), (2) of/, applying the contractive mapping theorem, 
we conclude that there exists a unique a (t) E B (A, T0), such that 

or 
a' (t)= -Ur (a (t), t), t E (0, T0), 

where u (r, t) solves (2.7)-(2.10) and the proof is complete. 

LEMMA 2.2. Suppose 

1) g1 (t), gz (t) E C [0, To] 
2) (u1 (r, t), s1 (t), T0 ) and (u2 (r, t), s2 (t), T0 ) solve (2.1)-(2.5) respecthe to 

the boundary data g 1 (t) and g2 (t) and the same initial data. 
3. Js; (t)l :::;;A, i= 1, 2; T0 is defined as in lemma 2.1; s1 (0)=r1 , i= 1, 2. 

Then 

lls1 (t)-sz (t)l[qo, r 01 :::::;M llg1 (t)- gz (t)llqo, To]' where M is a constant which 
satisfies 

M~o as T0~0. 

P r o o f. As in (2.22), we now have 

2 { "(t) 

Js1 (t)-s2 (t)J'(-( -=--) J (r-r0 ) Ju1 (r, t)-uz (r, t)l dr+ 
rl ro ro 
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--------------------------·---

p (t) r 

+ J (r-r0)!u1 (r,t)!dr+J!g1 (-r)-g2 (r)!dr+ 
"(t) 0 

IJJ (u1 (r,-r)-u2 (r,-r)) I jJJ u1 (r,-r) I} +r0 2 drd-r +r0 --2 -drd-r . 
r r 

~ ~ 

The similar discussion as in the proof of (2.25) in Lemma 2.1 gives 

!ls1 (t)-s2 (t)liqo, T0J~KI!sl (t)-Sz (t)l!qo, T
0
J+Iigl (t)-gz (t)llqo: T

0
J To, 

where K < 1, thus 

l!s1 (t) -Sz (t)llqo, T0]~ M 1lg1 (t)-g2 (t)llqo, T
0
], 

where M=T0/(1-K) depends on A and T0 • 

LEMMA 2.3. Suppose u (r, t) and v (r, t) satisfy 

and 

L (u)=O, (r, t) E {r0 <r<s (t), O<t<T}; 

u(r, 0)=0, r0 <r<r1 ; 

u, (r0 , t)=O, O<t<T; 

u(s(t),t)=q~(t), O<t<T, 

L (v)=O, (r, t) E {r0 <r<a (t), O<t<T}; 

v (r, 0)=0, r0 <r<r1 ; 

v, (r, t)=O, O<t<T; 

v(a(t),t)=!f!(t), O<t<T, 

where s (t), a (t), q~ (t), 'I' (t) satisfy the conditions: 

Then 

s (t), a (t), qJ (t), !f1 (t) E C 1 (0, T) n C [0, T], 

q~ (O)=!fl (0)=0, s (O)=a (0)=r1 , 

!s'(t)I~A.Ia'(t)I~A, for te:(O,T), 

lq~' (t)l ~F, I 'I'' (t)l ~F, for t E (0, T), 

s0 =inf s (t)>r0 , <1o=inf <1 (t)>ro. 
oo.n ~.n 

lu (r, t) -v (r, t)l ~ K 1 Is (t)- a (t)l +I rp (t)- 'fl (t)l , 

where K 1 depends on A, F, s0 , a0 and T, only . 

.t' r o of. Let us compare u (r, t) with the functions 

w± (r, t)=q~ (t)±C (s (t)-r) (2b+r-s (t)) 

in the domain Er={(r, t); s (t)-b<r<s (t), O<t<T} 

where b=min {s0 , a0 , 1f2A}, C=max {F/2 (l-Ab), 2FT/b2
}. 

• 

(2.26) 
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It can be verified that · 

w+ (s (t), t)=tp (t)=u (s (t), t), 

w+ (s (t)-b, t)=tp (t)+Cb2~ -FT+2FT=FT~max Jui, 
D~ 

w+ (r, O)=C (r1 -r) (2b+r-r1)~0=u (r, 0), -b+r1 ~r~r1; 

L (w+)=2C[ -1-+ (b+r-s (t)) -s' (t) (b+r-s (t))] + 

- q.l' (t)~ -2C (1-Ab)+F~O, in ET. 

From the maximum principle it follows that 

u (r, t)~w+ (r, t), in ET. 

Similarly, we have 

Thus 

Ju (r, t)-tp (t)i ~2Cb (s (t)-r), for (r, t) ~:;ET. 

moreover, for r0~r~s (t)-b, O~t~T, we have 

2Cb (s (t)-r)~Cb2~2FT~max lul+max JtpJ~ iu (r, t)-tp (t)J . . 
D~ [0, T] 

It follows then that 

Ju(r, t)-tp (t)I~2Cb (s(t)-r), (r, t) eD~. 

The same results can be obtained for v (r, t) and 1f1 (t): 

Jv (r, t)-lfl (t)i~2Cb (a (t)-r). 

Now, let us apply the maximum principle to the functions 

±(u (r, t)-v (r, t)) in AT={r0 <r<cc (t), O<t<T}, 

where 

cc (t)=min {s (t), a (t)}. 

Using (2.29) and (2.30), we can conclude 

iu (r, t)-v (r, t)I~Kt Is (t)- a (t)I+Jtp (t)-lfl (t)l, 

where K 1 depends on A, F, s0 , a0 and F, only. 

3. Local existence theorem for (1.1)-(1.6) 

47 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

11 

Before discussing the existence, let us mention that uniqueness for (1.1)-(1.6) 
can be shown in the same way as in [3], Thm. 3.1. 

In this section we establish 
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THEOREM 3.1. There exists a triple [u (r, t), s (t), T} such that 

(a) T>O; 

(b) s (t) is continuously differentiable in (0, T) and continuous in [0, T]; 

(c) u (r, t) is continuous in Dr={(r, t); r0 ~r~s (t), O~t~T}, 
u, (r, t) is continuous in r0~r~s (t), O<t<T, 
u,, (r, t), ut (r, t) are continuous in Dr={r0 <r<s (t), O<t<T}; 

(d) {u (r, t), s (t), T} solves (1.1)-(1.6). 

P r o o f. Consider a Stefan-type free boundary problem 

1 
L (z)=z,.,+-z,-zt=O, in Dt={t0 <b<r<s(t), O<t<T}; (3.1) r 

where 

z(r,0)=-1, O<t<T; 

z(b,t)=V(t), O<t<T; 

z (s (t), t)= -1, O<t<T; 

zr(s(t),t)=-s'(t), O<t<T; 

s(O' =r1 

ro+rl 
b=-2-, 

V (t) E .?4 (T, X)= {V F C [0, T], 11VIIq0, TJ~X}, 

X and T are constants to be determined later. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Existence of the solution to (3.1)-(3.6) can be got for some small T, from 
Lemma 2.1 when we substitute z=z1 -1. Put Olt=z, "Y=b-r in (2.18). By a similar 
calculation we can deduce that when 

( r1-ro) where k=--
2r1 ' 

(3.7) 

we have 

(r1-ro) 
min {s (t)-b} ~ 

2 
b. 

o.;t.;T 1'1 
(3.8) 

Then let us solve the following initial-boundary value problem with r=s (t) given 
by (3.1)-(3.6): . 

1 V 
L 1 (v)=v,,+--;:- v,-tz-vt=O, in Dr={O<t<T, r0 <r<s (t)}; (3.9) 

(3.10) 

v (t0 , t)= -r0 , O<t<T; (3.11) 

- - - -----------------------------
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v (s (t), t) 
vr(s(t),t)+--(-) -=-1, O<t<T. . s t 

Classical results ensure the existence of the function v (r, t). Set 

V (b, t) 
vl (t)=vr (b, t)+-b-. 

49 

(3.12) 

It is easy to see that V1 (t) E C [0, T] . Furthermore, using the Schauder's esti­
mate of the solution of (3.9)-(3.12) up to the boundary portion (see [5] chapt. 
5 p. 437, Thm. 3.1) we can prove that there exists a constant X> 1, depending on 
r 0 , r 1 and b only, such that 

IIV1 (t)llc•[o, T 1::S::X; for some 0< oc< 1. (3.13) 

irrespective of the choice of boundary r=s (t), or more precisely, the choice of V (t). 
Then, we obtain 

v1 (t) E ~ 1 (T, X)= {V E .18 (T, X) n C" [0, T] , IIVIIc•[o, T]::S::X} c go (T, X). 

Now we define an operator (£; on .18 (T, X) by 

v1 (t)=<£: (V(t)) E ~1 (T, X)c gQ (T, X). 

According to the illustration above, we see that (£; maps a closed, convex and 
compact subset of ~ (T, X) into itself. In particular, 

<£:: ~1 (T, X)-->~ 1 (T, X). 

The operator (£ is also contractive on C [0, T] , because of the following estimates 
resulting from Lemma 2.2: 

lis* (t)-s** (t) llqo, T1::S::K1 IIV* (t)- V** (t)llcro, TJ• lim K1 =0. (3.14) 
t-+0 

where we denote by s* (t), s** (t) (and later v; (t) , v:* (t)) the respective functions 
obtained after replacing V by V* and V**. 

Denote by E (r, t) the solution of the problem 

1 1 
L 1 (E)=Err+-E,--E-Et=O, -oo<r<+oo, O<t<T; 

r r 

r r2 

E(r 0)= ----
1 

' 2 2r' 
-oo<r<+oo; 

E(r0 ,t)=-r0 , O<t<T, 

v*-E 
and v~ (r, t)=(v-E)r (r, t) + -- which solves: 

r 

4 
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v~(r,O)=O, r0 <r<r1 ; 

(v~), (r0 , t)=O, O<t<T; 

v~(s*(t),t)=- 1- (E,++E)(s*(t),t), O<t<T. 

v** - E 
v*0*(r, t)= (v** - E),+-- which solves: 

r 

L ( **) 0 Vo = ' r0 <r<s** (t), O<t<T; 

** ( 0) 0 v0 r, = , 

v~* (r0 , t) = O, O<t<T; 

v~*(s**(t),t)=-1-(E,+ ~)(s**(t),t), O<t<T. 

Using Lemma 2.3, we have 

I IV~ (t)- v~* (t)llc [0, T]::;; K1 lis* (t) -s** (t)llc [0, T]+ 

+ 11 ( E, + ~) (s* (t), t)- ( E,+ ~) (s** (t), t) ll [O, T] ~ 
:( K2 1Js* (t)-s** (t)Jiqo,r1, (3.15) 

where K 2 depends only on r0 , r 1 , A, X. 

Combining (3.14) and (3.15), we obtain 

IIV; (t) - v:* (t)llcro,T]::;;Kl KziiV* (t)- V** (t)llqo,Tj= 

=K IIV* (t) - V** (t)llqo, T]' 

where O<K < 1, provided T is small enough. Thus (£: is contractive. By the con­
tractive mapping theorem, we obtain a function V (t) e= 88 (T, X) such that(£: (V (t)) = 
= V1 (t) = V (t) or 

V (b, t) 
z(b, t)=v,(b,t)+-b-, O<t<T. (3.16) 

v (r, t) 
Let us compare z(r, t) with v,(r, t) +-- in the region D~. From (3.4) and 

r 
(3.12) we have 

z(s(t),t)=(v,+ :)(s(t),t), O<t<T. 

Moreover, it is easy to check that 

z(r,O)=(v,+ :)(r,O), ro<r<rl, 

L(z)= L(v,+:) in D~. 

-- - - - ------------------------
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Thus, from the uniqueness for problem (3.1)-(3.4), we get 

v (r, t) 
z (r, t)=v, (r, t)+--, -, (r, t)ED~. 

r 

Differentiating both sides w.r.t. r, we have 

Zr(l', t)=(vr+: )r=v, (r, t), (r, t) ED~. 

51 

By the continuity of the derivatives of the solution z (r, t) and v (r, t) up to r=s (t), 
we have 

v, (s (t), t)=zr (s (t), t)= -s' (t), O<t<T. 

Denote w (t)=v (s (t) , t) and differentiate both sides, 

w' (t)=v, (s (t) , t) s' (t)+v, (s (t), t); 

from (3.12) and (3.17), we have 

w' (t) =~ -1- : ~; ) s' (t) - s' (t) 

or 
w (t) s (t)= -s2 (t)+C. 

By taking t=O, we can determine C=O. Thus, we have 

v(s(t),t)=w(t)=-s (t), O<t<T. 
Now, take 

s (t) 

u (r, t)=- J [~+z- a, t)] d~' 
r 

(3.17) 

(3.18) 

From (3.9)-(3.12) and (3.18), we can easily find that u (r, t) satisfies the problem 
(1.1)-(1.6). The local existence is proved completely. B 

REMARK. Theorem 3.1 is still valid when the initial function u (r, O)=f(r) is not the 
so-called equilibrium distribution 

r2 -r2 r2 r 
f(r)=-1 ___ 1 __ 1 In-, 

2 2 r 1 

if we only suppose that f(r) satisfies: 

f(r) E C3+et [ro, r1], (3.19) 

I 
f' (r) I f" (r)+-,- -1 :::::; M ir1 -r1. (3.20) 

The main reason for this is inherent in Lemma 2.1. where we have not supposed 

Uo (ro)=g (0). 

Of course, the conditions (3.2) and (3.10) must be changed accordingly. 
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4. Global existence theorem for (1.1)-(1.6) 

In Theorem 3.1 above, we proved the existence of a local solution for (1.1 )-(1.6). 
We want to show how global existence follows from the analysis performed in [8] 
for problem (2.1)-(2.5). 

We need the following lemmas. 

LEMMA 4.1. Suppose {u (r, t), s (t), T} solves the problem (1.1)-{1.6), then 

s' (t) < 0, for t E (0, 8 ), where 8 is small enough. 

Proof. From the proof of Theorem 3.1, it is easy to see that we need only to 
prove z (r, t)~ -1 where z (r, t) solves (3.1)-(3.6), or need only to prove 

V 

vr+-~ -1, 
r 

where v (r, t) solves the problem (3.9)-(3.12). 
Consider the approximating problems: 

(4.1) 

(v")r Vn 
(v11)rr+---z--(v")t=0, (r, t) E {r0 <r<s(t), 0<!<8}; (4.2) 

r r 

r ri 
V 11 (r, 0)= -2-2r' r0 <r<r1 ; (4.3) 

V 11 (ro, t)=gn (t), O<t<e; (4.4) 

(<vn)r+ :~~ )(s(t), t)=-1, O<t<e, (4.5) 

where 

r -ro' t> 1jn; 

I smooth function with: 

g" (t)={ r0 ri I gn (O)= -2- 2ro ' 

l g~ (t)>O. 

O~t~1jn, 

Vn 
Set (vn)r+-=w,, W11 (r, t) . satisfies: 

r 

(wn)r 
(w")rr+---(wn)t=O, (r,t)e{r0 <r<s(t), O<t<e}; 

r 

W11 (r,0)=-1, r0 <r<r1 ; 

W11 (s(t),t)=-1, O<t<e; 

Wn(ro, t)=((vn)r+ V;) (ro, t), 0<!<8. 

------------------------------------
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v11 attains its maximum on the boundary r=r0 • Otherwise, V 11 (r, t) should attain 
its maximum at some point (s(t), t) on the boundary r=s(t), then from the maximum 
principle (v11), (s (t), t)~O. By (4.5), we have 

V 11 (s (t), t)~ -s (t)< -,r0 =V11 (r0 , t), (t> 1/n), 

which is a contradiction to our assumption. 
Then, we can easily obtain 

(4.6) 

W11 (r, t) cannot attain its maximum on the boundary r=r0 , because when t> 1/n, 
W 11 (r0 , t)=(v,)r (r0 , t)-1 < - 1, and when 0 ~ t ~ 1/n, we have (w11), (r0 , t)= 

=((vn)r+ v; t (r0 , t) = (v11) 1 (r0 , t)=g: (t)>O. Thus we obtain: 

Vn 
W11 (r,t)=(v11)r+-~-1. (r,t)e{r0 <r<s(t), O<t<e}. 

r 

But it can be easily seen that V 11 (r, t) tends to v (r, t) together with its first and 
second derivatives when n tends to +oo, so we finally have (4.1). • 

LEMMA 4.2. Suppose u (r, t) satisfies (1.1)-(1.6), then we have 

Ur 1 (r, e)>O, for all e E (0, T) 

Proof. Denote ·11 (r, t)=ur (r, t), v (r, t) should satisfy: 

(4.7) 

V V 
L 1 (v) = vrr+-;- - --;:z-v1= 0, r0 <r<s (t), O<t<T; (4.8) 

v (r0 , t)=O, O<t<T; 

v (s (t), t)=O, O<t<T. 

Suppose e (r, t) solves the following problem: 

L 1 (e) = O, r>r0 , t>O; 

e(r,O)=O, r>r0 ; 

t>O. 

and v0 (r, t) solves: 

L 1 (v0)=0, r0 <r<s (t), O<t<T; 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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ro ri 
v 0 (r0 , t)=2-

2
,

0
, 0< t<T; 

v 0 (s (t), t)= -e (s (t), t), O<t<T. 

Then we have 

v (r, t)=e (r, t)+vo (r, t). 

In order to deduce ( 4. 7), we first show 

lim inf vt (r, t)~O. 
(r, t)-+(ro, 0) 

To do this, we consider the approximating problems for (4.12)-(4.14): 

e" (r0 , t)=g11 (t), t>O, 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

rf rz 1 [ 1 ] 
where g11 (t)= 

2
rc -2 for t~---;;' gn (t) is continuous in 0,---;; and gn (t) E 

E coo (0, +eo), gn (O)=g: (0)=0, and g: (t)~O for t E (0, +eo). 

The function e11 (r, t) can be expressed as: 

t 

en(r, t)= J (/J (r) r{J (r, t, ro, r) dr' 
0 

where r is a fundamental solution of L1 and rp (t) is a suitable continuous function. 
We have then 

t 

(ell)t (r, t)= J (/J (r) r{Jt (r, t, ro, r) dr+rp (t) rp (r, t, ro , t) . 
0 

From [5], p. 406 (16.3), we have 

( 
(r-r0 )

2 
) 

IFP (r, t, p, r) l~ c (t-r)- 1 exp -c1 -+0, when r-++eo; 
t-r 

( 
(r-r0)

2
) 

lFPt (r, t, p,. r)l ~c (t-r) - 2 exp - c1 -+0, when r-++eo. 
t-r 

So, we obtain 

(e11)t (r, t)-+0, when r-+ +eo. (4.23) 

Using the maximum principle in a bounded parabolic region and (4.23), we can 
deduce 

(e")1 (r, t)~O, r>r0 , t>O. 

Moreover, Theorem 10.1 in [5] p. 204 gives a Holder estimate for e11 (r, t): 

le" (r, t)la'~K, (4.24) 
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where Q' is a closed bounded domain belonging to the quarter plane {r>r0 , t>O} 
separated from the point (r0 , 0) by a positive distance d. The constant K depends 
on r0 , r1 and d only. Therefore we can choose a subsequence {enJ which converges 
uniformly in Q'. By taking into account an invading sequence of domains {Q;,}, 
and using a diagonal process, we find a subsequence, which we denote by {en} again, 
converging to e (r, t) in the quarter plane {r>ro ~ t>O} and uniformly in every 
compact subdomain which does not include (r0 , 0). 

By a result concerning families of solutions to parabolic equations ([7] p. 90), 
we affirm that {(en)t (r, t)} converges to et (r, t), which turns out to be nonnegative. 
Thus, we easily obtain (4.19). From the strong maximum principle, the result of 
Lemma 4.1 and (4.1 9), we finally deduce (4.7). • 

THEOREM 4.3. There exists T 0 > 0, such that the problem (1.1)-(1.6) has a solution 
{ u (r, t) , s (t) , T0 } referring to the region D1 0 = {0 < t < T0 , r0 < r <s (t)} where s (t ) 
satisfies f urthermore: 

lim s (t)= r0 • (4.25) 
t-""To 

P r o o f. By Theorem 3.1, there exists a triple { u (r, t) , s (t), T} which solves 
(1.1)- (1.6). Consider the solution of the Stefan-type free boundary problem : 

L (z) =O, in D 1 *= {r0 < r <s* (t), s <t<T*}; 

z (r, s)= ut (r , s), r0 :(r:(s* (s); 

Zr (ro , t)=O, s< t <T* ; 

z (s* (t) ,t)= O, s<t<T*; 

zr(s*(t ),t)=-s*'(t) , s<t<T*; 

s* (s)= s (s), 

where s E (0, T). 

(4.26) 

(4.27) 

(4.18) 

(4.29) 

(4.30) 

(4.3 1) 

From (1.1 )- (1.6), it follows that the function ut solves ( 4.26)-( 4.31) referring 
to the region D 1 = {r0 <r < s (t), s< t< T}. Because of the uniqueness for the problem 
(4.26)- (4.31), we have: 

z (r , t)= ut(r, t), (r,t)E{r0 <r<s(t )=s*(t), s<t<min(T,T*)}. (4.32) 

Furthermore, we know from the results of [8] (Theorem 1) that only three cases 
can occur for the solution of (4.26)- (4.31): 

(A) The problem has a solution with arbitrarily large T*; 

(B) There exists a constant T0 > 0 such that lim s (t)=r0 ; 

t~T-;; 

(C) There exists a constant T1 >0 such that : 

inf s(t)>r0 , lim inf s' (t)=- oo . 
\ B, T t t -i- T; 
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In addition, case (B) is valid under the following assumptions ([8] Theorem 3) 

s(e)z r5 s(o) 

-
2
--2+ J rz(r, e) dr=O, (4.33) 

ro 

z (r, e) is increasing. (4.34) 

Now, we can easily verify (4.33) by using equation L (u)= 1, and (4.34) by 
Lemma 4.1. Then case (B) occurs for the problem (4.26)-(4.31), more precisely, 
there exists T0 >0, such that z (r, t) satisfies (4.26)-(4.31) with T* substituted 
by T0 and 

Let us define the function: 

t 

Iim s* (t)=r0 • 

t-+T;;-

(4.35) 

u* (r, t)=u (r, e)+ J z(r, •) dr, (r, t) e DTo ={r0 <r<s* (t), e<t<T0 }. (4.36) 

From (4.26) and (1.1) we obtain: 

L (u*)=l, in DT.={(v, t), v0 <v<s* (t), e<t<T0 }, (4.37) 

Moreover, we have: 
t 

u;(r0 ,t)=u,(r0 ,e)+ J z,(r0 ,r)dr=0, e<t<T0 , (4.38) 

and 

u*(r,t)=u(r,t), (r,t)e{r0<r<s(t), e:(t<T}. (4.39) 

By taking into account Green's identity (2.18) for the domain {(p, r); s* (t) <p<s* (•), 
e<r<t} with Olt=z (r, t), "Y=r, we obtain after simple calculation: 

t 

u; (s* (t), t)=u, (s* (t), e)+ J z, (s* (t), •) dr=O. (4.40) 

Because of ( 4.29) 

u; (s* (t), t)=z (s* (t), t)=O, (4.41) 

Since u* (s* (e), e)=u (s (e), e)=O, (4.40) and (4.41) yield 

u* (s* (t), t)=O, e<t<T0 • (4.42) 

Collecting (4.37), (4.38), (4.39), (4.40), (4.42) and (4.25), we actually extend 
a local solution {u (r, t), s (t), T} to a global solution {u* (r, t), s* (t), T0} for (1.1)­
(1.6). The proof of Theorem 4.3 is complete. • 

REMARK. Owing to Theorem 5 of [8], we can get also T0 :(j(r0), noting that: 

•00 1 
Iim J rlnr u, (t, t) dr=f(r0)-4(ri lnri-ri-rJ lnr~+r~). 
t-+0 ro 
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Rozwi~zanie zagadnienia dyfuzji tlenu w obszarze 
cylindrycznym 

Praca dotyczy zagadnienia ze swobodnll granicll wyst'<pUjllcego w procesach dyfuzji tlenu 
w zywych tkankach. Zaklada si'< radialnll symetri'< problemu. Dowodzi si'< istnienia rozwillzania 
lokalnego w czasie a nast'<pnie bada si'< mozliwosc jego przedlui:enia na dany przedzial czasu. 

PeweHUe Ja)J.a'IH ,lJ,HcjlcjiYJHD KHcJiopo)J.a 
B QHJIHD)J.pH'IeCKOH 06JiaCTH 

Pa6oTa KacaeTCH 3ap;a'ill eo CBo6op;Hoii rpa~eii, HMeiOm:e:ii MeCTo B npoQeccax .!UI$$y3HH 
mcrropop;a B )I(HB:bJX TKaHHX. IIpep;norraraeTCH pa,!UiaJibHaH CHMMeTpHH npo6rreMbi. AoKa3bmaeTCH 
CyillecTBOBaHHe JIOKaJibHOro pemeHHH BO BpeMeHH, a 3aTeM HCCJiep;yeTC.II B03MOlKHOCT:b ero nepeHO­
Ca Ali.II 3ap;aHHoro HHTepBarra BpeMeHH. 
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