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The paper is concerned with a free boundary problem arising from the diffusion of oxygen in
absorbing tissues. Assuming cylindrical symmetry of the problem, the local in time existence of
a solution is proved by using a fixed point argument. The global existence is shown as well by con-
tinuation of the local solution. The paper extends known results concerning the case of plane sym-
metry.

1. Introduction

A kind of Cauchy type parabolic free boundary problems arising from the
diffusion of oxygen in insulated living tissues, which simultaneously consume the
oxygen has been considered in several papers (see e.g. [1], [2], [3]) mostly referring
to the case of plane symmetry. A more realistic model of the diffusion consumption
of oxygen in living tissues surrounding a blood vessel deals with cylindrical domains.
Extension the results existing in the literature to the case of cylindrical symmetry
is not trivial. This is the principal aim of the present paper.

We state our problem as [1] does: first, suppose some fixed concentration of
oxygen u, is allowed to diffuse through a blood vessel into living tissues. A diffusion-
-consumption process will continue until a steady state is reached in which the
oxygen does not penetrate further into the tissues. The supply of oxygen is then
cut off and the surface is sealed. The living tissues go on consuming oxygen and
as a consequence the surface bounding the oxygen containing region recedes to-
wards the sealed surface. This process can be given the following mathematical
scheme, using nondimensional variables

*) This work is supported by the Italian C.N. R.
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L(u)=u,,+—u;'—-—u,=l, ro<r<s(t), 0<t<T; (1.1
u(r, =71, ro<r<ry; (1.2)

u, (ro, 1)=0, O0O<t<T; (1.3)
u(s(@),t)=0, 0<t<T; 1.4

u, (s (1), 1)=0, O0<t<T; (L.5)

s (0)=r,. (1.6)

Here f(r) represents the steady state concentration distribution of oxygen which
solves:

"(r)
f"(r)+f—r—~= s  Fo<r<ri; .7y
fro)=uo, (1.8)
f(r1)=0 s (19)
f'(r)=0. (1.10)
It is easy to find that
. B 111
fifr—g—p = (1.11)
where ry solves
ro—Ti 1 o . .
—r——z—ln-r—=uo (uo, ro are given constants whose physical
4
meaning is clear). (1.12)

By simple calculation, we can find a unique root ry >r, for (1.12) and thus f(r)
is well defined.

In section 3, using the same approach as [3], based on a fixed point argument,
we prove a local existence theorem for (1.1)—(1.6), which remains valid even for
more general initial data. Before applying this approach, we establish in section 2
the existence of the solution to a Stefan type free boundary problem in a cylindrical
domain. We give also some continuous dependence results to be used in section 3.

In section 4, using the results of [8], we investigate the continuation of the local
solution to (1.1)—(1.6), and prove that the solution can be extended until all oxygen
is absorbed.

2. Some results for a Stefan type free boundary problem
in a cylindrical domain

We consider the existence property for a Stefan type problem in preparation
for next section. But the results obtained here have their own interest.
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LemMA 2.1. Suppose g (t) is continuous in [0, T, uy (v) is continuous in [ro, r], luy (r)| <
<M (r—r), where M is a constant. Then there exists a triple (u (r, 1), s (t), T) such that

a) T>0,
b) u (r, t) is continuous in Dy\{ro, 0} and bounded in Dy;

u, (1, t) is continuous for ro<r<s(t), 0<t<T;
U (r, 2), u, (r, 1) are continuous in Dy={ro<r<s(t), 0<t<T}.

¢) s () is continuously diferentiable in (0, T) and continuous in [0, T],
s (O)y=ry, s(@)>ro.

d)
1
u,,+—r-u,—ut=0, in Dy; @.n
u(r, 0)y=uo (7), ro<r<ry; 2.2)
u(ro, )=g (), O<t<T; (2.3)
u(s(),1)=0, 0<t<T; 24
u, (s (t), )=—s"(t), O<t<T. 2.5

Proof. Take the Banach space
B (4, To)={o (t) e Lip [0, Tol; |o (t)— o (t)I<4 |t:—12], 0 (O)=r}

where To>0 and 4A>0 are to be determined.
Suppose Ty is small enough, such that

T< Fi—ro
T B

For any o (¢t) € B(4, T,), we can solve an initial-boundary value problem

2.6)

1
Lw= u,,+-r—u,——u,=0 in D ={(r,8); ro<r<o(®), 0<t<To} (2.7)

u(r, t)y=g (), O0<i<Ty; 2.8)

u(r, 0)=uo (r), ro<r<ry; 2.9)

u(o(0),)=0, 0<<T. (2.10)

In order to estimate u, (o (?), t), we introduce the function @ (r, £) as the solution of
o,—0,=0, in D ; 2.11)

v (re, )=H (ri—ro), 0<t<Tp; (2.12)

o(r, )=H(ri—r), ro<r<ry; (2.13)

v(o(),2)=0, 0<t<T, (2.14)

llglle [0, T3 }
where H=max {—-—-—’—3—, M.
Ji=Jo
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It is easy to obtain, by the maximum principle applied in D7 that v, (r, £)<0.

1
Thus, L (u—v)=——9,(r, #)>0 and u<% on the parabolic boundary of D7, . Using

the maximum principle once more, we deduce
u(r,)<v(r,t), (r,t)eDy, .

Similar arguments used for —u (r, ¢) yield

—u(r, <o (r,t), (rt)eD,.

These results imply that
u (o @) )] <Jor (0 (1), 1) 2.15)

because of (2.10) and (2.14).
From Lemma 1 in [4], we obtain

o, (o (1), 1)| <2 {1 + [A + % (r1— ro)-—ATo)—l]}x

T, \1/2 4 1 S 72
X( ) Hexp{[—2—+—e—((rl—ro)—ATo)‘l] To}.

We see when T, tends to zero, the right-hand side of this inequality tends to 2H.
Thus, there exists a positive <1 which depends only on 4, ry, r; such that:

v, (o (1), 1)|<3H, if To<d<l.

lle ro, llglle i

But H=max {M—T—‘i < max [Oﬂ-, M so if we choose A4 large enough
ri=ro ry—ro

so that

9
asmax |2 leons oL
l Fi=To j

we finally have
(2.16)

A
]u, (c @), t)[ <? ,  provided To<9d.

Now we define an operator £ on B (4, T,) such that:
F 1/2 R
L7 (0)] (t>=ro+[<r1 —r)? =2 [ (¢ () —ro) 1 (o @), ) dr] @.17)

where u (#, t) is the solution of (2.7)—(2.10). Because of (2.16), when T is sufficiently

small, (2.17) is well defined.
Setting #=u, ¥ =r—r, in the Green’s formuia
Uy
f %"Vdr+(“//%,—%V,+——r—) &, (2.18)

apg

[ [ rLa—arsy)drar=
o



Existence of the solution 43

we can obtain

o (1)

—f(a(r) ro) u, (o (7), 7) dr-——f r—rou(r, t)dr+fg(r) dr+
(r, T)

drdv.

+] (r— ro)uo(r)dr—roff

Thus:

o (1)
J (0 (= r0+[(r1—ro>2—2 f (r—ro) u (r, 1) dr+2 f g (v) do+

+2 f (r—ro) o () dr—2r, { f (r D, dr] . (219

We derive a few properties of #:
1) # maps B(A, Ty) into itself.
Denote £ (t)=4¢ (o (¢)), we have from (2.17)
h(0)y=r,.
When T, is small enough, from (2.19) and (2.16) we also have

ritro

h(@)= 3

(2.20)
We get from (2.19), after differentiating both sides,
B ()y=—— 7 (t) (o ®O—ro) u. (o (D, 1),

then from (2.6), (2.16) and (2.20)

3(ri—ry) A
2 3

2
Ih" (D)< - (2:21)

Thus % (f) € B (4, Ty).
(2) ¢ is contractive.

Suppose oy (¢), 0, (¢) € B(A4, T,,), the corresponding solutions of (2.7)—(2.10)
are u, (r, 1), u, (r, t). From (2.17), (2.20) and (2.21), it follows that

(r1=70) |01y (00) = F (02)| < | Z (01)+ 7 (02)=2r0| - | £ (01)— F (02)|<

a (1) B ()
f (r=ro) lu (, V=12 (r, DV dr| +2| [ (r=ro) wy (r D) dr| +
a ()
Lo, ff uy (r, T)r u, (7, )d dr| +2r, f ﬁj—(id &, (2.22)
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Here we use the following notations
« (t)=min (o, (2), 02 (1)),
B (H)=max (o, (1), 05 (1)),
j=k, if f)=0(), &k=1,2,
A,={{r,7); ro<r<a(r), 0<r<t},
B,={(r,7); a(®)<r<f(z), 0<r<t}.
We solve the problem:
L(w)=0, —oo<r<-+tow, 0<t<T,;

w(r, 0)=0, —ow<r<-o;

A
W(“ @), t)=?||0'1—°'2”cm,t]a 0<t<Ty,.

where I denotes a parabolic operator with smooth coefficients which is defined

in the strip [0, To] X (—00, 4+00) and
L=L, for r=r,.

The solution of this problem can be represented in the form

t

w(r t)= J 2 @I (r, t, «(2),7) dr

0

where I is the fundamental solution for the operator L and
AT, ifr<a(@);
h (t)={ e
A (@), ifr>a().
while A% (¢) satisfies

1 t
w (2 (D)o )=F 5 47 O+ f AF @) I, (x(f), t, 2 (2), 7) dr.

(o]

(2.23)

An estimate for I', (see [5], p. 406) and a useful lemma (see [6], Lemma 7) allow

us to get
2 (1)< Clloy—0allcro, 115

where C depends on only A4, T, ro.
From (2.23), (2.24), it can be found:

(1) P llos—aallco,; e
f (r—ro)w(r, t)dr< Cy f ———"dr=2C, V1 lo1=zllero,
rg . ]/t_T

w(r, 7) ¢ llos=0allcro,

ff'—“r drdT<Czf_—]77_—1——d7=2czl/7|101—ﬂzIIC[o,t1,

Ay 0

(2.24)
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S ! ler=02llcro, « =
[ =1y w (1) dr=C; [ ——===""dr=2C3V1 llos—osllcpo,
a(t) 0 Vi—v

w(r, %) o2 = Gl o, s
f [ = dr de=cy f ———= r=2C, V1 o= oallcro,q»

0 l/t——r
where C; (i=1, 2, 3, 4) depend only on ry, ry, A. But from the maximum principle,
‘we have
luy (r, = (r, IS (1, 7), (D) €4,
and
lu; (r, i<W (r, 1), (1, 1)<B,.

So, we assure that the right-hand side of (2.22) can be estimated by o1 —0llcpo, 7,3
and finally obtain:

Hf (01 (t))—f (‘72 (t))HC[O, ra <Koy (@)= 02 Dllero, 7415 (2.25)
where K< 1, whenever T, is small enough, say, Tp< 69, With d, depending on rg, 11, 4
only. (2.25) means that # is contractive.
(B) # has a fixed point s(t) in B(A4,Ty).

Owing to the properties (1), (2) of #, applying the contractive mapping theorem,
we conclude that there exists a unique o (¢) € B (4, Ty), such that

G(’)=7’o+{(71 —ro)2“2f (o (@) ~ro) u (0 (2), 7) dr] i 5

or
o’ )=~ (0(®).t), te@©,Ty),
where u (r, t) solves (2.7)—(2.10) and the proof is complete. B

LEMMA 2.2. Suppose

1) 81 (t)> 82 (t) € C [Os TO]

2) (us (v, 1), 51 (1), To) and (uz (1, 1), 55 (0), To) solve (2.1)—(2.5) respectize to
the boundary data g, (t) and g, (t) and the same initial data.

3. Is; (1)< 4, i=1,2; T, is defined as in lemma 2.1; 5;(0)=ry, i=1,2.

Then

s () =52 Ollcro, Ty <M ligs (t)—g2 Olco, 7,0 Where M is a constant which
satisfies

M—0 as Ty—0.

Proof. As in (2.22), we now have

2 a(?)
sy (©)—s2 (f)l<z,’;”_w {rof (r—ro) luy (r, )—uy (r, )] dr+
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B®
f(” ro) lu; (r, t)]dr—l—f]gl (r)—g; ()] dr +

a(?)
(uy (r, 7)) =y (r, D))
0 ff r2 drdzc [ }
Ay
The similar discussion as in the proof of (2.25) in Lemma 2.1 gives
llsy ) =52 (Dllcpo, 1<K |51 (£)—s2 e o, 111181 ) —g. (t)”cm: 110>
where K<1, thus

lls1 () =52 @llcro, 7 <M lIg1 () —g2 Dlicro, 7,1
where M=T,/(1—-K) depends on 4 and T. B

ffﬂrii)—rdr

LEMMA 2.3. Suppose u(r, t) and o (r, t) satisfy
L@)=0, (r,t)e{ro<r<s(t), 0<t<T};
u@,0)=0, ro<r<r;
u, (ro, 1)=0, O0<<T;

u(s@,)=9¢@), O0<t<T,
and
L@)=0, (r,0)e{ro<r<o(t), 0<t<T};

o(r,0)=0, ro<r<ry;
2, (r,)=0, O0<t<T;
v (o @), )=y (), O0<t<T,

where s (1), o (t), ¢ (t), w (¢) satisfy the conditions:
s(@),a(t), 9@,y ()eC' (0, T)nCI0, T1,
¢ 0=y =0, s©O)=00)=r,,
s )I<4, |o' @®)|<4, for te(0,T),
lo" OI<F ly' 0I<F, for te(0,1),
so=inf s (t)>ro, oo=info(t)>r,.

[0, T] [0, T]

Then
u(r, )—o (r, )< Ky [s @)—0 @)+l O—y @),

where K, depends on A, F, s,, 0o and T, only.
Proof. Let us compare u(r, t) with the functions
wE (r, )=p (X C (s @)—r) 2b+r—s () (2.26)
in the domain Er={(r,1); s (t)—b<r<s(t), 0<t<T}
where b=min {so, 0o, 1/24}, C=max {F/2 (1—A4b), 2FT/b*}.
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It can be verified that
wt (s(@), )=p O=u(s (). 1),
wt (s ()=b, t)=0 ()+Cb*> — FT+2FT=FT>max |u],
DL

wt (r,0)=C (ry—r) @b+r—r)=0=u(0), —b+r <r<ry;

L (w+)=2C[— 1—- -'17 (B+r—s@®)—s" (@) (b+r-s (t))] +
—¢' ()< —-2C(1—-A4b)+F<0, in Ej.

From the maximum principle it follows that

u(r, )s<w* (r,t), in Er. 2.27)
Similarly, we have

u(,tyzw (r,t), in Er. (2.28)
Thus

lu(r, t)— o @©)|<2Cb (s (t)—r), for (r,t)eEr.
moreover, for ro<r<s(t)—b, 0<t<T, we have

2Cb (s (1)—r)=>Cb*>2FT>max |u|+max |p|=|u (r, )—¢ (t)|. .
D

[0, T]

It follows then that
lu(r,t)— o @)I<2Cb (s (t)—r), (r,t)eD;. (2.29)
The same results can be obtained for » (r, ¢) and y (¢):
o (r, )=y (I<2Ch (o (t)~r). (2.30)
Now, let us apply the maximum principle to the functions
(@, H)—v (1)) in dy={ro<r<a(), 0<1<T},
where
a (f)=min {s (¢), o (¢)}.
Using (2.29) and (2.30), we can conclude
lu(r, t)—v (r, )I< Ky Is ()= o @)l +1o O~y ()],
where K; depends on A4, F, 5o, 6, and F, ouly. [\ |

3. Local existence theorem for (1.1)—(1.6)

Before discussing the existence, let us mention that uniqueness for (1.1)—(1.6)
can be shown in the same way as in [3], Thm. 3.1.
In this section we establish
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THEOREM 3.1. There exists a triple [u(r, ), s (¢), T} such that
(@) T>0;
(b) s(2) is continuously differentiable in (0, T) and continuous in [0, T1;
(©) u(r, 1) is continuous in Dyp={(r, t); ro<r<s (t), 0<t<T},
u, (r, t) is continuous in ro<r<s(t), 0<t<T,
U (ry t), u, (r, 1) are continuous in Dr={ro<r<s(t), 0<t<T};

@) {u(r, 1), s@), T} soles (1.1)—(1.6).

Proof. Consider a Stefan-type free boundary problem

1
L(z)=z,,,+72,——zt=0, in Di={io<b<r<s(t), 0<t<T}; 3.1

z(r,0)=—1, 0<t<T; (3.2)
z(b, )=V (), 0<i<T; (3.3)
z(s(®),t)=—1, O<t<T; (3.9)
z (s (@), t)y=—5"(t), O<t<T; (3.5)
5 (0 =r, (3.6)
where
F r
b=—°-J2r—1,

Vt)e % (T, X)={VF Clo, 1], e o, T]<X} s
X and T are constants to be determined later.

Existence of the solution to (3.1)—(3.6) can be got for some small 7, from
Lemma 2.1 when we substitute z=z, — 1. Put #=z, ¥ "=b—r in (2.18). By a similar
calculation we can deduce that when

% {(h—b)z—kzb2 T} ( b & rl-ro)
< _— =
T<min 5 s Tits where )’ 3.7
we have
; (ri—ro)
min {s (¢))—b}>———-0b. (3.8)
0<t<T 2ry

Then let us solve the following initial-boundary value problem with r==s (¢) given
by (3.1)—(3.6):

1 2
o, (w):v,,+7 fvr——r_z——w,=0, in Dp={0<t<T, ro<r<s(t)}; (3.9)
R .
w(r, O)=—'7—7, ro<r<ri, (3.10)

0 (Fo, 1)=—ro, O0<t<T; (3.11)
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v (s (Q’_t_)_.____

5 ()

2, (s (1), )+ =1, O<t<T: (3.12)

Classical results ensure the existence of the function v (r, £). Set

nm=m@o+3%0.

It is easy to see that V; (¢) € C [0, T]. Furthermore, using the Schauder’s esti-
mate of the solution of (3.9)—(3.12) up to the boundary portion (see [5] chapt.
5 p. 437, Thm. 3.1) we can prove that there exists a constant X>1, depending on
ro, ¥; and b only, such that

V1 Ollgago, <X5  for some 0<a<l1. (3.13)

irrespective of the choice of boundary r=s (¢), or more precisely, the choice of ¥ (¢).
Then, we obtain

VI (t) egl (Ta X)={VGQ(T'= X)ﬂ Caz [Oa T]’ ”V”cﬂ[o, T]<X}C@(TS X)'
Now we define an operator € on 4 (T, X) by
v, (=8 (V (0)) € B, (T, X)= & (T, X).

According to the illustration above, we see that € maps a closed, convex and
compact subset of &% (T, X) into itself. In particular,

C: 2, (T, X)~%. (T, X).

The operator € is also contractive on C [0, T], because of the following estimates
resulting from Lemma 2.2:

lls* () =s** Ollc o, 1< K1 IV* ()= V** ®)llc 1o, 77, lim K;=0. (3.14)
-0

where we denote by s* (7), s** () (and later V7 (¢), V7" (¢)) the respective functions
obtained after replacing ¥ by V* and V**,

Denote by E (r, t) the solution of the problem

1 1
Ly (E)=Er,+—r—E,—~r—E-—Et==0, —oo<r<—4o0,0<t<T;

2

r T
E(r, 0)=———

3
T —0<r<-4o00;

E(ro, )=—ry, 0<t<T,

o¥—E .
and v, (1, t)=@—E), (r, t)+———r-—— which solves:

il
L(vt):(v:)"+—r—(7;3),—(7)3),:0, Fo<r<s* (1), 0<t<T;
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oy (1, 0)=0, ro<r<ry;
(‘v;)r(rO,t):O: 0<t<T;

1
w:(s*(t),t)=—1—~(E,+-;—E)(s*(t),t), O<it<T.

'Z)** =
o (r, )=(**~E), + ——— which solves:

LeH=0, ro<r<s** (), 0<i<T;

vy (1, 0)=0, ro<r<ry;

vy (ro, 1)=0, 0<t<T;

oo (s** (@), t)=—1- (E,+€) (s**(®,1), 0<i<T.
Using Lemma 2.3, we have

wiw@-vy llcro, T]<K1 lls* ()= s™** (O)llc o, -1+
+Il (E +£) (s* @), t)—(E +£) (s** ® t)
I r r > r r s |

<K lls* @) —s** Dllero, 11, B-15)

<
cro, 13

where K, depends only on rg, ry, 4, X.
Combining (3.14) and (3.15), we obtain

”V; ®)— V;* Ollero, n<Ky K [V ()= V** (Dllcro, 1=
=K||V* (t)_ e (t)“C[O, T]>

where 0<K<1, provided T is small enough. Thus € is contractive. By the con-
tractive mapping theorem, we obtain a function ¥ (¢) € Z (T, X) such that € (V (1)) =
=V, (#)=V () or

v (b, 1)
z (b, )=v, (b, t)+—b———, << T, (3.16)

v(r,t
Let us compare z (¢, ¢) with o, (r, ¢) -!-——-r-—) in the region D%. From (3.4) and
(3.12) we have

z (s (9), t)=('z},+—:~) (=) 1), 0O<i<T.

Moreover, it is easy to check that

L}
Z(r,0)=(vr+*;)(r,0), ro<r<ri,

i) -
L(z)=L ('v,+7) in Df.
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Thus, from the uniqueness for problem (3.1)—(3.4), we get

o, 1)
z(r, )=v,.(r, 1)+ e (r,)eDk.

Differentiating both sides w.r.t. r, we have

v
z.(#, t)=('z),+7-) =v,(r,t), (r,t)eDi.

By the continuity of the derivatives of the solution z (r, t) and v (r, #) up to r=s (¢),
we have
v, (s (@), )=z (s (t), t)=—5" (1), O<t<T. GB.1N

Denote w (f)=v (s (¢), ¢) and differentiate both sides,
w' ()=v, (s (1), 1) " ()Fo; (s (1) 1);
from (3.12) and (3.17), we have

w(®)
s (1)

w' (t)=(—1-—- )s’ (&)—s" (@)

I~

or
w(t)s()=—s*(@)+C.

By taking t==0, we can determine C=0. Thus, we have

v(s@), t)=w@®)=-s(), 0<t<T. (3.18)
Now, take
s (1)

u(r, z)=—f [+ (& )] dE,

r

From (3.9)—(3.12) and (3.18), we can easily find that u (7, ¢) satisfies the problem
(1.)—(1.6). The local existence is proved completely. B

ReMARK. Theorem 3.1 is still valid when the initial function u (r, 0)=f(r) is not the
so-called equilibrium distribution

2 2 2
ri—ri ri r
f(r)_"—_——z 9 In 1 )
if we only suppose that f(r) satisfies:
f(r)e C3** [ro, 4], (3.19)
"r
i (r)+%Z -1 < Mlry—r|. (3.20)

The main reason for this is inherent in Lemma 2.1. where we have not supposed

uo (ro)=g (0).
Of course, the conditions (3.2) and (3.10) must be changed accordingly.
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4. Global existence theorem for (1.1)—(1.6)

In Theorem 3.1 above, we proved the existence of a local solution for (1.1)—(1.6).
We want to show how global existence follows from the analysis performed in [8]
for problem (2.1)—(2.5).

We need the following lemmas.

Lemma 4.1. Suppose {u(r,t), s (¢), T} sokes the problem (1.1)—(1.6), then

s' (£)<0, for te€(0, &), where ¢ is smail enough.
Proof From the proof of Theorem 3.1, it is easy to see that we need only to
prove z (¢, £)< —1 where z (r, t) solves (3.1)—(3.6), or need only to prove

9, +—< -1, “4.1)

where v (r, t) solves the problem (3.9)—(3.12).
Consider the approximating problems:

‘vll ; 4 ‘Z)"
(‘vn)rr+(_r—_'-r_2'—(7)n)t=0’ (i", t)e{r0<r<s(t), 0<t<8}; (42)
roor:
o, (7, 0)=—-—5——2—;, Fo<F<Fy; 4.3)
Un (rOa t)=gn (t)a O<t<e; (44)
vn
((vn), +T) (@, 1)=-1, O<t<e, 4.5)

where
—7To » 1> 1/”;
smooth function with:

g ()= iy I
gn ()=~ — o gn(l/n)=_r07 0<t<1/n,
o

Dy .
Set (v,),+ = Was Wa (r,t) . satisfies:

(Wa):
(w,,),,+——;——-(w,,),=0, (r,t) e {ro<r<s(t), 0<t<s};

wa (1, 0)=—1, ro<r<r;

wa(8(2), 1)=—1, O<it<e;

Wy (Fos t)=((71,,), +i);i) (ro, 1), O<t<e.
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v, attains its maximum on the boundary r=r,. Otherwise, v, (r, ¢) should attain
its maximum at some point (s (£), t) on the boundary r=s(t), then from the maximum
principle (@,), (s (¢), £)=0. By (4.5), we have

U (5 (1), 1)< =5 () < —ro=3, (o, 1), (t>1/n),

which is a contradiction to our assumption.
Then, we can easily obtain

W) (ro, )<0, t>1/n. 4.6)

w, (r, ¢) cannot attain its maximum on the boundary r=r,, because when ¢>1/n,
Wy (o, )=, (ro, )—1<—1, and when 0<t¢<1/n, we have (w,).(ro, )=

Up b N
= ((v,,), + T) (ro, 1)=(vp); (ro, t)=g, (t)>0. Thus we obtain:

‘Z)n
wy (7, t)=(vn),+7< —1. (rn)efro<r<s(), 0<t<e}.

But it can be easily seen that o, (r, t) tends to o (r, t) together with its first and
second derivatives when » tends to o0, so we finally have (4.1). 7]
Lemma 4.2. Suppose u (r, t) satisfies (1.1)—(1.6), then we have

U, (r,e)>0, for all e€(0,T) “.7)

Proof. Denote v (¢, t)=u, (r, t), v (r, t) should satisfy:

o,
Li (7))=v,,+7-——;2~—'v,=0, ro<r<s (), 0<t<T; 4.3)
Y
'U(r, 0)=7_3;', Fo<r<ry, (4.9)
o (re, )=0, 0<t<T; 4.10)
v(s(@®,1)=0, O<i<T. 4.11)
Suppose e (r, t) solves the following problem:
L (=0, r>ry, t>0; 4.12)
e(r,0)=0, r>ry; 4.13)
i W 0 4.14
e(ro, t)= B a0 (4.14)
and v, (7, ) solves:
Ly (09)=0, ro<r<s(r), 0<t<T; 4.15)
0 ek : 4.16
v (r, 0)= 3oy To<r<ri (4.16)
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r 2

; |

96 (o, t)=—21—--2%, 0<t<T; @.17)
0

9o (s(®), )=—e(s (), 1), O<i<T. (4.18)

Then we have
o (r, )=e (¥, )+, (r, 1).

In order to deduce (4.7), we first show

lim inf o, (r, )>0. (4.19)

(r, )=(ro, 0)

To do this, we consider the approximating problems for (4.12)—(4.14):

L]_ (e,,)=0, r>ro, t>0; (420)
e, (r, =0, r>ry; 4.21)
en(ro, )=g,(t), >0, (4.22)

2

r r K
where g, (t)=j—72 for t>]—1, g, (t) is continuous in [0

€ C® (0, +), g, (0)=g, (0)=0, and g, (¥)>0 for ¢ € (0, +0).
The function e, (r, t) can be expressed as:

1
p _n_:l and g (t) €

T
e,(r, t)= f o @) T, (r t,ro, 7) dr,

0

where I” is a fundamental solution of Ly and ¢ (¢) is a suitable continuous function.
We have then

(@) (s )= [ 9 (@) e (v, £, 70, ) i+ (1) T, (15 1, 70, 1),

From [5], p.406 (16.3), we have

r—ra)*
t_
(r—ro)

2
r
_TT——)—)O’ when r—-c0.

T, (r, t, p, DI<c (t—7)"texp (—c1 )—)0, when r—--o00;

!Fpt (r: Z ,0; T)[<C (I—T)—z eXp(—Cl

So, we obtain
(e); (r, )0, when r—-+o0. (4.23)

Using the maximum principle in a bounded parabolic region and (4.23), we can
deduce

(en)t (r: t)>09 r>r0, t>0.
Moreover, Theorem 10.1 in [5] p. 204 gives a Holder estimate for e, (r, ):
lew (r, DG <K, 4.24)
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where Q' is a closed bounded domain belonging to the quarter plane {r>r,, #>0}
separated from the point (ro, 0) by a positive distance d. The constant K depends
on ro, r; and d only. Therefore we can choose a subsequence {e,, } which converges
uniformly in Q'. By taking into account an invading sequence of domains {0},
and using a diagonal process, we find a subsequence, which we denote by {e,} again,
converging to e (r, ¢) in the quarter plane {r>r,, >0} and uniformly in every
compact subdomain which does not include (ro, 0).

By a result concerning families of solutions to parabolic equations ([7] p. 90),
we affirm that {(e,), (r, 1)} converges to e, (r, ¢), which turns out to be nonnegative.
Thus, we easily obtain (4.19). From the strong maximum principle, the result of
Lemma 4.1 and (4.19), we finally deduce (4.7). |

THEOREM 4.3. There exists To>0, such that the problem (1.1)—(1.6) has a solution
{u(r,1),s (), To} referring to the region Dy ={0<t<T,, ro<r<s (1)} where s (t)
satisfies furthermore:
lim s (@)=r;. 4.25)
t—To
Proof. By Theorem 3.1, there exists a triple {u(r,?), s(f), T} which solves
(1.1)—(1.6). Consider the solution of the Stefan-type free boundary problem:

Li=0, in D e={ro<r<s® ), s<i<T*}; (4.26)
z(r, &)=u, (r,e), ro<r<s*(e); “4.27)
2, (ro, =0, e<t<T*; (4.28)
z(s* (1), 1)=0, e<t<T*; 4.29)
z.(s* (1), 1)=—s*" (1), e<t<T*; (4.30)
5% ()=s (o), (4.31)

where ¢ € (0, 7).

From (1.1)—(1.6), it follows that the function u, solves (4.26)—(4.31) referring
to the region Dy={ro<r<s (t), e<t<T}. Because of the uniqueness for the problem
(4.26)—(4.31), we have:

z(r, =, (1, 1);, @1 e{ro<r<s(O=s* (@), e<t<min (T, T%)}. (4.32)
Furthermore, we know from the results of [8] (Theorem 1) that only three cases
can occur for the solution of (4.26)—(4.31):

(A) The preblem has a solution with arbitrarily large T%;

(B) There exists a constant T, >0 such that lim s (¢)=ry;
t*T;
(C) There exists a constant T3>0 such that:

inf s (t)>r,, liminfs' (f)=—00.
& Ty t-—)T:
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In addition, case (B) is valid under the following assumptions ([8] Theorem 3)

S(8)2 r2 s (o)
5 ——2°—+ [ rz(r, ¢ dr=0, (4.33)

z(r, &) is increasing. (4.34)

Now, we can easily verify (4.33) by using equation L (u)=1, and (4.34) by
Lemma 4.1. Then case (B) occurs for the problem (4.26)—(4.31), more precisely,
there exists T,>0, such that z(r, #) satisfies (4.26)—(4.31) with T* substituted
by T, and

lim s* ()=r,. (4.35)

t—>To—
Let us define the function:

u*(r, H=u(r, s)—i—fz(r, dr, (r,t)eDr={ro<r<s*(t), e<t<To}. (4.36)

From (4.26) and (1.1) we obtain:

L@M=1, in Dy ={(v,1), vo<v<s*(t), e<t<To}, 4.37)
Moreover, we have:
t
u’ (ro, )=u, (ro, &)+ f 2 (ro, 7) dv=0, e<t<T,, (4.38)
and
u*(r,)=u(, 1), @@1)e{ro<r<s(t), e<t<T}. (4.39)

By taking into account Green’s identity (2.18) for the domain {(p, 7); s* (t) <p <s* (7),
e<t<t} with #=z (r,t), ¥ =r, we obtain after simple calculation:

u: (S* @), t)=u, (s* (@), &)+ f 2.(5* (1), ‘L') dr=0. (4.40)
Because of (4.29) *=
uy (s* (1), )=z (s* (¢), 1) =0, (4.41)
Since u* (s* (¢), &)=u (s (), £)=0, (4.40) and (4.41) yield
u* (s* (1), 1)=0, e<t<T,. 4.42)

Collecting (4.37), (4.38), (4.39), (4.40), (4.42) and (4.25), we actually extend
a local solution {u (r, 7), s (¢), T} to a global solution {u* (r, t), s* (¢), To} for (1.1)—
(1.6). The proof of Theorem 4.3 is complete. E

ReMARK. Owing to Theorem 5 of [8], we can get also To<f (o), noting that:
s(1)

1
lim f rinru, (r,0) dr=f(r)—— ¢} Inri—ri—rd Inrg+r3).
t—0 ro
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Rozwigzanie zagadnienia dyfuzji tlenu w obszarze
cylindrycznym

Praca dotyczy zagadnienia ze swobodng granica wystepujacego w procesach dyfuzji tlenu
w zywych tkankach, Zaklada si¢ radialng symetri¢ problemu. Dowodzi si¢ istnienia rozwiazania
lokalnego w czasie a nastepnie bada si¢ mozliwos¢ jego przedluzenia na dany przedzial czasu.

Pemenne 3amaum muddys3un xuciaoposa
B IUIHHIPHYECKOil of1acTa

Pabora Kacaerca 3amaym Co CBOOOMHONM rpaHieid, HMeroumeid MeCcTo B mpoueccax nuddysma
KHCIIOpOJA B XHBBIX TKaHsAX. IIpenmornaraercs pagranbHas CAMMETPHS IPOoOeMsl. JloKa3bIBacTCs
CyIIECTBOBAHUE JIOKATIBHOTO PEINEHNsI BO BDEMEHH, a 3aTe€M HCCIEAYETCS BO3ZMOXHOCTE €r0 IIEPEHo~
ca IUId 3aIaHHOTO MHTEepBajia BPEMEHH.







