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A stochastic approximation algorithm for constrained problems which corresponds to deter­
ministic recursive quadratic programming methods is defined. The main feature of the algorithm 
is that random gradient estimates are recursively averaged by an auxiliary filter and the averages 
obtained are usen in quadratic subproblems which generate successive search directions. Con­
vergence with probability one to the set of Kuhn-Tucker points is proven under typical noise con­
ditions. 

1. Introduction 

Let F, g;, i = 1, .. . , mg, and h;, i = 1, ... , mh, be continuously differentiable func­
tions from Rn to R1 . Consider a constrained optimization problem: 

minimize F (x) 
subject to 

g; (x):'S;O, 
hi (x) = O, 

i=l, ... , m9 , 
(1.1) 

i= 1, ... , m1,. 

We assume that the values of the objective function F and its gradient V Fare obser­
ved (computed) in the presence of stochastic noise. A typical problem of this kind 
is that with F(x)=E{f(x, 8)}, where 8 is a stochastic parameter. In such a pro­
blem one can observe f (x, 8) for various samples of 8 but the average cost E {! (x, 8)} 
is usually difficult to calculate. 

Since it is not possible to compute the exact values ofF and V Fat a given x 
it is necessary to use for the solution of (1.1) stochastic approximation algorithms 
(see e.g. [2, 7] and the references therein). Various algorithms of this type have 
been suggested for constrained problems: the projection method [2, 9, 10], feasible 
direction methods [1, 11, 17], penalty methods [3, 5, 13, 15], Lagrangian and penal­
ty-multiplier methods [4, 8, 9, 12, 15]. The projection method and feasible direction 
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methods allow for inequality constraints only; the Lagrangian and the penalty-multi­
plier methods require simultaneous iteration of both primal and dual variables, 
which causes several difficulties in practice. 

The objective of this paper is to present a new stochastic approximation algorithm 
for (1.1), which corresponds to recursive quadratic programming methods of non­
linear programming (see e.g. [16]). The algorithm extends to constrained problems 
the concept of the unconstrained stochastic approximation method with averaging 
studied in [18]. 

In section 2 we define the algorithm and formulate relevant assumptions. Sections 
3 and 4 are devoted to the derivation of some preliminary results and in section 5 
we prove the main convergence theorem. We use /·/ to denote the Euclidean norm 
in Rn. We denote by U6 (x) the o-neighborhood of x, i.e. U6 (x)={y: Jy-xJ::s;o}. 
If VcRn then U6 (V)= U U6 (x). For a closed convex set Z we denote by TCz ( ·) 

xeV 
the orthogonal projection on Z. For a sequence {x"}~=o we use ::1( to denote an 
infinite subset of the set of natural numbers and {xk}ke.Jt" denotes the subsequence 
associated with 1c. We use Q to denote a probability space and w to denote elemeLltS 
of Q. The abbreviation "wp1" is used for "with probability one". 

2. The algorithm and the assumptions 

Define an auxiliary quadratic programming problem with the decision vector 
de Rn and the parameters x e Rn and z E Rn: 

minimize [17 (d)=(z, d)+! /d/ 2
] 

subject to 
deD (x)={d: g1 (x)+(Vg1 (x), d)::s;O, 

h1 (x)+(Vh1 (x), d)=O, 

The solution · of (2.1) will be denoted by d (x, z ). 

Let K>O. Define the set 

i=1, ... , m9 , 

i=l, ... , mh}· 

X"={x:g1(x)::s;K, i=1, ... ,m9, /h1(x)/::s;K, i=l, ... ,mh}· 

The feasible set of (1.1) is denoted by X. 
Let us consider now the following algorithm for the solution of (1.1): 

zk+l=z"+ark a"-z"), 

d"=d (x", zk+ 1), 

xk+ 1 = { x"+rk d" i_f x"+rk d" eX," 
x" otherWise, 

(a) 
(b) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where z0 eRn, x 0 eX". The vector ;" appearing in (2.2) is a stochastic estimate 
of the gradient VF(xk), i.e. 

~"=VF(xk)+r\ 

- ---- -- ---------------------
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where rk denotes a stochastic noise. The parameter rk is a nonnegative step coefficient 
and a is a positive constant. Algorithm (2.2)-(2.4) will be called the stochastic 

recursive quadratic programming method. Let us note that if the estimate zk+ 1 pro­
duced by the auxiliary filter (2.2) is equal to the actual gradient V F (xk) then the 
algorithm becomes identical with the deterministic linearization method of [16]. 
It is also worth noting that in the unconstrained case we have dk= -zk+l, i.e. the 
algorithm reduces to the method with averaging analysed in [18]. 

In [6] another stochastic version of the linearization method was proposed for 
deterministic nondifferentiable problems. Instead of a rk in (2.2) coefficients pk-+0 
were used and an additional assumption that rk/Pk-+0 was imposed. Hence, for 
large k the changes in xn become neglectible, as compared with the operation of 
the filter (2.2), which results in the increasing accuracy of the approximation of 
V F (xk) with zk+ 1 • We show that this is not necessary for convergence; one may 
have changes in x comparable to those in z. Our technique of convergence analysis, 
based on a specictl Liapunov function, leads to the conclusion that convergence 
occurs provided a is greater than some constant Om;n, which is unfortunately rather 
hard to estimate. 
We shall take the following assumptions: 
(H1) the function F and all functions g1 and h1 are continuously differentiable; 
(H2) there exist constants C0 , Cf, c;• such that for all x', x" ERn we have 

\VF(x')- VF(x")\:(C0 lx' -x"l, 

I Vg; (x')- Vgi (x")\:( Cfl x' -x"l, 

\Vh1 (x')- Vh1 (x")l:;:;; c:• lx' -x"l; 

(H3) The set X" is bounded and there exists a constant C such that for every x e X" 
and any dr=D (x) one has ld\:(C. 

(H4) for any x EX" and any dE D (x) the gradients Vh1 (x) and these gradients 
Vg1 (x) for which g1 (x)+(Vg1 (x), d)=O are linearly independent; 

(H5) the set F (X*), where X* is the set of Kuhn-Tucker points of (1.1 ), does not 
contain any segment of nonzero langth; 

(H6) rk~O for k=~, 1, ... and rk-+0 wpl; 
00 

(H7) }; rk=oo wp1; 
k=O 

(H8) there exists T>O such that 

1

,_ 1 I 

lim max .J; r 1 r1 =0 wp1, 
k-->00 I EL (k, T) i=k 

where 

L (k, T)={t~k: i% T;:(T}. 

(H9) a>! (C6+V(C6)
2 +(C0 )

2 where C6 will be specified in sec. 5. 
Let us note that assumptions (H6), (H7) and (H8), concerning the sequence of 
step coefficients {rk} and the noise {rk} are identical with the conditions used in [9] 
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for various stochastic approximation algorithm. In [9] one can find a through dis­
cussion of these rather weak, but involved conditions. 

Under the above assumptions we shall establish the convergence wpl of the 
sequence {xk} to the set of Kuhn-Tucker points of (1.1). In the convergence analysis 
we shall use the following theorem from [14]. 

THEOREM 1. Let Y* c Rm. Let {y0 } be a bounded sequence in Rm which satisfies the 
folio wing conditions: 

(a) if a subsequence {ykhe" converges to y'eY*, then lyk+l_ykl~O for ke:l{; 
(b) if a subsequence {yk}ke ff converges to y' ~ Y* then there exists s0 > 0 such that 
for all e E (0; s0 ] and all k 6 :/{ the index 

s (k, e) = min {l>k: jyl - ykj>s} 
is finite; 

(c) the exists a continuous function W(y) such that if {yk}ke"~y' ~ Y* then we 
can find s1 >0 such that for all e E (0; s1 ] we have 

lim W (y• (k, •)) < lim W (yk), 
kE K 

where s (k, e) is defined as in (b); 
(d) the set W(Y*) does not contain any segment of nonzero length. 

Then the sequence { W (yk)} converges and all accumulation points of the sequence 
{yk} beiong to X*. 

We shall call the function W( ·) the Liapunov function and the set Y* will be 
called the solution set. 

In what follows we shall prove that for almost all wE Q the paths {xk (w), zk (w)} 
of the sequence {x\ zk}, generated by (2.2)-(2.4), satisfy the assumptions of The­
orem 1. 

3. Properties of the auxiliary QP subproblems 

Let us denote by 1J (x, z) the optimal value of (2.1) and by A (x, z) and f.1 (x, z) 
the multiplier vectors that correspond to the inequality and equality constraints 
in (2.1). 

LEMMA 1. Assume (H1) through (H4). Let x EX" and z 6 Rn be fixed. Then there 
exist e>O, Cd, C;.., Cf.L such that for ali (xl, z 1

) e U6 (x, z), (x2
, z2) E U6 (x, z) we have 

ld1 - d2 1~ cd (lx1 - x 2l+lz1 - z2!), 
j,<.l - ,<.21 ~ C;.. (lxl - x 2l+lzl-z21)' 

1/11_ /121 ~ cf.L (lxl-x21+1zl - z21)' 

where dl=d (xl, zi), JJ=A (xl, zl), f.11=J1 (xi, zi) j = 1, 2. 

-- ----~---------------------------------------
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Proof. The proof follows immediately from [7, thm. 3~1] and will be therefore 
omitted. 

LEMMA 2. Assume (HI) through (H4). Let x E XI<, z E R" be fixed and let 8 be defined 
as in Lemma 1. Then for any e E (0, 8) we can find C such that if (x1, z1) E u. (x, z) 
and (x 2

, z2
) E U, (x, z) then 

17 (x2
, z 2)-rt (xi, z1)?;;<dl, z2 -z1)-<z1 +d\ x2 -x1)+ 

-ld1 llx2 -XI 1(t ;.: cr+i~ p~ c:)-c;, (3.1) 

Proof. Consider the Lagrange function for (2.1): 

1 mg 

L (d, .A, p, x, z)=<z, d)+ l ldl 2+}; A; (g; (x)+<Vg; (x), d)+ 
i- 1 

mh 

+}; /1; (h; (x)+<Vh; (x), d)). 
i=l 

Let d 1
, .Al, p 1 and d 2

, A2
, p 2 be the solutions and Lagrange multipliers for (2.1) 

at (xi, z1) and (x2
, z2

), respectively. Then 

rt (x2
, z2)-rt (xi, z1)=L (d 2

, J.Z, p2
, x 2

, z 2 )-L (d\ .Al, pi, xi, z1)?;; 

?;;L (d 2
, ),1, pi, x 2

, z 2)-L (d\ J.l, pi, x1 • z1). 

By Lemma 1, the latter difference may be easily estimated from below by the ex­
pansion of L (., .Al, p\ .,.,) at (dl, xi, z1). Using then the necessary condition of 
optimality V dL=O and the assumption (H2), one immediately obtains the required 
result. 

4. Some properties of the sequences {xk} and {zk}. 

We shall address at first the question of the feasibility of all cluster points of the 
sequence {xk}. 

LEMMA 3. Assume (Hl), (H2), (H3) and (HS). Then wpl one can find k 0 ?;;0 such 
that xk+rk dk E' XI< for ail k?;;ko. 

Proof. By construction, xk E XI< for k?;;O. According to (H3), the directions dk 
are well-defined and ldkl ~ C, k=O, 1, ... , where C is a certain constant. It follows 
from (H2) that 
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Hence, by the definition of dk, one has 

g1 (xk+r, dk)~(1-rk) g1 (xk)+Gf C2 rf. (4.1) 

By virtue of (H6), wp1 exists k0~0 c;uch that rk~max (1, K/Cf C2
) for k~k0, 

i=1, .. . , m11 • Then 
g1 (xk+rk dk)~(l-rk) g1 (xk)+rk IC~IC, 

since g1 (xk)~K by construction. By a similar argument for equality constraints 
(expressed as two inequalities) we obtain the assertion of the lemma. a 

The above lemma shows that wp1 the iterations of the ~ lgorithm are performed 
according to (2.4)-(a), starting from some index k 0 (which may depend on the 
event w). 

LEMMA 4. Assume (Hl) trough (H4) and (H6), (H7), (H8). Then there is a null set 
D 0 such that if w f/= D 0 then all accumulation points of the sequence {xk (w)} belong 
to X. 

Proof. Let D 0 be the null set of (H6), (H7). Let w f/= D 0 be fixed and let {xk} 
be the path that corresponds to w. We shall use Theorem 1, setting the Liapunov 
function" 

mg '"h 

V (x)= .J; max (0, g1 (x))+ .J; /h1 (x) /, 
i= 1 1=1 

and considering X as the "solution set". 
Let us verify the conditions of Theorem 1. 

Condition (a). It follows from (H3) and (H6) that Jxk+ 1 -xkJ~rk Jdk/-+0 and thus 
(a) holds. 
Condition (b). Let {xk}kE.?f'-+x' f/=!X. Suppose by contradiction that for any e0 >0 
one can find e E (0; e0) and k 1 E Jf' such that Jx1

- xk/ ~ e for all i ~ k 1 . Let k 0 be such 
that for i~k0 one has x 1+r1 d1 EX" and r1 ~ 1. The index k 0 exists by Lemma 3. 
Let k~max (k0 , k 1 ). It follows from (4.1) that for i~k we have 

g1 (x1 +1)~(1-r1)g1 (x1)+C1 r;, j=l, ... ,m9 , 

where C1 does not depend on i,j. Hence 

max (0, g1 (x
1 + 1))~(1-r1) max (0, g1 (x

1))+C1 r;, j=l, ... , m9 • 

By a similar argument for equality constraints we obtain 

lh1 (x
1 + 1)/~(1-r;) lh1 (x

1)/+Cz r;, ]=1, ... , mh. 

Thus, for all i~ k the following inequality holds 

V(x1 + 1)~ V(x1)+r1 [- V(x1)+C3 T1], 

where C3 is a certain constant. Since /x1 -xk'/~e for i~k1 , then /x1 -x'l~2e for 
i~k. Hence 
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where C is the Lipschitz constant of V in U2, (x'). Therefore for any e E (0; ed, 
any k;;:::max (k0 , k 1) and any !;;::k one has: 

I 

V(x1 + 1)~V(x")+ )1[- V(x')+C3 • 1+Ce] <1 • 
.:...J 

(4.2) 
i=k 

Observe that if x' rf= X then V (x') > 0. Take e0 small enough that Ce~ V (x')/3, 
and let k be so large that C3 r1 ~ V(x')/3 for i;;::k. Then it follows from (H7) and 
( 4.2) that V (x1+ 1)--+- oo as i--+ oo, which contradicts the nonnegativity of V ( · ). 
Condition (b) must therefore be satisfied. 

Condition (c). Let {xkhe"--+x' rf= X. Let 

s (k, e)=min {l>k: lx1-x"l >e}. 

If k;;::k0 and l<s (k, e) then inequality (4.2) is true. Hence 

s (k, e)- 1 

V(xs(k·•l):::; V(x")+ }) [- V(x')+C3 • 1+Ce] • 1 • 

i=k 

Let V(x')=o>O. Let us choose e1 >0 and k e :1{' such that - V(x')+C3 • 1+ 
+Ce~-o/2 for i;;::k, e~e1 • Then 

0 s (k, e)- 1 

V(xs(k,e))~ V(xk)-2 }; 'f;. 

i=k 

It follows from the definition of s (k, e) that 

s (k, e) - 1 s (k, e) - 1 

e~lxs(k,e) _ x"l~ }; 7:; ld1 I~C }; •t· 
i=k. i- k 

Combining the two preceding inequalities we obtain 

V(xs(k· e')~ V (x")- oej2C, 

which proves that condition (c) holds. 

Condition (d). By definition, V(X)={O} and thus (d) holds. 

By Theorem 1, all cluster points of { x"} belong to X, which was set out to prove .• 

Let us derive now a simple but important property of the sequence {z"}. Define 
the sets 

LEMMA 5. Assume (Hl), (H3) and (H6), (H7), (H8). Then wp1 for any o>O one 
can find an index k 0 such that z" E U6 (Z,J for all k;;::ko. 

Proof. Let Q 0 be the null set of (H6)-(H8) and let w rf= Q 0 be fixed. Define the 
sequences {z~} and {z~} by 

z~+ 1 =z~+a •" (VF(x'')-z1), z~=O, 

z"+ 1 -z"+a r (r"-z") z0
2 =z0 

2 -2 k 2' 

5 
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Obviously, zk=z~+z~ for all k~O. One can easily prove that {z~}-tO a.s., under 
(H6)-(H8). To this end one can e.g. use Theorem 1 in a way similar to that of 
Lemma 4, setting V(z)=lzl 2 and Z*={O}, or theorems 4.7.1 and 2.3.1 from [9]. 
Let us consider the sequence {z~}. Let nzK (z~) be the projection of z~ on Zl( and let 

flk= lz~- nzK (zDJ 
be the distance from z1 to Zl(. We have 

z~+ 1 =(1-a rk) z~+a rk VF(.0)=(1-a rk) nzK (z~)+a rk VF(xk)+ 

+(1-a r") (z~- n2 K (z~)). 
Take k 1 such that ark~ 1 for k~k1 • The vector 

vk+ 1 =(1-a rk) nzK (z~)+a rk VF(xk) 

is for k~k1 a convex combination of elements of Zl(, and thus belongs to Z". Con­
sequently 

bk+l ~~z~+ 1 -vk+lJ=(1-a rk) Jz~ -nzK (z~) 1=(1-a rk) (Jk· 

It follows from the above inequality and (H6), (H7) that (Jk-tO. Since z~-tO then 
also the distance from zk to the set Z" tends to 0, as k-too. The lemma has been 
proved. 11 

5. Convergence analysis 

Before proceeding to the convergence analysis we shall specify the constant C6 

in (H9). 
Let 

m9 mh 

p (x, z)=}; Jci (x, z) Cf+ 21.ui (x, z) I C~. 
i=l i=2 

It follows from Lemma 1 that p (x, z) is continuous on KK x U6 (ZK) for ariy o >0. 
Since, according to (H2) and (H3), the sets XI( and U6 (ZK) are bounded, then the 
constant 

C6 = max p (x, z) 
xEXrc 

zEUn (ZK) 

is finite. Therefore we can make the following assumption: (H9) there exists o>O 

such that a>-! (C6+V(C6Y+(C0)
2
). 

It is worth noting that in the unconstrained problem we have C6 =0 and (H9) 
takes on the form a> C0 j2, which is identical with the assumption used in [18] 
for the unconstrained version of our method. If the constraints are linear then we 
have also C6 =0. The essence of (H9) is that the filter (2.2) should be fast enought 
to keep up with the varying gradient of the objective function. 

Let X* be the set of Kuhn-Tucker points of (1.1). Define the solution set" 

Y* ={(x, z): x eX*, z= VF(x)} 



A resursive quadratic programming 67 

and the "Liapunov function" 

1 
W(x, z)=a F(x)-11 (x, z)+2JVF(x)-zJ 2

• 

We shall prove that wp 1 the sequence { x\ zk} satisfies the assumptions of Theorem 1 
and thus converges to Y*. It can be seen that in the unconstrained case one has 
11 (x, z)= -lzl 2/2 and thus the function W(x, z) becomes identical with the Lia­
punov function from [18]. 

Let Q 0 be the null set of (H6)-(H8) and let w if= Q 0 be fixed. Consider the path 
{yk}={x\ zk} generated by (2.2)-(2.4). For any k~O and any e>O define the set 

I(k, e)={i~k: Jy 1 -ykJ~e for k~i~l}. 

LEMMA 6. Assume (Hl)-(H4) and (H6)-(H8). Let w if= Q 0 be fixed. If a subse­
quence {yk}kE.?f"-ty' if= Y* then there exist C, y>O, s,>O and km such that for any 

k e K, k~::ltm, any e E' (0; em] and any I E I(k, e) one has 

(5.1) 

Pro of. Since {yk}kE.?f"-ty' then all quantities of the form I V F (xk)J, JzkJ, Jdkl are 
uniformly bounded for ke:::lt. For simplicity, all constants independent of k and e 

will be denoted by C. Ifl e I (k, e) then fork~ i~ i the quantities of the form Jx1 -xkl, 
Jz1-zkJ, JVF(x1)-VF(xk)J can be bounded by Ce. 

Let us estimate from above the three parts of the difference W(y 1)- W(yk). 

Part 1. We have 
1- 1 

F(x1)-F(xk)~<VF(xk), x 1-xk)+C0 e
2 =}; r 1 ('vF(xk), d1)+C0 e2

• (5.2) 
i=K 

Let 8 be the radius of the neighborhood of y' =(x', z') in which the assertions of 
Lemma 1 hold, and let e0 <e/2. Take k0 such that Jxk-x'J~e0 and Jzk-z'J~e0 
for all k~k0, ke:::lt: Then for alle~ e0 , k~k0 , k E ::it and ie J(k, e) we have: lx1-x'l ~ 
~ Jx1 -xkl+Jxk-x'l~2e0 ~e, and similarly lz 1 -z'l~e. Hence, according to Lemma 1, 
one has Jd1 -dkJ~Ce. Therefore (5.2) implies that 

1- 1 

F(x1)-F(xk)~(<VF(xk), dk)+Ce) }; r 1+Co e2
• (5.3) 

i=k 

Part 2. It follows from Lemma 2, that 

-11 (x1, z 1)+11 (xk, zk)~ -<dk, z 1-zk>+<zk+d\ x 1-xk)+ 

+Wllx
1
-xkl (J; J.~~]+j~l.u;cJl)+ce2 • (5.4) 
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By virtue of Lemma 5, there is k 0 such that zk e: U0 (Z") for all k~k0 • Then 

m9 mh 

}; ;.~ q +}; l.u~l c~::;; c/j 
j=1 J=1 

for k~k0 . Therefore from (5.4) \\'e obtain 

-11 (x1, z1)+11 (xk, zk)::;; -(d\ z1-zk)+(zk+d\ x 1-xk)+ 

+Co jdkjjx1-xkJ+Ce2
• (5.5) 

Let us note that for 1 E I (k, e) the difference z 1 - zk may be expressed as 

1-1 l-1 

z 1-zk=a (VF(xk)-zk)}.; • 1+a }.;•1 r'+ 
i=k i=k 

1-1 

+a}; -r1 (VF (x1)- VF (xk)+zk-z1), (5.6) 
i=k 

!- 1 

where the last term can be bounded by C e .2; <1• Similarly, 
i=k 

l-1 l-1 

xl-xk=dk};•t+ };(di+dk), (5.7) 
i=k l=k 

1-1 

with the second term bounded by C e .2; -r1• Expressions (5.6) and (5.7) when 
applied to (5.5) give i=k 

-11 (x1, z1)+11 (x\ zk)::;;( - a (dk, VF(x'')-zk)+(zk+dk, dk)+ 

+Co !dk! 2 +Ce)
1

J: 1:1+C I 1~\1 r1 I +Ce2
• (5.8) 

Part 3. We have 

1 1 
2IVF (x')-z' l2

- -z1VF(xk)-zkj 2 =(VF(xk) - zk, VF(x1
)-VF(xk))-

1 
- (VF(xk)-z\ z 1-zk) +-z jVF(x1)-z1 - VF(xk)+zkj 2

::;; 

::;; C0 jVF(xk) - zjjx1- xkj - (VF(xk) -zk, z1- zk)+C e2
• 

After substituting (5.6) and (5.7) for x 1-x1
' and z1 -zk in the above inequality we 

obtain 

(5.9) 

----- --------------------------- -
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Part 4. Let us add (5.3) multiplied by the constant a to (5.8) and (5.9). We obtain 

W(y')- W(yk)~[(a+l) <z", d")+(C6+1) jdkl 2 + 
1-1 

+Co IVF(x")-zkjjdkj-a jVF(xk)-zki 2+C 8] ~'!';+ 
i=k 

+Cl 
1

J:'l'; r; I +C 82
• 

For a sufficiently small 8 and a sufficiently large k (see the motivation of (5.3)) the 
following bounds hold: 

<z", dk)~<z', d')+C 8, jdkj 2 ~ jd'I 2 +C 8, IVF(xk)-zkjjdkl~ 

~IVF(x')-z'lld'I+C 8,-a IVF(xk)-zkj 2 ~ -a! VF(x')-z'I 2 +C 8. 

Hence 

W(y')- W(yk)~[(a+l) <z', d')+(C6+1) ld'I 2 +Co IVF(x')-

- z'jjd'j -a jVF(x')-z'I 2+C 8] 1~
1 

<1+C I 
1

't <1 r 1
1 +C 82

• (5.10) 

By Lemma 4, x' eX. Thus ad' e D (x') and Yf (ad')?;tJ (d') for O<c.:~ 1. Hence 
<z' +d', d') ~ 0, i.e. 

(a+l) <z', d')~ -(a+l) jd'j 2
• 

Consequently, we can rewrite (5.10) as 

W(y')- W(yk)~[(C6 -a) jd'I 2 +Co jVF(x') -z'jjd' j-

-ajVF(x')-z'I 2 +C 8] 

1

J}-r1+C I J: <1 r 1 I +C 8 2
• 

Consider now the quadratic form 

lfl (u, v)=(C6 -a) u2 +Co uv-av 2
• 

(5.11) 

It may be easily verified that lfl (.,.)is negatively defined, if (H9) holds. Furthermore, 
the assumption that (x', z') et Y* implies that jd'l + jVF (x') --z'l >0. Thus 

lfl (jd'l, jVF(x')-z'i)<O. 

Replacing lf!(ld'j, jVF (x')-z'l) in (5.11) by -y, where y>O, we obtain the re­
quired inequality (5.1). The lemma has been proved., • 

Now we can state the main theorem. 

THEOREM 2. Assume (Hl) to (H9). Then there is a null set D0 such that w 1= D0 

implies that: 

1 o all accumulation points of the sequence-fxk (w)} are-included in X*; 
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2° zk (w)- VF(xk (w))-+0, as k-roo; 
3° the sequence {F(xk (eo))} is convergent. 

Proof. Let us note that inequality (5.1) derived in Lemma 6. is of the same form 
as inequality (A.1) from [18], where the unconstrained version of the method was 
analysed. So one can use Theorem 1 in an identical fashion as in [18] to derive 
all the three assertions of our theorem. • 

COROLLARY. For any convergent subsequence {xk}kEff-+x* eX* one has 

lim ). (xk, zk)=.A.*, 
kEIC 

lim f1 (x\ zk)=fl*, 
k E ·.; 

where). (x\ zk), f1 (xk, zk) are the multipliers in auxiliary QP subptoblems and ).*, 11* 
are the values of multipliers at x*. 

The above corollary follows immediately from assertions 1 and 2 of theorem 
2 and from the stability of QP subproblems (Lemma 1). 

6. Conclusions 

A stochastic approximation algorithm for constrained problems, which corres­
ponds to deterministic recursive quadratic programming methods, has been pre­
sented and the convergence of the algorithm has been proved. The algorithm allows 
for both inequality and equality constraints and is in fact an extension of the sto­
chastic conjugate gradient method to constrained problems. The assumptions 
imposed on noise {rk} and gains {rk} are typical of the theory of stochastic appro­
ximation algorithms. The most restrictive assumptions are (H4), which is necessary 
for the stability of QP subproblems, and (H9), which limits from below the filter 
gains by an unknown constant. An interesting problem that calls for explanation 
is the possibility of replacing (2.2) by the formula zk+ 1=zk+pk (;k-zk) with a new 
gain sequence {Pk} such that lim inf Pkfrk~a; this could increase flexibility of the 
algorithm. 
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Algorytm rekurencyjnego prograntowania kwadratowego dla 
zadan programowania stochastycznego z ograniczeniami 

W pracy sformulowano algorytm aproksymacji stochastycznej dla zadan optymalizacji z ogra­
niczeniami, kt6ry odpowiada deterministycznym metodom rekursywnego programowania kwadra­
towego. Usrednianie rekurencyjnie w pomocniczym filtrze losowe estymaty gradient6w s~ wyko­

rzystywane w zadaniach programowania kwadratowego do generacji kolejnych kierunk6w. Wyka­
zano zbie:Znosc z prawdopodobienstwem 1 do zbioru punkt6w Kuhna-Tuckera przy typowych 
zalozeniach o szumie. 
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~eTo~peKypeHTRoro KBa~aTuqecKoro 

nporpaMMHpOB aHWI ~JIB YCJIOBHLIX 3a~a'l CTOXaCTH'IeCKOrO 

nporpaMMHpOBaHHH 

A. RUSZCZYJ.Ii'SKI 

B pa6oTe CcPOPMYIDIPOBaHO MeTO,!I; CTOXaCUJlieCKOH armpoKCHMaqmr ,!l;llil 3a,!l;a'l C orpaHH­

'IeHIDIMH, COOTBeTCTBYIOII:\1'1H ,!l;eTepMHHHCTH'IecKHM MeTO,!I;OM peKypeHTHOrO KBa,!!;paTJiJlleCKOrO 

nporpaMMHpOBaHH51. PeKypeHTHO ycpe,!l;H51eMbie BCIIOMOraTeJibHbiM cPH!IbTpOM C.JIY'IaHrrbie OI!eHKH 

rpa,!I;HeHTOB HCIIOJib3YIOTC51 B KBa,!!;paTH'IeCKHX IIO,!I;Ilp06JieMaX ,!l;llil IIOJiyqeHH51 IIOCJie,!I;OBaTeJibHbiX 

HarrpaBJieHH:ii: CrryCKa. ,lJ;oKa3aHO CXO,!I;IfMOCTb C Bep051THOCTbiO O,!J;HHHI!a K MHOiKecTBY TO'IeK 

KYHa-TaKepa rrpn o6bJliHbiX ycJIOB1151X myMa. 

----- -------------- - ----


