Control
and Cybernetics

VOL. 13 (1984) No. 1-2

A recursive quadratic programming algorithm for
constrained stochastic programming problems

by

ANDRZEJ RUSZCZYNSKI

Institute of Automatic Control
Technical University of Warsaw
ul. Nowowiejska 15/19

00-665 Warszawa, Poland

A stochastic approximation algorithm for constrained problems which corresponds to deter-
ministic recursive quadratic programming methods is defined. The main feature of the algorithm
is that random gradient estimates are recursively averaged by an auxiliary filter and the averages
obtained are usen in quadratic subproblems which generate successive search directions. Con-
vergence with probability one to the set of Kuhn-Tucker points is proven under typical noise con-
ditions.

1. Introduction

Let F, g, i=1,...,m,, and h;, i=1, ..., my, be continucusly differentiable func-
tions from R" to R'. Consider a constrained optimization problem:

minimize F (x)

subject fo
2@L0, i=1;.my,
h (0)=0, i=1,..,m,.

(1.1)

We assume that the values of the objective function F and its gradient VF are obser-
ved (computed) in the presence of stochastic noise. A typical problem of this kind
is that with F (x)=E {f(x, 6)}, where 0 is a stochastic parameter. In such a pro-
blem one can observe f (x, 8) for various samples of § but the average cost E { f'(x, 6)}
is usually difficult to calculate.

Since it is not possible to compute the exact values of F and VF at a given x
it is necessary to use for the solution of (1.1) stochastic approximation algorithms
(see e.g. [2,7] and the references therein). Various algorithms of this type have
been suggested for constrained problems: the projection method [2, 9, 10], feasible
direction methods [1, 11, 17], penalty methods [3, 5, 13, 15], Lagrangian and penal-
ty-multiplier methods [4, 8, 9, 12, 15]. The projection method and feasible direction
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methods allow for inequality constraints only; the Lagrangian and the penalty-multi-
plier methods require simultaneous iteration of both primal and dual variables,
which causes several difficulties in practice.

The objective of this paper is to present a new stochastic approximation algorithm
for (1.1), which corresponds to recursive quadratic programming methods of non-
linear programming (see e.g. [16]). The algorithm extends to constrained problems
the concept of the unconstrained stochastic approximation method with averaging
studied in [18].

In section 2 we define the algorithm and formulate relevant assumptions. Sections
3 and 4 are devoted to the derivation of some preliminary results and in section 5
we prove the main convergence theorem. We use |-| to denote the Euclidean norm
in R". We denote by U, (x) the d-neighborhood of x, i.e. U, (x)={y: |[y—x|<6}.
If V=R" then U; (V)= |_J U, (x). For a closed convex set Z we denote by nz (*)

xXeV
the orthogonal projection on Z. For a sequence {x*}?> , we use X to denote an

infinite subset of the set of natural numbers and {x"}keyf denotes the subsequence
associated with x. We use Q to denote a probability space and w to denote elements
of Q. The abbreviation ”wpl” is used for “with probability one”.

2. The algorithm and the assumptions

Define an auxiliary quadratic programming problem with the decision vector
de R" and the parameters x € R" and ze R":

minimize [ (d)=<z, dy+%|d|’]
subject to @.1)
de D (x)={d: g, (x)+<{Vg (x), d)<0, i=1,..,m,, .
hy (X)+{Vh; (x), d>=0, i=1
The solution of (2.1) will be denoted by d (x, z).
Let x>0. Define the set

Y=l GEr i=l.m, KO)[SK i=1, . m)

The feasible set of (1.1) is denoted by X.
Let us consider now the following algorithm for the solution of (1.1):

=7kt gz, (-2, 2.2)
dk___d(xk’ Zk+1), (2_3)
k ke ok k
s nd iy deX,,  (2)
x “{x" otherwise, (b) 24)

where z° e R", x°e€ X,. The vector & appearing in (2. 2) is a stochastic estimate
of the gradient VF (x¥), i.e.

E =VF (x*)4-r¥,
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where r* denotes a stochastic noise. The parameter 7, is a nonnegative step coeflicient
and a is a positive constant. Algorithm (2.2)—(2.4) will be called the stochastic
recursive quadratic programming method. Let us note that if the estimate zF** pro-
duced by the auxiliary filter (2.2) is equal to the actual gradient VF (x*) then the
algorithm becomes identical with the deterministic linearization method of [16].
It is also worth noting that in the unconstrained case we have d¥= —z**1, i.e. the
algorithm reduces to the method with averaging analysed in [18].

In [6] another stochastic version of the linearization method was proposed for
deterministic nondifferentiable problems. Instead of a 7, in (2.2) coefficients p,—0
were used and an additional assumption that 7,/p,—~0 was imposed. Hence, for
large k the changes in x™ become neglectible, as compared with the operation of
the filter (2.2), which results in the increasing accuracy of the approximation of
VF (x*) with z¥*1, We show that this is not necessary for convergence; one may
have changes in x comparable to those in z. Our technique of convergence analysis,
based on a special Liapunov function, leads to the conciusion that convergence
occurs provided a is greater than some constant an;,, which is unfortunately rather
hard to estimate.

We shall take the following assumptions:
(H1) the function F and all functions g; and A; are continuously differentiable;
(H2) there exist constants C,, C?, C} such that for all x’, x'" € R" we have

[VF(x")—VF(x')<C, [x' —x""],
|Vg: (x)— Vg, x")I<CY x"—x""],
|Vh; (x)—= VA (x")I< C} [x"=x""];

(H3) The set X, is bounded and there exists a constant C such that for every x € X,
and any de D (x) one has |d|<C.

(H4) for any x e X, and any de D (x) the gradients V7, (x) and these gradients
Vg; (x) for which g; (x)+{Vg; (x), d)=0 are linearly independent;

(H5) the set F(X*), where X* is the set of Kuhn-Tucker points of (1.1), does not
contain any segment of nonzero langth;

(H6) 7,>0 for k=0, 1, ... and 7,—~0 wpl;

H7) D) m=c wpl;
k=0

(H8) there exists 7>0 such that

g !
lim max 7, 1| =0 wpl,
k-0 1eL(kT) | j=
where
=1
L (k, T)={1>k: 2 rigT}.
i=h

(H9) a>1(Cs+V (C5)?+(Co)? where C; will be specified in sec. 5.
Let us note that assumptions (H6), (H7) and (H8), concerning the sequence of
step coefficients {7;} and the noise {r*} are identical with the conditions used in [9]
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for various stochastic approximation algorithm. In [9] one can find a through dis-
cussion of these rather weak, but involved conditions.

Under the above assumptions we shall establish the convergence wpl of the
sequence {x*} to the set of Kuhn-Tucker points of (1.1). In the convergence analysis
we shall use the following theorem from [14].

THEOREM 1. Let Y*<R™. Let {y°} be a bounded sequence in R™ which satisfies the
following conditions:

(@)  if a subsequence {y*}ic. converges to y'€Y*, then |y*+*1—y¥| -0 for keX;
(b)  if a subsequence {y*},.,, converges to y'¢ Y* then there exists ¢,>0 such that
for all e€(0; &) and all ke A the index

s (k, & =min {I{>k: [y'—y*|>e}
is finite;
(c) the exists a continuous function W (y) such that if {y*hex—y' ¢ Y* then we
can find ¢,>0 such that for all ¢€(0;¢;] we have

lim W (3°% 9)<lim W (%),
kex kex
where s (k, €) is defined as in (b);
(d)  the set W(Y*) does not contain any segment of nonzero length.
" Then the sequence {W (y*)} converges and all accumulation points of the sequence
{3*} belong to X*.
We shall call the function W (+) the Liapunov function and the set Y* will be
called the solution set.

In what follows we shall prove that for almost all w € 2 the paths {x* (), z* (w)}
of the sequence {x*, z*}, generated by (2.2)—(2.4), satisfy the assumptions of The-
orem 1.

3. Properties of the auxiliary QP subproblems

Let us denote by # (x, z) the optimal value of (2.1) and by 2 (x, z) and u (x, 2)
the multiplier vectors that correspond to the inequality and equality constraints
in (2.1).

LemMA 1. Assume (H1) through (H4). Let x € X, and z € R" be fixed. Then there
exist >0, Cy, C;, C, such that for all (x*, z') € U, (x, z), (x, z%) € U, (x, z) we have
|d*—d*< 0, (%" —2* |+ |2 —2*]),
21— 22|<C, (Ixt — X3 +|zt —22) ,
It = 2 C, (X — x|+ |2 = 2%)),
where d?=d (x), z%), W=i(x), ), W=pu’,z9) j=1,2.
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Proof. The proof follows immediately from [7, thm. 3.1] and will be therefore
omitted.

LEMMA 2. Assume (H1) through (H4). Let x € Xy, z € R" be fixed and let & be defined
as in Lemma 1. Then for any ¢ € (0, &) we can find C such that if (x*, z2*) e U, (x, z)
and (52, 2%) € U, (x, z) then

7 (XZ’ ZZ)__?? (xl, Zl)><d1, 22_21>____<21+d1, xZ__x1>+
—1dY| ]xz—x[l(z 3o 3t cg*)-cg, (3.1)
i=1 i=1

where di=d (x', zV), =21 (x%, z1), ul=p(x', 24).

Proof Consider the Lagrange function for (2.1):
1 |
L, A p, x, 2)={z, d>+5 4>+ 2 A (g: (x)+<( Vg (x), d)+
i=1

+ D) 1 (e DHVhy (), D).

i=1
Let dt, 2%, p* and d?, 22, u* be the solutions and Lagrange multipliers for (2.1)
at (x1, zY) and (x2, z2), respectively. Then
n (x?, 22)—n (x', 2Y)=L (d?, 7*, 2, x*, z°) =L (d*, 2, p*, x*, z")>
=L(d?% 24, pt, x2, 22— L (d%, A%, ut, xt.ZY).
By Lemma 1, the latter difference may be easily estimated from below by the ex-
pansion of L (., A4, g, .,.,) at (d%, x%, z*). Using then the necessary condition of

optimality V,L=0 and the assumption (H2), one immediately obtains the required
result.

4. Seme properties of the sequences {x*} and {z*}.

We shall address at first the question of the feasibility of all cluster points of the
sequence {x*}.

LemMA 3. Assume (H1), (H2), (H3) and (HS5). Then wpl one can find ko=0 such
that x*+v, d*e X, for all k=k,.

Proof. Bjr construction, x*¢€ X, for k>0. According to (H3), the directions d*
are well-defined and |d*|<C, k=0, 1, ..., where C is a certain constant. It follows
from (H2) that

g (x* 47, d9<g; (X7 (Vg (XM, dk>+C§ T;? Idklz-




64 A. RUSZCZYNSKI

Hence, by the definition of d*, one has
g (7, <1 —7) g (F)+C2 C 22, (1)
By virtue of (H6), wpl exists ko>0 such that 7,<max (1, x/C¢ C?) for k>k,,
i=1, ..., m,. Then
g (xX*+7 d)<(1—7) g () +7, r<x,
since g; (x")<x by construction. By a similar argument for equality constraints
(expressed as two inequalities) we obtain the assertion of the lemma. )
The above lemma shows that wpl the iterations of the clgorithm are performed

according to (2.4)—(a), starting from some index k, (which may depend on the
event m).

LemMMA 4. Assume (H1) trough (H4) and (H6), (H7), (H8). Then there is a null set
Qo such that if o ¢ Qq then all accumulation points of the sequence {x* (w)} belong
fo X.

Proof. Let Q, be the null set of (H6), (H7). Let w ¢ Q, be fixed and let {x*}
be the path that corresponds to w. We shall use Theorem 1, setting the Liapunov
function”

V(=Y max (0,8 )+ N (1,

and considering X as the ’’solution set”.
Let us verify the conditions of Theorem 1.

Condition (2). It follows from (H3) and (H6) that |[x**!—x¥|<7; |d¥|—0 and thus
(a) holds.

Condition (b). Let {x*},.,—~x'¢X. Suppose by contradiction that for any &,>0
one can find ¢ € (0; &y) and k, € A such that |x' —x*|<e for all i=>k,. Let ko be such
that for i>k, one has x'+7; d* € X, and 7,;<1. The index k, exists by Lemma 3.
Let k>max (ko, kq). It follows from (4.1) that for i>k we have

g ()< -7) g, H+Cy 72, j=1,...,m,,
where C; does not depend on i,j. Hence
max (0, g; (x'*1))<(1-7) max (0, g; *))+Cy 77, j=1,..,m,.
By a similar argument for equality constraints we obtain
lh; G OI<A=7) [h; GO +Ca 72, =1, .., iy
Thus, for all i>k the following inequality holds
V<V )+ [-V (3)+Cs wl,

where Cj is a certain constant. Since |x!—x*|<e for i>k;, then |x'—x'|<2e for
i=k. Hence
VxSV )+ [—V (x)+Cs 7+ Cel,




A resursive quadratic programming 65

where C is the Lipschitz constant of V in U, (x"). Therefore for any e e (0; ],
any k>max (ko, k,) and any />k one has: '

VEHSV 69+ Y -V )+ Cawt-Cel 7. the)

i=k
Observe that if x’¢ X then V' (x")>0. Take ¢ small enough that Ce<V (x')/3,
and let k be so large that C; 7,<V (x")/3 for i=k. Then it follows from (H7) and
(4.2) that ¥ (x'*')— —o0 as [-o0, which contradicts the nonnegativity of V().
Condition (b) must therefore be satisfied.

Condition (c). Let {x*},.,—x" ¢ X. Let
s (k, e)=min {{>k: [x'—x¥|>¢}.

If k>k, and I<s (k, &) then inequality (4.2) is true. Hence

sk, &)1
V(xs )< V (x)+ Z [V (x)+C;s 7.4+ Ce] 7.
i=k
Let V(x")=6>0. Let us choose & >0 and ke such that —V(x")+C; 7,4
+Ceg< —6/2 for izk, e<e,. Then

§ sta-1

Ve ho)g V(x")——z Z Wi

i=k

It follows from the definition of s (%, &) that

sk,e)-1 sk, )1
e xS b8 — k| < 2 7, |dl|<C 2 T«
i=k i-k

Combining the two preceding inequalities we obtain
V ()< ¥V (x5 —8¢/2C,
which proves that condition (¢) holds.
Condition (d). By definition, ¥ (X)={0} and thus (d) holds.
By Theorem 1, all cluster points of {x*} belong to X, which was set out to prove. [l

Let us derive now a simple but important property of the sequence {z¥}. Define
the sets
VF(X,)={VF(x):xeX,}, Z.=co{VF(X))}.

LEMMA 5. Assume (H1), (H3) and (H6), (H7), (H8). Then wpl for any 6>0 one
can find an index ko such that z* € U;(Z,) for all k=k,.

Proof. LetQ, be the null set of (H6)—(H8) and let w ¢ Q, be fixed. Define the
sequences {z¢} and {z*} by
2=zt g g (VF(x®~25), 20=0,

k+1__ k k k 0o __
2=zt tar (rF—z7), z;=2°.
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Obviously, z¥=z+z% for all k>0. One can easily prove that {z£}—0 a.s., under
(H6)—(HS). To this end one can e.g. use Theorem 1 in a way similar to that of
Lemma 4, setting V (z)=|z|*> and Z*={0}, or theorems 4.7.1 and 2.3.1 from [9].
Let us consider the sequence {z}}. Let m;_(z}) be the projection of z% on Z, and let

0= JZII — %z, (Z’{)[
be the distance from z§ to Z,. We have
Zitt=(-az) z{+av VF(H=1—am) nz, (Zf)+az VF(x)+

+(1-am) (5, ().
Take k4 such that a 7,<1 for k>k,. The vector

**=(l~a7) n, (z})+a7, VF(x")

is for k>k, a convex combination of elements of Z,, and thus belongs to Z,. Con-
sequently
IRES [Z';H —v*tl=(1-a7) 121{ — Rz, (Z'I) |=(1-az) .

It follows from the above inequality and (H6), (H7) that 6,—0. Since z£—0 then
also the distance from z* to the set Z, tends to 0, as k—oco. The lemma has been

proved. E

5. Convergence analysis

Before proceeding to the convergence analysis we shall specify the constant Cj;
in (H9).
Let

px2)= D4 (x2) C+ D lu(x,2) | CL.

It follows from Lemma 1 that p (x, z) is continuous on X, X U; (Z,) for any §>0.
Since, according to (H2) and (H3), the sets X, and U, (Z,) are bounded, then the
constant

Cs;= max p(x,z)

X € Xy
z€Us (Zx)

is finite. Therefore we can make the following assumption: (H9) there exists 6>0
such that a>3 (C;+V/(Cy)*+(Co)?).

It is worth noting that in the unconstrained problem we have C;=0 and (H9)
takes on the form a>C,/2, which is identical with the assumption used in [18]
for the unconstrained version of our method. If the constraints are linear then we
have also C;=0. The essence of (H9) is that the filter (2.2) should be fast enought
to keep up with the varying gradient of the objective function.

Let X* be the set of Kuhn-Tucker points of (1.1). Define the solution set”

Pr=dlx )z e >, =VF{))]



A resursive quadratic programming 67

and the “Liapunov function”

1
W (x, z)=a F (x)—n (x, z)+ |VF (x)—z|2.

We shall prove that wpl the sequence {x¥, z*} satisfies the assumptions of Theorem 1
and thus converges to Y*. It can be seen that in the unconstrained case one has
n (x, z)=—|z|*/2 and thus the function W(x, z) becomes identical with the Lia-
punov function from [18].

Let Q, be the null set of (H6)—(H8) and let w ¢ Q, be fixed. Consider the path
{y*}=1{x*, 2} generated by (2.2)—(2.4). For any k>0 and any ¢>0 define the set

I(k, &)={I=k: |y'—y*<e for k<i<l}.

LeMMA 6. Assume (H1)—(H4) and (H6)—(HB). Let ¢ Qq be fixed. If a subse-
quence {y*},.,,—y' ¢ Y* then there exist C, y>0, ,>0 and k,, such that for any
kewx, k=4, any ¢€(0;¢,] and any 1€ I(k, ) one has

1-1

BTy 1-1
W)W H<| —y+Co+C —S— | D utCe (5.1)
T i=k

i
i=k

Proof. Since {y*},.,—)  then all quantities of the form |VF (x")], |2¥|, |d*| are
uniformly bounded for ke #". For simplicity, all constants independent of k and &
will be denoted by C. If [ € I (k, &) then for k<i<[ the quantities of the form |x’ —x*|,
|zt =2z, |VF (x")— VF (x*)| can be bounded by Ce.
Let us estimate from above the three parts of the difference W (3)— W (3.
Part 1. We have
1-1
F ()= F(9<CVE (9, 6 =2+ Coe?= 3 5 (VF (), d>+Coe®  (52)
Let & be the radius of the neighborhood of y'=(x’, z') in which the assertions of
Lemma 1 hold, and let g,<¢/2. Take ko such that |x*—x'|<g and |zF—z'|<¢g,
forall k=ky, ke A" Then for all e<ey, k= ko, ke A and i€ I(k, ¢) we have: |x' —x'|<
< xt—xF| 4 |xF— x| < 2e0< &, and similarly |z} — z'|<&. Hence, according to Lemma 1,
one has |d*—d"*|<Ce. Therefore (5.2) implies that
b=1

F(x)=F ()< VF (x4, d<y+Cz) Zri—l—Co &2, (5.3)
i=k
Part 2. It follows from Lemma 2, that

= (xl: Zl)+77 (xka Zk)< _<dk5 Zl_Zk>+<zk+dk: xl'"xk>+

s D] B o M cifres G4
Jj=1 3 Jj=1
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By virtue of Lemma 5, there is k, such that z* e U, (Z,) for all k>k,. Then

mg mp
P AE NI Ko e
=1 Jj=1
for k>k,. Therefore from (5.4) we obtain

-7 (x}, Z2)+n (5%, 29 —(d¥, 2 =25+ dF, xP— xRy
+C, |d¥ ¥ =xM+Cs% (5.5

Let us note that for /e I (k, ¢) the difference z!—z* may be expressed as

=1 1-1
2'—Z*=a (VF (x)—2") Zri—]—aZti frefe
i=k i=k
i1

+a Z 7, (VF (x")— VF (x*)+2zF—2z%,  (5.6)

1=1
where the last term can be bounded by C ¢ D' 7;. Similarly,
i=k

g Z‘ T+ Z‘ (di+d"), (X))

-1

with the second term bounded by Ce Z 7;. Expressions (5.6) and (5.7) when
applied to (5.5) give

=1 (', 2)+n (5, 29<(=a{d", VF () - 25 +{"+d*, d)+

| +Ce (5.8)

-1
45 [d"lz—l—Ca)Zri-!-C
i=k

i=

Part 3. We have
1 1
5 IVF (1) =212 = [VF () = 2 =(VF ()~ 2% VF () = VF () ~
—{VF (x*)—zF, z’—z">+ |VF (x) —z! = VF (x¥)+-2F2<

< Co |VF (x¥)—z] |x}— x*| = VF (x*)— 2, 2 — 2F)+C &%

After substituting (5.6) and (5.7) for x'—x* and z,-z* in the above inequality we
obtain

1 1
> |VF (x1)—ZY b |VF (x¥)— 2| <(Cy |VF (x*)—z*| |d¥| +

1—1 1-k
—-a ]VF(x")—z"'Iz—l—Cs)Z'ri-l—C ‘ Zri rt| +C &2 (5.9)
i—k i=k




A resursive quadratic programming 69

Part 4. Let us add (5.3) multiplied by the constant a to (5.8) and (5.9). We obtain
w (- W (MH<(@+1) {2, d+(Co+1) |d**+
-1
+C, |VF (x*)—2| |d*| —a |VF (x*)—2¥2+-C s]ZTi-}—
i=k-
i—1

E‘ciri

i=k

+C +C &2,

For a sufficiently small ¢ and a sufficiently large k (see the motivation of (5.3)) the
following bounds hold:

(25 dH<(2’,d"Y+Ce, |d"?<|d’|*+Ce, |VF (x%)—2H |d¥|<
L<|VF(x")—=Z'||d'|+Ce—a|VF(x¥)—z¢>°< —a| VF (x")—z'|?+Ce.
Hence

W) —W0I<Lla+1) (', d>+(Cot1) [d'|*+Co [VF (x7) -

-1 e
—zZ'||d'|—a |VF (x")—z'|>+C 8]2 ri—I—C’ 2 7| +Ce%  (5.10)
i=k i=k

By Lemma 4, x’'€X. Thus «d' €D (x") and 5 (ad)=n (d") for 0<a<1. Hence
{Z'+d',d"»<0, ie.

(a+1)<z, d>< —(a+1) |d'|%
Consequently, we can rewrite (5.10) as

W) =W(H<ICs—a) |d'[>+Co |VF (x")—2] |d'| -

—a|VF (x")—z'|>+C¢] Zti—}—C

i=«

-1

nrt|4Cce.  (5.11)

Consider now the quadratic form -
v (1, 9)=(Cs—a) u>*+C, uv—av>.
It may be easily verified that y (.,.) is negatively defined, if (H9) holds. Furthermore,
the assumption that (x', z') ¢ Y* implies that |d'|+|VF (x')--z'|>0. Thus
w(1d'], |VF (x")—z")<0.

Replacing y (|d'|, |[VF (x")—z']) in (5.11) by —y, where y>0, we obtain the re-
quired inequality (5.1). The lemma has been proved., -]
Now we can state the main theorem.

THEOREM 2. Assume (H1) to (H9). Then there is a null set Q¢ such that w ¢ Qg
implies that:
1° @l accumulation points of the sequence {x*(w)} are included in X*;
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2°  z*(w)—VF (x* (w))—0, as k—oo;
3°  the sequence {F (x*(w))} is convergent.

Proof. Letusnote that inequality (5.1) derived in Lemma 6. is of the same form
as inequality (A.1) from [18], where the unconstrained version of the method was
analysed. So one can use Theorem 1 in an identical fashion as in [18] to derive
all the three assertions of our theorem. 2]

COROLLARY. For any convergent subsequence {x*} .. —x*eX* one has

lim 4 (5% 25)=4%;
kek

lim g (x%, z2¥)=pu*,
ke

where 4 (x*, Z¥), u (x*, Z) are the multipliers in auxiliary QP subproblems and 2*, u*
are the values of multipliers at x*.

The above corollary follows immediately from assertions 1 and 2 of theorem
2 and from the stability of QP subproblems (Lemma 1).

6. Conclusions

A stochastic approximation algorithm for constrained problems, which corres-
ponds to deterministic recursive quadratic programming methods, has been pre-
sented and the convergence of the algorithm has been proved. The algorithm allows
for both inequality and equality constraints and is in fact an extension of the sto-
chastic conjugate gradient method to constrained problems. The assumptions
imposed on noise {r*} and gains {7} are typical of the theory of stochastic appro-
ximation algorithms. The most restrictive assumptions are (H4), which is necessary
for the stability of QP subproblems, and (H9), which limits from below the filter
gains by an unknown constant. An interesting problem that calls for explanation
is the possibility of replacing (2.2) by the formula zF*1=zk4p, (&*—z) with a new
gain sequence {p,} such that lim inf p,/7,>a; this could increase flexibility of the
algorithm.
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Algorytm rekurencyjrego programowania kwadratowego dia
zadan programowania stochastycznego z ograniczeniami

W pfacy sformutowano algorytm aproksymacji stochastycznej dla zadan optymalizacji z ogra-
niczeniami, ktéry odpowiada deterministycznym metodom rekursywnego programowania kwadra-
towego. USrednianie rekurencyjnie w pomocniczym filtrze losowe estymaty gradientow sa wyko-
rzystywane w zadaniach programowania kwadratowego do generagcji kolejnych kierunkéw. Wyka-
zano zbiezno$¢ z prawdopodobienistwem 1 do zbioru punktow Kuhna-Tuckera przy typowych
zatozeniach o szumie.
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Mero/1 pexyp eHTHOr0 KBaIPATHYECKOTO
HPOrpaMMHpOB aHAA IS YCJIOBHBIX 32724 CTOXACTHIEeCKOro
NporpaMMHpPOBAHNS

B pabote chopmyIupOBaHO METOX CTOXACTHYECKOW AIMpPOKCHMALMH I 3aa4 C OTpaHd-
YEHHUSIMHM, COOTBETCTBYIOIIWM IETEPMHUHHCTHYCCKMM METOIOM PEKYPEHTHOr0 KBaIpAaTHYECKOTO
IIPOTPaMMHUPOBaHHS. PEKYPEHTHO yCpPEeOHsIEMBIE BCIOMOTATEIbHEIM (GUILTPOM CIIYIAHEBIE ONEHKH
TPaWeHTOB MUCHONB3YIOTCSA B KBAIPATHYECKUX MOINPOOIeMax IS IOJyYEHHs TOCIEHOBATEIBHEIX
HampaBlleHWi Cmycka. J{oka3aHO CXOAMMOCTB C BEPOSTHOCTHIO OJHMHMIA K MHOXECTBY TOYEK
Kyna-Takepa npu OOBIMHBIX YCJIOBHSX IIyMa.



