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General problem of optimal observer (with minimal norm) in Hilbert spaces is considered.
On the basis of the measurements of control and output of a linear system the observer estimates
a certain unknown, finite parameter vector of this system. We formulate the problem of existence
for the observer and the problem of its optimality with respect to the “worst” disturbances of me-
asurements of output and control. We show an application of our tesults to state observation in
dynamic systems and analyse properties of the closed loop system with the optimal observer in
the feedback.

1. Introduction

In the theory of feedback control the reconstruction of inaccessible state vector
is an important problem. This problem was formulated by R.E. Kalman and others
[11, [3], [4], for linear dynamic systems.

D. G. Luenberger [2] considered a special class of observers given by differential
equations. The asymptotic behavior of their solution gives an estimate of unknown
present state of the observed system.

If disturbances with known probabilistic properties occur in the measured
signals identification theory [5] enables us to obtain different types of estimators
of state and parameters.

In this paper we will state and solve a general problem of optimal observer
for system whose output depends linearly on the pair: finite parameter vector and
control. The control and the output are from Hilbert spaces. On the basis of the
disturbed measurements of control and output the optimal observer will estimate
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the unknown finite parameter vector. The optimality of the observer means that
it has a minimal norm, hence it is least sensitive with respect to the “worst” dis-
turbances of measurements belonging to the unit balls in these spaces. In Section 4
we also analyse the behaviour of the system with the observer in feedback loop
in a stabilizing regime.

2. Statement of the problem

2.1. The description of the linear system and the observer problem

Consider a linear system given by two linear continuous maps: #: X—Y,
H,: U-Y, where U, Y are Hilbert spaces, and X=R".

We call X, Y, U the parameter, output, and control spaces, respectively.

An element y € Y such that

y=H1x+Hsu 6]
and
n
Hyx=hyx= DM x;, mheY', heY,
i=1
x=[xy1, .., Xa]' € R
is called the output connected with the parameter x and control u, where xe X
and ue U.

Denote by (|- ) the inner product in Hilbert space. By an observer for system
(1) we mean two linear continuous maps:

Y. Y->X, %,:U-X such that

91 y=(g110)=[@11), - @11»)]', 8:1€¥" gie¥,
=1, 0l

G, u=(g2|w)=[(g3 |w), ..., (g3 1)1, g.eU" gieU,
b=l e
and
x=%y+%u 2
holds for any triple (y, x, u) fulfilling (1). Combining (1) with (2) we have that a pair
(%, %,) is an observer for system (1) iff ker 2/, =0, and y=2#, %, y, Vye Yy

‘%1 g2= ‘—gz (3)
or, alternatively, T )

gl %1 =In

gl %2= —92 (4)

where Yy is the range of operator ##,: Y5 <Y, and I, is the nx n identity matrix.
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2.2. The problem of existence and optimality of the observer.

Denote by S the set of all observers for system (1). From continuity and linearity
of mappings in (1), (4) it follows that if S is non-empty then it is a closed, linear
manifold in the space ¥Y"X U™ In this space we introduce a seminorm

(g1, gZ)IIY"XU"=]/i21 o; (g} lgi)y+.‘}z Bi (g5 1 &) 4
@0, B0, d=lil.m
By the optimal observer we mean a pair (g5, g5*") e S such that
min |(g., g2)IP=Ig5™, 8P ©)
(91, 92)€S
Let zy, z5, |lzilly<1, ||I22llp<<1, denote disturbances of output and control respéc-
tively. We have x=%; y+%, u, and =%, (y+z,)+%, (u+z,) where £ is the
estimate of the parameter vector x. The observer optimal with respect to distur-
bances should be such that ||£—x||? is minimal for the “worst” z,, z, from unit
balls:
min  max [£—x[?=min max |¥%;z.+%, z,|?.
(a1, 92) llzill, llzali< 1 (g1, 92) llz4ll, llzall< 1
The following inequality is fulfilled
min  max [[£—x]?< min (g4, g2)IP=I(g*", g37)I1>.
(91, 92) llzdll, llzall< 1 (91, 92)
In the sequel we will deal with the minimization of the right-hand side of the above
inequality although this is not strictly equivalent to finding the observer optimal
with respect to disturbances.
It is easy to see that an observer (g4, g,) exists iff there exists g; € ¥ such that

(g:1h)=1.. ™

LemMA 1. An observer for system (1) exists iff the elements hie€Y, i=1, ..., n are
linearly independent.

Proof. If A, i=1, .., n are linearly independent we take g, =(h,|h;)~* h, and
g2=— g, where (hy|h;) is the Gram matrix of elements Al. If 4!, i=1,..,n
are linearly dependent, then evidently (7) is not fulfilled. B

THEOREM 1. Let elements h%, i=1, ..., n be linearly independent. Let «, f be diagonal
matrices with reals o«;>0 and p;=0, i=1, ...,n on diagonals, respectively.
Then there exists a unique optimal observer (g{®, g5*") for system (1).

Moreover (g%, g5*) is a unique solution of equations

og1—PBH 2 82=—2Ahy ®)
"gz:%; 81 €))
(g1 11)=1, (10)

where A is an nXn real matrix of Lagrange multipliers.
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Let us define an operator P

P=oa+pH#, %’; A
Then

g=(P1 by | W) 1 P2 by o
g;pt= —]f: gi)pt . ( )

Proof. Observe that functional |[(g, %; g)l* is coercive and quadratic on
the space Y*, if o;>0, $,>0, i=1, ..., n. By Lax-Milgram theorem [6] there exists
a unique minimum point of this functional with respect to variable g; described
uniquely by Lagrange conditions (8). We can verify that (g,, g,) given by (11) fulfill
the Lagrange conditions. From Lax-Milgram theorem we also have continuous
dependence of the minimal point on operators defining the linear system. [l

3. Applications

3.1. An optimal observer for the linear time —independent system

Consider an observable system

x ()=Ax (©)+Bu(t)
¥y (O)=Cx () (12)
x (0)=x¢

x(t)eR", u(@)eR, y()eR"

A, B, C are constant matrices of compatible dimensions.

Assume that we measure the control u and output y on an interval [0, T]. Our
purpose is to determine the best estimate of state x (7' at time 7.

We define X=R", Y=(L, (0, T))", U=(L, (0, T))". In our case equation (1)
takes on the form

r
¥ (f)=Ce=4T-1 x(T)—cf €49 By (7) dr. 13)
t

From observability of system (12) it follows that ker ;=0
(#1x(T)OD=Ce 4T x(T), VYxeR*, Vtel0,T].
The adjoint operator #5 has the form

t
LN G- | e R R
o

From the definition of spaces ¥ and U it follows that operators %, and ¢, are of
the form.

9y=[G@y@dr, %u=[GE@u@d (14)
(4] 0
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where G; and G, are matrices of functions from L, (0, T) of dimensions nX#n and
nxr, respectively Rows of matrices G, and G, are transpositions of elements g}
and gl from relation (2).

The norm of an observer in the space Y"x U" is deﬁned as in formula (5)

n

s sl ]/ I [ ,yl @, u(T)) 3 g (2 G, l,<r>)]dr as)

where G, ;; (resp. G, ;) is the element of the i~th row and j-th column of matrix
Gy (resp. G,) determined by formulas (14).

Introducing diagonal matrices «, § with reals «; and 8;, i=1, ..., n on diagonals,
respectively according to formula (8) we have the following existence and opti-
mality conditions for matrices Gy, G,.

T
f Gy (v) Ce=4T=9 gp=], (16)
0
T .
«Gy (t)=—p f G, (1) B’ e*' =9 C’' dr—je=4(T-0 ' (17)
: T
G, ()= f G, (r) CeA = B dr . (18)
0

System of equations (17), (18) is of Volterra type, so it has a unique solution for
an arbitrary 2, o, f. Moreover Gy (T)=—a"* AC’, G, (0)=0.
Now we can give another characterisation of the solution of equations (17), (18).
Assuming, that G, G, can be expressed by means of some matrices K; (¢) and
K, (t) of dimensions nXn

G, (=K, (t)- C’
Gy (V=K () B ()

and by substitution this into (17) we get
K,()C'=—a"18 fTKz (@) BB ¥ D gr C'—o~1 Je=4T-0 7, (20)
t .
Omitting C’' we have the equation for K, (¢)
K; (t)=[— at oA T g1 p fT K,(t) BB e=4'® dr} et
o

t
+atp [ K, (1) BB &X' ¢V ds
Y 1
Kl(T)z""OC—IA. (2)
Similarly from (18) and (19)

K, (t)=ftK1 (@) C' Cet =V dr, K, (0)=0. (22)
]
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The solution of system (21), (22) is also a solution of the system of differential
equations

K ()=AK, ()+BB' K, () a~* B (23)
K, (0)=C'CK, ()—A' K, (¢) 29
with split boundary conditions K, (T)=—14" a~1, K, (0)=0.

By ky; (f) and k,, (f) we mean the i-th columns of matrices K (f) and K (¢),
respectively. We define reals

S

= i=1,..,n.
yl “i 2 b

Introducing the fundamental matrices

@ (==e"*  for j=l,... 7

et Aa yi‘BB’
VV;—[C, C, _AI ]s

where

we obtain for the column vectors kq; (¢) and k,; (¢)

kyy (2) a o}, (1), D1, )] [k1:(0) _ D1, (t) ki (0)
[k2i (t)] . [¢;1 (1), D5, (t)] [kZi (0)] —"[¢§1 (&) ks (0)] .

Vectors k;; (0) can be found from condition (16) as the i-th column of matrix D,,

1

T -
DF‘—[f e~ T-9 C' CPi | (7) dt] .
(0]

Nonsingularity of D; follows from the fact that the system (12) is observable.
Hence
ki (¢)=®,, ()" D; ¢

ky ()=@5, () D; - e (25)

where e; — basis vectors in R", i=1, ..., n.

The rows of the optimal observer matrices G, (¢) and G, (¢) are transpositions
of the vectors

gi=CP (t)-D,e

; (26)
g,=B"9,, (1) D ¢
=1, s 1
If y;=1, i=1, ..., n, then &' (t)=> (t)=€""* where
A, BB’
W—[C’ C, _Al ] (27)

andthe solution of equations (23), (24) can be written in a simpler form.




Optimal finite parameter 79

The formulas for the optimal observer matrices are

T =
o (t)=e‘T[f @, (v) C’ Ce* dr} el @)-C,
i B (28)
¢, (n=eﬂ[ [ @, @ cen dr] &, (1) B.
0

The observers (26) and (28) are optimal in the sense of minimal norm in L, (0, T).
3.2. A numerical example

x(z):[g’ é]x(t):[?]u(t), te0, 11,

y(®)=I[2,0]x (),
x (0)=x,.

29

We will calculate the optimal observer which reconstructs the state x (7). For sim-
plicity, we assume that « and § in (15) are identity matrices. We obtain matrix W
from (27), hence submatrices @4, (¢), P, (¢) in (28) are of the form

chtcost, 0.5(shtcost-+chtsinr)
Dyy (t)=[ ]

shtcost—chitsing, chtcost

2(shtcost+chtsing), 2shtsint
D4 (t)=[ ]

—2shitsint, shtcost—chtsint

T -1
Matrix R=eAT [ | @, (B 0 a’r] is given by
0o

R

1 [sh TcosT—chTsinT, 2shTsinT
© 2(sh®>T—sin®T) | —2sh T'sin T, 2 (sh T'cos Tch T'sin n]’

The optimal observer (28) is determined by two vector functions

2ch tcost
G, (t>=R-[ ]
7§

sh ¢ cos t-ch ¢ sin
(30)

—2sh tsin ¢
GZ (t)=R'[ t].

sh t cos t—ch ¢ sin

The norm of this observer [|(Gy, G,)|| (T) is the following function of time T

3 sh 2T74sin 2T
(A (T)=]/ T 31)

This function is strictly decreasing and tend to ]/ﬁ when T—c0.
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4. The observer in the closed loop system

Consider the system:
X (t)=Ax (t)+Bu ()

y(@O)=Cx ().
Let us assume that for the stabilization of the system a state feedback
u(t)=Px (t)

is needed where P is a constant matrix with suitable dimensions.

If the state is not directly accessible we can apply the observer to obtain the
desired feedback. We have the following system of equations describing the beha-
viour of the closed loop system with an observer:

X (t)=Ax (t)+Bu(t)
y(0)=Cx (1}

(32)

(= f Gy (8)y(t—T+s) ds+ f G, () u (t—T+s) ds 33)

u(t)=P% ()

where £ (¢) denotes the observed estimate of x (¢). This system can be reduced to
the following form

X (t)=Ax (t)+Bu (1),

T T (34)
u(t)=P[f Gy (s) Cx (t—T++5) ds—]—f G, () u(t—T4s) ds] for t>T.
0 0
After change of the variable of integration we obtain
% (1)=Ax (t)+Bu (),
(3%

u(t)=P- { f Gy (s+T) Cx (t+5) ds+ f G, (s+T)u(t+s) ds] -
-T -7

Without loss of generality we can assume that in equation (35) #>0 and initial
conditions

u()=p. (), te[-T,0]
X(t)=(02(l‘), tE[—'T,O]

are given. System (35) includes a distributed delay and its second component is of
integral character.

(36)

LEMMA 2. For any Ty X0, xe€L,(—T,Ty; R"), ¢ €L, (—T,0; R"), there exists
a unique absolutely continuous solution u of the equation

(0] 0
u(ty=P f Gy (T+s5) Cx (t+5) ds+-P f G, (T+s) u (s+1) ds (37)
ey ~T
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for >0
u(®)=gp1() for te[-T,0)
where Gy, G, are square integrable matrices.

Proof. Letus denote the first component of the right-hand side of (37) by w (¢);
w is absolutely continuous by definition of x, G;.

Thus

u(t)=w(@)+P f G, (T+5) u(s+t) ds+P f Gy (T+5) u(s+1) ds=

4]
=w ($)+P sz (T—1-+5) ¢y (5) ds+
B

t

4
+PfG2(T—z+s)u(s)ds for 0<t<T.  (38)
0

This equation is of Volterra type, hence it has a unique solution on interval [0, T].
- Arguing similarly for intervals [(i—1) 7, iT], i>2 we have the thesis. =
Let us assume that G,, G, are of class C* (=T, 0) and x is fixed.

LeMMA 3. Every solution u of (37) fulfills the following FDE equation on the inter-
val [0, o).

i ()=—P j Gy (T+5) Cx (t+5) ds—P f Gy (T+5) u(t+s) ds+

+PGy (T) Cx (t)— PGy (0) Cx (t—T)+PG, (T) u(t)+
—PG,(0)u(—T1), (39)
for almost all t
u(t)=¢,(t) for te[-T,0]
The proof can be obtained by the differentiation of both sides of (37) and will be omitted.
It can be noted that the solution of (39) is unique.

Equation (39) together with the state equation (32) gives a full description of the
behaviour of the closed loop system. Finally, we have the equation

R R x()] . g Ty 0 ]x
u(t)]" PG, (T)C, PG, (D)| |u@®| | -PG,(0) C, —PG; (o)
0
x(@-T) o
x[u (t—T)]+ —P [Gy(T+s) Cx(t+s)ds—
0

—P fGZ(KT-i—s)u(t—i—s)ds k=20, (40)
-7
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with the initial condition
x (=g, (1)
u®)=¢. ()

For stability analysis of (40) we compute the eigenvalues of the FDE system (40).
To this end we will seek all the exponential solutions of (40) of the form:

te[-T,0].

X
[uo e, x,eR", wueR, te[-T,0].
0

After some calculations we have the relation

ﬂxO =AXO +Bu0 s
: 41)

0
Uuo="P f Gy (T+5) Cxo ¥ ds+P | G, (T-+5) uo € ds.
-7 -T

From the definition of the observer we know that
0 o
x(O= [ Gi(T+s) Cx(t+s)ds+ [ G, (T+s) u(t +s) ds,
-7 -T

for every control u and the solution x of system (32) corresponding to this u. This
is also true for u (f)=u, e”, x (£)=x, . Hence formula (41) reduces to:
Axo=Axo+Bu,,
uo="Px, .
And next
Axo=(A+BP) x, .

Thus we have

LemMA 4. Equation (40), describing the system with the observer in a closed loop,
has the same eigenvalues as the system

% (t)=Ax (£)+BPx (f) (42)

and system (42) is asymptotically stable iff system (40) is symptotically stable. On the
other hand analysing the dynamics of the system and making use of the definition
of observer one can see that every solution x of (40) fulfills (42) for t=T and for ar-
bitrary functional initial conditions in (40).

This kind of stabilizing feedback can be easily realized using microprocessor
techniques. Values of the matrices G, G, can be stored in the memory and the
dalays (distributed or not) can be formed in shift registers.
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5. Conclusions

Our approach makes it possible to formulate any finite parameter observation
problem for linear system (1) in a uniform way. We have given an explicit formula
for the observer, optimal with respect to disturbances in appropriate Hilbert spaces.
We have applied our results to a simple example. The case where the observer is
in the stabilizing feedback is also analysed.
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Optymalny obserwator skoiiczonej ilosci parametréw.
Zastosowanie do syntezy stabilizujacego sprz¢zenia
w ukladach liniowych.

Rozwazono ogdlny problem optymalnego obserwatora (z minimalna norma) w przestrzeniach
Hilberta. Na podstawie pomiarow sterowania i wyjscia systemu liniowego obserwator odtwarza
nieznany, skonczenie wymiarowy wektor parametrow tego systemu. Przedstawiono problem ist-
nienia obserwatora i jego optymalno$ci wzgledem najbardziej niebezpiecznych zaklécenn w pomia-
rach. Teori¢ zastosowano do zagadnienia obserwacji stanu liniowych ukiadéw dynamicznych.
Przeanalizowano wlasno$ci zamknietego ukiadu sterowania z obserwatorem optymalnym w petli
sprzezenia zwrotnego.

OorHMaBHbI HAGII0AATEN:E KOHEYHOr0 4HC/IA NAPAMETPOB.
Ilpumenenne K CHHTE3y CTAOUIM3HPYIOIEl CBSI3M B JIMHEHHBIX
cHcTEMax

PaccmarpuBaercsa obinasi mpobieMa ONTEMAIBHOrO Habmonarens (C MUHEMAIBHOU HOPMO)
B TuIs0epTOBOM mpocTpancTBe. Ha CHOBe M3MepeHW yIpaBieHHs M BBIXOJA JIMHEHHOM CHCTEMBI
Ha0IIFOaTeNb BOCTIPOM3BOMUT HEM3BECTHBIN, KOHCYHOMEPHBIN BEKTOP IApaMETPOB 3TOU CHCTEMBL.
Ilpencrasnena mpobiema CyIIecTBOBAaHWS HAOMIOmaTeNs M Ire0 ONTAMANTLHOCTH IO OTHOUICHHIO
X HanboJlee OMacHBIM IIOMEXaM B M3MEPEHUSX. TeopHsl MPAMEHEHa K BOIPOCY HAOIIONEHAS COCTO
SHHSA JIMHEMHBIX IMHAMWYECKHX CHCTEM. AHAIUM3UPYIOTCS CBOMCTBA 3aMKHYTOM CHCTEMBI YIpa-
BJICHHSI C ONTHMAJIbHBIM HabromaTesieM B ey oOpaTHOM CBS3H.
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