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General problem of optimal observer (with minimal norm) in Hilbert spaces is considered. 
On the basis of the measurements of control and output of a linear system the observer estimates 
a certain unknown, finite parameter vector of this system. We formulate the problem of existence 
for the observer and the problem of its optimality with respect to the "worst" disturbances of me
asurements of output and control. We show an application of our results to state observation in 
dynamic systems and analyse properties of the closed loop system with the optimal observer in 
the feedback. 

1. Introduction 

In the theory of feedback control the reconstruction of inaccessible state vector 
is an important problem. This problem was formulated by R.E. Kalman and others 
[1], [3], [4], for linear dynamic systems. 

D. G. Luenberger [2] considered a special class of observers given by differential 
equations. The asymptotic behavior of their solution gives an estimate of unknown 
present state of the observed system. 

If disturbances with known probabilistic properties occur in the measured 
signals identification theory [5] enables us to obtain different types of estimators 
of state and parameters. 

In this paper we will state and solve a general problem of optimal observer 
for system whose output depends linearly on the pair: finite parameter vector and 
control. The control and the output are from Hilbert spaces. On the basis of the 
disturbed measurements of control and output the optimal observer will estimate 
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the unknown finite parameter vector. The optimality of the observer means that 
it has a minimal norm, hence it is least sensitive with respect to the "worst" dis
turbances of measurements belonging to the unit balls in these spaces. In Section 4 
we also analyse the behaviour of the system with the observer in feedback loop 
in a stabilizing regime. 

2. Statement of the problem 

2.1. The description of the linear system and the observer problem 

Consider a linear system given by two linear continuous maps: Yt' 1 : X--+ Y, 
Yt'2 : U-+Y, where U, Y are Hilbert spaces, and X=R". 

We call X, Y, U the parameter, output, and control spaces, respectively. 
An element y e Y such that 

and 
11 

Yt'1 x=h~ X= _2; hi x1, h1 E Y", h~ E Y, 
1=1 

(1) 

is called the output connected with the parameter x and control u, where x e X 
and ue U. 

Denote by ( · I · ) the inner product in Hilbert space. By an observer for system 
(1) we mean two linear continuous maps: 

~1 : Y-+X, ~2 : U-+X such that 

~1 y=(g11Y)=[(gf ly), ... , (g~ ly)]', g1 E Y", g~ E Y, 

i=1, ... , n 

~2 u=(g21 u)=[(g~ I u), ... , (g~ I u)l', g2 e U", g~ e U, 

i=1, ... ,n 

and 

(2) 

holds for any triple (y , x, u) fulfilling (1). Combining (1) with (2) we have that a pair 
(~11 ~2) is an observer for system (1) iff ker Yt'1 =0, and y=.1t't ~1 y, Vye YH 

(3) 

or, alternatively, iff 

~1 Yf 1 =In 
~1 Yfz= -~2 

(4) 

where Y H is the range of operator Yt' 1 : Y11 c Y, and In is the n X n identity matrix. 
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2.2. The problem of existence and optimality of the observer. 

Denote by S the set of all observers for system (1). From continuity and linearity 
of mappings in (1), (4) it follows that ifS is non-empty then it is a closed, linear 
manifold in the space ynx un. In this space we introduce a seminorm 

o:i>O, (3i~O, i=l, ... , n 

By the optimal observer we mean a pair (g~Pt, g~Pt) E S such that 

min ll(gl, gz)ll2 =[[(g~Pt, g~Pt)[[ 2 • 
(g,, 92)ES 

(5) 

(6) 

Let zt> z2 , llz1 [[y::=:; 1, [[z2 [[u::::; 1, denote disturbances of output and control respec
tively. We have x=(§ 1 y+(§2 u, and x=(§ 1 (y+z 1)+(§2 (u+z2) where .X is the 
estimate of the parameter vector x. The observer optimal with respect to distur
bances should be such that [[x-x[[2 is minimal for the "worst" zl> z2 from unit 
balls: 

The following inequality is fulfilled 

mm max [[x-xll2
::::; min l!(g1 , g2)[[ 2 =[ [(g~Pt, g~Pt) [[ 2 • 

(9" 92) l!ztll. llz2 ll ~ 1 (g,, 92) 

In the sequel we will deal with the minimization of the right-hand side of the above 
inequality although this is not strictly equivalent to finding the observer optimal 
with respect to disturbances. 

It is easy to see that an observer (g1 , g 2) exists iff there exists g 1 e yn such that 

(7) 

LEMMA 1. An observer for system (1) exists if( the elements hiE Y, i=1, ... , n are 
linearly independent. 

Proof. If h~, i=1, ... , n are linearly independent we take g1 =(hdh~)- 1 h1 and 
g2 =-Jf~g1 where (h 1 [h~) is the Gram matrix of elements hi . If hi, i=1, ... , n 
are linearly dependent, then evidently (7) is not fulfilled. • 

THEOREM 1. Let elements hi, i= 1, ... , n be linearly independent. Let o:, {3 be diagonal 
matrices with reals o:i>O and {3i~O, i=l, ... , n on diagonals, respectively. 

Then there exists a unique optimal observer (g~Pt, g~Pt) for system (1). 
Moreover (g~Pt, g~Pt) is a unique solution of equations 

rxg1- (3Jif 2 gz=- A h1 

-gz=Jif; gl 

(gl [ h~)=ln 

where A is an n X n real matrix of Lagrange multipliers. 

(8) 

(9) 

(10) 
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Let us define an operator P 

P= IX+ {J:It 2 :If~. 
Then 

g~pt=(P- 1 h1 1 h~)- 1 p- 1 h1 

opt __ -u.:>* opt 
g2 - .A 2 g1 • 

(11) 

Proof. Observe that functional li(gl> :~t; g 1)11 2 is coercive and quadratic on 
the space yn, if IX1>0, (31"?0, i=1, ... , n. By Lax-Milgram theorem [6] there exists 
a unique minimum point of this functional with respect to variable g1 described 
uniquely by Lagrange conditions (8). We can verify that (gi> g2 ) given by (11) fulfill 
the Lagrange conditions. From Lax-Milgram theorem we also have continuous 
dependence of the minimal point on operators defining the linear system. • 

3. Applications 

3.1. An optimal observer for the linear time- independent system 

Consider an observable system 

.X (t)=Ax (t)+Bu (t) 

y (t)=Cx (t) 

x (o)=xo 

x (t) ER", u (t) ERr, y (t) E Rm 

A, B, C are constant matrices of compatible dimensions. 

(12) 

Assume that we measure the control u and output y on an interval [0, T]. Our 
purpose is to determine the best estimate of state x (T) at time T. 

We define X=R", Y=(L2 (0, T))m, U=(L2 (0, T))'. In our case equation (1) 
takes on the form 

T 

y(t)=Ce-A(T-tlx(T)-C J eA(t-r)Bu(r)dr. 

From observability of system (12) it follows that ker :If 1 =0 

(:If 1 X (T)) (t)= ce-A (T-t) X (T)' Vx ER"' Vt E [0, T]. 

The adjoint operator :If~ has the form 
t 

(:If~ y) (t)=- J B' eA' (r-t) C' y (r) dr. 
0 

(13) 

From the definition of spaces Y and U it follows that operators ~1 and ~2 are of 
the form. 

T 

~1 y= J G1 (r) y (r) dr, 
0 

T 

~2 u= J G2 (r) u (r) dr 
0 

(14) 
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where G1 and G2 are matrices of functions from L 2 (0, T) of dimensions n X n and 
n X r, respectively. Rows of matrices G1 and G2 are transpositions of elements gf 
and g~ from relation (2). 

The norm of an observer in the space ynx un is defined as in formula (5) 

where G1 , iJ (resp. G2 • tJ) is the element of the i-th row and j-th column of matrix 
G1 (resp. G2) determined by formulas (14). 

Introducing diagonal matrices ex, {J with reals exi and {Ji, i= 1, ... , n on diagonals, 
respectively according to formula (8) we have the following existence and opti
mality conditions for matrices G1 , G2 • 

T J Gl (r) ce-A(T-r) dr:=ln 
0 

T 

exG1 (t) =- {J J G2 (r) B' eA' (t-r) C' dr- ).e-A' (T-t) C' 

t 

Gz (t)= J G1 (r) CeA (r-t) B dr. 
0 

(16) 

(17) 

(18) 

System of equations (17), (18) is of Volterra type, so it has a unique solution for 
an arbitrary )., ex, {J. Moreover G1 (T)=- ex- 1 ).C', G2 (o)=O. 

Now we can give another characterisation of the solution of equations (17), (18). 
Assuming, that Gt. G2 can be expressed by means of some matrices K1 (t) and 

K 2 (t) of dimensions n X n 

G1 (t)=K1 (t) · C' 
G2 (t)=Kz (t) · B 

and by substitution this into (17) we get 

T 

(19) 

K1 (t) C' =- ex- 1 {J J K 2 (r) BB' eA' (t-<l dr C'- ex- 1 ).e-A (T-t) C'. (20) 

Omitting C' we have the equation for K1 (t) 

K 1 (t)=[ -ex- 1 ).e-A'T -ex- 1 {J l K2 (r)BB' e-A'r dr] eA' t+ 

K1 (T)=- ex- 1 ). . 

Similarly from (18) and (19) 

t 

t 

+ex- 1 {J J K2 (r)BB' eA'(t-r) dr 
0 

Kz (t)= J K1 (r) C' CeA<r-tl dr, 
0 

(21) 

(22) 
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The solution of system (21), (22) is also a solution of the system of differential 
equations 

K~ (t)=AK~ (t)+BB' K~ (t) o:- 1 fJ 

K:; (t)=C' CK~ (t)-A' K~ (t) 

with split boundary conditions K~(T)=-I.'o:-1, K~(o)=O. 

(23) 

(24) 

By k 11 (t) and k 21 (t) we mean the i-th columns of matrices K~ (t) and K~ (t), 
respectively. We define reals 

(3; 
y1=- i=1, ... , n. 

0!; 

Introducing the fundamental matrices 

f!J1 (t)=ew1 t for i=l, ... , n 

where 

( 
A, y 1 BB'] 

W;= C' C, -A' ' 

we obtain for the column vectors k 11 (t) and k 21 (t) 

Vectors k 11 (o) can be found from condition (16) as the i-th column of matrix D1, 

D1=[j e-A' (T-<) C' Cf!J~ 1 (•) dr] 1

• 

Nonsingularity of D 1 follows from the fact that the system (12) is observable. 

Hence 

k 11 (t)=f!Ji 1 (t) · D1 • e1 

k21 (t)= f!J~ 1 (t) · D1 • e1 

where e1 - basis vectors in Rn, i=l, ... , n. 

(25) 

The rows of the optimal observer matrices G1 (t) and G2 (t) are transpositions 
of the vectors 

i=1, ... , n 

gi =Cf!JL (t) · D 1 e1 

g1 =B' f!J~ 1 (t) · D1 e1 

If y1= 1, i= 1, ... , n, then f!J 1 (t)=f!J (t)=ewt where 

[
A, BB'] 

W= C'C, -A' 

andthe solution of equations (23), (24) can be written in a simpler form. 

(26) 

(27) 

--------- ---------------------------------------------------------
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The formulas for the optimal observer matrices are 

Gl (t)= eAT [j <P~l (r) C' CeAt dr rl. <P~1 (t). C'' 

Gz (t)= eAT [f C/)~1 (•) C' CeAt dT rl. <P~1 (t). B. 

(28) 

The observers (26) and (28) are optimal in the sense of minimal norm in L 2 (0, T). 

3.2. A numerical example 

x(t)=[~: ~]x(t)=[~]u(t), te:[O,T], 

y (t)= [2, 0] X (t), 

x(o)=x0 • 

(29) 

We will calculate the optimal observer which reconstructs the state x (T). For sim
plicity, we assume that ex and f3 in (15) are identity matrices. We obtain matrix W 
from (27), hence submatrices <P 11 (t), <P21 (t) in (28) are of the form 

[
eh t cos t, 0.5 (sh t cos t+ch t sin t)J 

cf>u (t)= . 
sh t cos t-ch t sm t, eh t cost 

[
2 (sh t cos t+ch t sin t), 2sh t sin t] C/)21 (t)= . 
-2sh t sin t, sh t cos t-ch t sin t 

[ 
T ]-1 Matrix R= eAT J cf>~ 1 (•) C' CeAT d• is given by 

1 [sh Tcos T-ch Tsin T, 2sh Tsin T ] 

R= 2 (sh2 T-sin 2 T) -2sh Tsin T, 2 (sh Tcos T+ch Tsin T) ' 

The optimal observer (28) is determined by two vector functions 

[
2ch t cost l 

G1 (t)=R· . , 
sh t cos t+ch t sm t 

[
-2sh t sin t ] 

G2 (t)=R · . 
sh t cos t-ch t sin t 

The norm of this observer II(Gl> G2 )11 (T) is the following function of time T 

-. / 3 sh 2T+sin 2T 
II(Gt, Gz)ll (T)= V 4 (shz T-sinz T). 

This function is strictly decreasing and tend to y1.5 when T-+oo. 

(30} 

(31) 
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4. The observer in the closed loop system 

Consider the system: 
x (t) = Ax (t)+Bu (t) 

y (t) = Cx (t) . 

Let us assume that for the stabilization of the system a state feedback 

u (t) = Px (t) 

is needed where P is a constant matrix with suitable dimensions. 

(32) 

If the state is not directly accessible we can apply the observer to obtain the 
desired feedback. We have the following system of equations describing the beha
viour of the closed loop system with an observer: 

x (t) = Ax (t)+Bu (t) 

y (t) = Cx (t) 
T T 

i(t)= j G1 (s)y(t-T+s)ds+ J G2 (s)u(t-T+s)ds 
0 0 

u (t) = Pi (t) 

(33) 

where .X (t) denotes the observed estimate of x (t). This system can be reduced to 
the following form 

x (t) = Ax (t)+Bu (t), 

u(t)= P [f G1 (s) Cx (t-T+s) ds+ l G2 (s) u (t-T+s) ds] 

After change of the variable of integration we obtain 

x (t)=Ax (t)+Bu (t), 

for t)= T. 

u (t)=P · Li G1 (s+T) Cx (t+s) ds+ _j G2 (s+T) u (t+s) ds]. 

(34) 

(35) 

Without loss of generality we can assume that in equation (35) t): 0 and initial 
conditions 

u (t)=rp1 (t) , t E [ - T, 0] 

x (t)=rp2 (t), te[-T,O] 
(36) 

are given. System (35) includes a distributed delay and its second component is of 
integral character. 

LEMMA 2. For any T1 X 0, x e L2 ( - T, T1 ; Rn), rp 1 e L 2 (-T, 0; R'), there exists 
a unique absolutely continuous solution u of the equation 

0 0 

u(tj=P J G1 (T+s) Cx (t+s) ds+P J G2 (T+s) u (s+t) ds (37) 
- T -T 
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for t~O 

u (t) = tp 1 (t) for t E [ - T, 0) 

where Gl> G2 are square integrable matrices. 

P r o of. Let us denote the fir st component of the right-hand side of (37) by w (t); 
w is absolutely continuous by definition of x, G1 . 

Thus 

-t 0 

u (t)=w (t)+P J G2 (T+s) u(s+t) ds+P J G2 (T+s) u(s+t) ds= 
-T - l 

0 

=w (tl+P J G2 (T- t+s) 1P1 (s) ds+ 
t-T 

t 

+ P J G2 (T-t+s) u(s) ds for O:(,t:(,T. (38) 
0 

This equation is of Volterra type, hence it has a unique solution on interval [0, T]. 
- Arguing similarly for intervals [(i - 1) T, iT], i~2 we have the thesis. • 

Let us assume that G 1> G2 are of class C 1 (- T, 0) and x is fixed. 

LEMMA 3. Every solution u of (37) fulfills the following FDE equation on the inter
val [0, oo). 

0 0 

it(t)=-P J G1 (T+s)Cx(t+s)ds-P J G2(T+s)u(t+s)ds+ 
- T - T 

+PG1 (T) Cx (t)-PG1 (o) Cx (t-T)+PG2 (T) u (t)+ 

- PG2 (o) u(t - T), (39) 

for almost all t 

u (t) = 1P1 (t) for t E [ - T, 0] 

The proof can be obtained by the differentiation of both sides of(37) and will be omitted. 
It can be noted that the solution of (39) is unique. 

Equation (39) together with the state equation (32) gives a full description of the 
behaviour of the closed loop system. Finally, we have the equation 

[x(t)] -[ A , B )fx(t)]+[ o , o ] ~ 
u(t) - PG1 (T)C, PG2 (T) lu(t) - PGdo)C, -PG2(o) 

0 t>-0 0 ] 
- P _£ G2 (tT+ s) u (t+s) ds "" ' 

(40) 

6 
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with the initial condition 

X (t)= rp2 (t) 

u (t) = Cf'l (t) 
t E [ -T, 0]. 

For stability analysis of ( 40) we compute the eigenvalues of the FDE system ( 40). 
To this end we will seek all the exponential solutions of (40) of the form: 

[
Xo eu, ERn 

Xo ' Uo 
Uo ERr, t e [ -T, 0]. 

After some calculations we nave the relation 

},x0 =Ax 0 +Bu0 , 

0 0 
(41) 

u0 =P J G1 (T+s) Cx0 e"• ds+P J G2 (T+s) u0 e"• ds. 
-T -T 

From the definition of the observer we know that 

0 0 

x(t)= J G1 (T+s)Cx(t+s)ds+ J G2 (T+s)u(t+s)ds, 
-T -T 

for every control u and the solution x of system (32) corresponding to this u. This 
is also true for u (t)=u0 eu, x (t)=x0 eu. Hence formula (41) reduces to: 

J.x0 =Ax0 +Bu0 , 

Uo=Pxo. 

And next 

AX0 =(A+BP) Xo. 

Thus we have 

LEMMA 4. Equation (40), describing the system with the observer in a closed loop, 
has the same eigenvalues as the system 

.X (t)=Ax (t)+BPx (t) (42) 

and system (42) is asymptotically stable if! system (40) is symptotically stable. On the 

other hand analysing the dynamics of the system and making use of the definition 
of observer one can see that every solution x of ( 40) fulfills ( 42) for t?: T and for ar

bitrary functional initial conditions in (40). 

This kind of stabilizing feedback can be easily realized using microprocessor 
techniques. Values of the matrices Gl> G2 can be stored in the memory and the 
dalays (distributed or not) can be formed in shift registers. 

------------ -- ---------------------------------------------------
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5. Conclusions 

Our approach makes it possible to formulate any finite parameter observation 
problem for linear system (1) in a uniform way. We have given an explicit formula 
for the observer, optimal with respect to disturbances in appropriate Hilbert spaces. 
We have applied our results to a simple example. The case where the observer is 
in the stabilizing feedback is also analysed. 
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Optymalny obserwator skonczonej ilosci parametrow. 
Zastosowanie do syntezy stabilizujl!cego sprz~:ienia 
w ukladach liniowych. 

Rozwa:i:ono og61ny problem optymalnego obserwatora (z minimaln~ norm~) w przestrzeniach 
Hilberta. Na podstawie pomiar6w sterowania i wyjscia systemu liniowego obserwator odtwarza 
nieznany, skonczenie wymiarowy wektor parametr6w tego systemu. Przedstawiono problem ist
nienia obserwatora i jego optymalnosci wzgl.,;dem najbardziej niebezpiecznych zakl6cen w pomia
rach. Teori.,; zastosowano do zagadnienia obserwacji stanu liniowych uklad6w dynamicznych. 
Przeanalizowano wlasnosci zamknie<tego ukladu sterowania z obserwatorem optymalnym w pe<tli 
sprz.,;:i:enia zwrotnego. 

OontMaJibHhlii ua6JIIo~aTeJih KOHe'llloro 'IIICJia napaMeTpon. 
flpnMeHeHHe K CHHTely CTaOJIJIH31IpYIOIQeii CBS13JI B JIJIHeUHbiX 
CIICTeMaX 

PaccMaTpwaeTCll o6ru;al! npo6rreMa OIITHMaJThHOro Ha6mo.n;aTeJIJI (c MHBHMaJThHOii: HOpMoii:) 
B fHJTh6epTOBOM IlpOCTpaHCTBe. Ha CHOBe H3Mepemill ynpaBJieHIDI H BhiXO)J;a JIHHeii:Hoii: CHCTeMbi 
Ha6JIIO)J;aTeJTh BOCIIpOH3BOAJIT HeH3BecTHbiH, KOHe'!HOMepHblli BeKTOp napaMeTpOB 3TOii: CHCTeMbi. 
llpe.n;craBJieHa Ilp06JieMa cyru;eCTBOBaHHJI Ha6JIIO)J;aTeJIJI H reo OIITHMaJihHOCTH 110 OTHOilleHHIO 
K HaH60Jiee OIIaCHbiM IIOMexaM B H3MepeHHl!X. TeopHll IlpHMeHeHa K BOIIpOCy Ha6JIIO)J;eHHJI COCTO· 
.l!HHJI JIHHeHHbiX AHHaMH'!eCKHX CHCTeM. AHaJIH3HPYIOTCll CBOHCTBa 3aMKHyTOH CHCTeMbl yrrpa
BJieHH.ll C OIITHMaJThHbiM Ha6JIIO)J;aTeJieM B ~eiiH o6paTHOii: CB.li3H. 




