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A new method for zero placement in single-input single-output discrete-time systems is given. 
It is done by means of a nonstationary-gain zero-order extrapolator. An algorithm for computing 
the gain is proposed. 

1. Introduction 

In discrete-time control systems with continuous plants the output ·v (t) of the 
controller is extrapolated to change the sequence of impulses into a staircase func­
tion u* (t) (Fig. 1). T is a sampling period and cx is a gain of the zero-order extra­
polator. A designer can influence parameters of the discrete time model of the 
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Fig. 1. Discrete-time system 

system only by changing the sampling period T. Keviczky and Kumar [2] have 
proved for a wide class of linear plants and for practically acceptable small T that 
at least one zero of the transfer function of the discrete-time model of the system 
is outside the unit circle. This nonminimum phase effect is more often met in systems 
with delay in control. On the other hand there exist some control strategies (for 
example: exact model matching [3] and minimum variance control [I]) which for 
nonminimum phase systems lead to unstable modes in closed loop. 

The aim of this paper is to show that if we replace the constant gain cx of the 
zero-order extrapolator by an appropriate periodic staircase function a (t), the 
zeros of the model transfer function of the system can be placed into any prescribed 
position. 
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The problem is precisely formulated in the next section. In section 3 relations 
between continuous-time model of the plant and discrete-time model of the system 
are considered. A solution of the problem and an appropriate algorithm are given 
in section 2. A simple example to illustrate the method is presented in the last section. 

2. Problem formulation 

We will assume that IX (t) changes its value in 

f= ... - Ta, 0, Ta, 2Ta, .... 

Ta is a real defined by: 

(2.1) 

where r is an integer specified later. 
Let Q, be a set of reals called modifying factors which are the values of IX (t). 

So: 

(2.2) 

and: 

1X(t)def IXJ if and only if 3ieN te[iT+ (j-l)Ta, iT+JTa) (2.3) 

where: 

N is a set of integers and 0 <} ~ r. 

Note that: 

u* (iT+JTa)=1X;+1 u (iT) (2.4) 

It is assumed throughout the paper that the plant is: single-input, single-output, 
stationary, linear, with delay in input. Three types of models of the plant and the 
system are considered : 

a) continuous-time model of the plant denoted by Se with transfer function: 

Le (s) 
G (s)=-· - --v-sTo 

e Me (s) 
(2.5) 

b) discrete-time model of the system for sampling period Ta denoted by Sa with 
transfer function: 

La (z) 
(2.6) 

zk+l Ma (z) 

c) discrete-time model of the system for sampling period T denoted by S 1• with 
transfer function: 

LT (z) 
GT (z)= zl MT (z). (2.7) 

It is assumed for the last model that the gain of the zero-order holding member 
is defined by (2.3). 
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The above transfer-functions are assumed to satisfy following conditions: 

i) Le (s), Me (s), La (z), Ma (z), Lr (z), Mr (z) are polynomials in s and z re-
spectively 

ii) deg Me (s)=deg Ma (z)=deg Mr (z)=n 

iii) degLe (s)~n-1, degLa (z)~n, degLr (z)~n. 

The problem to be solved can be formulated as follows: 
Given the Se model of the plant, sampling period T, and a polynomial B (z)= 

=b0 zn+b 1 zn- 1 + ... +bn. Choose such rand find such modifying factors ex1o ... ,ex, 
that the nominator of the Sr model transfer function of the system satisfies the 
following equation: 

Lr (z)=B (z) . (2.8) 

3. Relations between Se, Sa and Sr models 

3.1. Derivation of the Sa model from Se. 

We consider here the following problem: given Se, T, r, find Sa. 

The state space representation of the Se transfer function (2.5) is given by: 

.X (t)=Ax (t)+B u* (t-T0 ) 

y (t)=C X (t) 

(3.1) 

(3.2) 

where: x (t) is n-dimensional state vector; A, B, C matrices of appropriate dimensions 
such that: 

Le (s) 
er (s 1 -A)- 1 B=--

n Me (s) 

u* (r) is a staircase function changing its value in •=iTa 

Let: 

where: 

then: 
Ta 

(3.3) 

(3.4) 

x ((i+l )Ta)= eATax(iTa)+ J eA(Ta-<)Bu*(•+(i- k) Ta-Ts)dr: (3.5) 
0 

Taking into account that u* ( r:) is a piecewise constant function we have : 

Ts 
x((i+ l) Ta)= eATa x(iTa)+eATa J e-A< dr: Bu* ((i-k-1) Ta)+ 

0 Ta 
+eATa J e-A< d• Bu* ((i-k)Ta) . (3.7) 

T, 
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Let: 

T, 

Bs=eATa J e-At dr B 
0 

Ta 
BN=eATa J e-At d-e B 

Ts 

Ba=Bs+AaBN 

Da=CT BN 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

(3.8e) 

(3.8f) 

Substituting (3.8a)-(3.8f) in (3.7) we get a state space representation of the Sa model: 

x 1 ((j+1) Ta)=Aa x 1 (jTa)+Ba u* ((j-k-1) Ta) 

y UTa)=CT xl (jTa)+Da u* ((j-k-1) Ta) 

Its transfer function is given by: 

1 CT (z1n-Aa)aaBa+Da det (z1n-Aa) 
Ga (z)="k"+! d ( 1 A) z et z n- a 

La (z) 

zk+ 1 Ma (z) · 

3.2. Derivation of the ST model from s •. 

(3.9) 

(3.10) 

(3.11) 

Let us assume that the Sa model and !2, are given (eq. (3.9), (3.10)) and ST model 
is to be found. 

Without loss of generality we can write equations (3.9) and (3.10) in the follow­
ing form: 

x 1 (iT+JTa)=Aa x1 (iT+(j-1) Ta)+Ba u* ((i-k1) T+(j-1-k2) Ta) (3.12) 

y (iT+(j-1) Ta)=CT x 1 (iT+(j-1) Ta)+Da u* ((i- k 1) T+(j-1- k2) Ta) (3.13) 

where: 

k 1 and k 2 are integers satisfying the equation: 

(3.14) 

hence: 

r 

x 1 ((i+1) T)=A~ x1 (iT)+}; A~-J Ba u* ((i-k1) T+(j-1-kz) Ta) (3.15) 
J=l 
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Substituting (2.4) in (3.15) and (3.16) we get: 

k2 
x 1 {(i+1) T)=A~ x1 (iT)+ 2; A~-J Ba ~r-k,+J u ((i-k1 -1) T)+ 

j=1 r 

+ 2; A~-i Ba ~1-1c, u ((i-k1) T) (3.17) 
J=k2+1 

(3.18) 

,if k2 >0, and: 
r-1 

x 1 {(i+l) T)=A~x1 (iT)+ 2; A~- 1 - 1 Ba ~i+l u((i-k1) T) (3.19) 
j=O 

y (iT)=CT x 1 (iT)+Da ~1 u ((i-k1) T) (3.20) 

if k2=0 

Let us substitute in (3.17) and (3.18) equations (3.21a)-(3.2lg) and to (3.19) 
and (3.20) equations (3.22a)-(3.22e): 

k>-1 
B ~ Ar-1-JB r= L.,; a a ~r-k2 +J + 1 

i=O 

r-1 

B - ~ Ar-1-JB 
m- L.,; a a ~J-k2 + 1 

J=k2 

l=k1+1 

x 2 (iT)=x1 (iT)-BM u ((i-l) T) 

r-1 

B ~ Ar-1-iB T= L.,; a a ~1+1 
j=O 

l=k1 

x 2 (iT)=x1 (iT) 

In both cases we get: 

x 2 {(i+l) T)=AT x 2 (iT)+BT u ((i-1) T) 

y (iT)=CT X2 (iT)+DT u ((i-l) T) 

(3.2la) 

(3.21b) 

(3.2lc) 

(3.21d) 

(3.21e) 

(3.21f) 

(3.21g) 

(3.22a) 

(3.22b) 

(3.22c) 

(3.22d) 

(3.22e) 

(3.23) 

(3.24) 
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The above equations are a state space representation of the Sr model. Its transfer 
function is given by: 

Gr (z) 
er (zln-Ar)adBr+det (zln-Ar) Dr 

z1 det (zln-Ar) 

4. An algorithm for finding modifying factors 

Lr (z) 

z 1 Mr (z) 
(3.25) 

In this section we consider parallely two cases. The first one refers to k 2 > 0, 
and the other one to k 2 =0. In order to simplify the notation equations are num­
bered with letter a (b) if they are related to the first case (second case) or without 
any letter if they concern both cases. 

Note that: 

Let: 

B =[Ar-k, B Ar-kz+1 B A2r-k,-1]. r=:- 1
] T a a' a m ... , a : 

"'1 

[

ar 

Br = [Bm Aa B0 , ••• , A~- 1 B0 ] • "'r:-1 

"'1 

"'r -k2 + 1 

"'r-k2 

Dr=[Da, er Ba, er AaBa, ... ,er A~-k· - 1 Ba] · "'r-k.-1 

(4.1 a) 

(4.1b) 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

(4.5) 

-- -- ----------------------------------------------------------
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Then: 

(4.6) 

Now we can formulate an algorithm for solving the problem stated in chapter 2. 

Algorithm 1. 

Step 1. Find any minimal realization (3.1) and (3.2) of (2.5). 

Step 2. Choose r ?;::n + 1. 

Step 3. Find Ta (2.1) and k, T. (3.4). 

Step 4. Find Aa, Ba, Da (3.8a)- (3 .8e). 

Step 5. Find AT = eAT. 

Step 6. Find k 1 , k 2 (3.14). 

Step 7. Find I (3.19f), ((3.20d)). 

Step 8. Choose any BT and any DT such that: 

B (z) = eT (z1n- A1.)ad BT+det (z1n-AT) DT 

Step 9. Find M1o M 2 (4.3a), (4.4a), ((4.3b), (4.4b)) and M (4.5). 

Step 10. Solve the set of equations (4.6). 

Step 11. Use the solution obtained in step 10 for modifying extrapolator. 

Note that only step 8 and step 10 cannot always be executed. Propositions 1 
and 5 provide sufficient conditions. 

PROPOSITION 1. If (CT, AT) is an observable pair and rank M satisfies: 

rank M = n+ 1 (4.7) 

then the problem formulated in chapter 2 has a solution and moreover it can be 
found using the algorithm 1. 

Proof. We should only show that under assumptions of this theorem steps 8 
and 10 can be executed. 

It is well known that if (CT, AT) is an observable pair then there exists such 
nonsingular matrix T that: 

(4.8) 

denoting: 

(4.9) 

and: 

(4.10) 
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we have: 

B (z)=CT (z1,.-Ar)ad Br+det (z1n-Ar) Dr= 

=CT T-:- 1 (z1n-TAr T- 1)ad TB+det (z1n-Ar) Dr (4.11) 

hence: 

so taking: 

(4.13) 

where b0 , b1 , .•. , bn are coefficients of B (z), and then solving (4.10) we obtain Br 
and Dr needed in step 8 of the algorithm. 

To complete this proof we note that if ( 4. 7) is satisfied then there exists a solution 
of (4.6). Hence the step 10 can be executed, too. • 

Note that ( 4. 7) is satisfied if and only if: 

(4.14) 

The next propositions show that (4.14) is not a very restrictive condition. 

M 2 is treated now as a matrix function in V where: 

V=(Aa, Ba, C, Da) (4.15) 

If M 2 is a square matrix then f(V)=det M 2 (V) is a scalar function in V. S (V, s) 
denotes a sphere with center V and radius s. 

PROPOSITION 2. If k 2 >0, r=n+l andf(V1)=0 then Vs>O 3Ve S(Vt. s) f(V)#O. 

Proof. Note that f(V) is a polynomial in elements of Aa, Ba, C and Da. Hence 
assuming the thesis to be false i.e.: 

3s>0 VV'e S (V1, s) f(V'f=O 

We get: 

VVf(V)=O (4.16) 

-o-
lk,-1 -o, 1, 0, ... , 0- -o-

0, 0, 1, ... , 0 0 0 
Aa= Ba= C= 1 Da=O (4.17) 

0, 0, 0, ... , 1 0 0 
0, 0, o, ... , o_ 1 -

0 
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we get: 

0, 0, ... , 0, 1 : 0 
0, 0, ... , 1, 0 : 0 

' 

f(V)= 0 ' #0 ' 1, .. . , 0, 0:0 (4.18) 

1, 0, .. . , 0, 0 : 0 

0, 0, ... , 0, 0 : 1 

(4.18) contradicts (4.16). Hence tne thesis must be true. • 
PROPOSITION 3. If r=n+1 and f(V1)=0 then 3s>0 'v'VeS(V1 , s) f(V)#O. The 
above proposition results from the fact that f(V) is a polynomial. 

Note that if we replace in propositions 2 and 3 expressions like f(V)=O and 
f(V)#O by rank M 2 (V)~n and rank M 2 (V)=n+ 1 respectively they hold for 
r~n+1, too. Hence we see that (4.14) is satisfied for almost every V. 

In the next proposition a necessary condition for (4.14) is given: 

PROPOSITION 4. If rank M 2 (V)=n+l then (Aa, Ba) is a controllable pair. 
The case k 2 =0 is treated in one proposition: 

PROPOSITION 5. If k 2 =0 then rank M 2 =n+l if and only if r~n+1, (Aa, Ba) is 
a controllable pair and Da#O. 

5. Example 

Let a model transfer function of a continuously working plant be given by: 

3s+l 
Gc (s)=----v-2.4s 

s (s+0.5) 
(5.1) 

and the sampling time T=3. Find such modifying factors that the nominator of 
the Sr model transfer function is of the form: 

B (z)=z2 +0.1z 

Using the algorithm given in previous chapter we have: 

Step 1. 

so: 

Gc (s)=(2+_1_) e-2.4s 
s s+0.5 

X (t)=[~: -~.5] ·X (t) + [~] u(t- 2.4) 

y(t)=[l, l]·x(t) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

solving: 

r=3 

Ta= 1, k=2, T,=0.4 

er (z1 2 -Ar)ad=[z-0.223, z-1] 

det (z1 2 -Ar)=z2 -1.223z+0.223 

A. TARCZYNSKI 

(5.6) 

(5.7) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

[z-0.223, z-1, z2 -1.223z+0.223] ·l~:.]=z2 +0.1z (5.14) 

we get: 

B = [ 1.416] Dr =[1] 
T -0.093 

Step 9. 

Step 10. 

[ 

2, 2, 2 ] [0(1] [ 1.416] 
-0.584, -0.354, -0.215 . 0(2 = -0.093 

0, 0, 0.682 0(3 1 

hence: 

oc1 =2.58 oc2 =-3.34 oc3 =1.47 

Note that if oc1 =oc2 =oc3 =1 (classical extrapolator) then: 

Gr (z) 
0.682z2 +4.013z - 0.033 

z 2 -1.223z+0.223 

zeros of this transfer function are: z1 =5.89 and z2 =0.00821. 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 
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6. Conclusions 

The method presented in the paper can be applied for a wide class of linear 
systems. Unlike other known methods for zero placement it does not apply zero 
cancellation. From a practical point of view this fact is very important. 

It can be proved that the algorithm presented in the paper always fails when 
T0 =kT. In this case we should modify the method assuming deg B (z)~n-1 and 
taking r?;n. The appropriate algorithm and calculations become much simpler then. 
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Umiejscawianie zer ukladow dyskretnych za pomocl! 
ekstrapolatora z niestacjonarnym wzmocnieniem 

W pracy przedstawiono nOW1! metod« umiejscawiania zer obiekt6w dyskretnych posiadaj1tcych 
jedno wejscie i jedno wyj&cie. Wykazano, ze eel ten mozna osi1tgn~c wprowadzaj1tc do ekstrapola­
tora zerowego rz«du niestacjonarne wzmocnienie. Podano r6wniez algorytm do wyznaczenia tego 
wzmocnienia. 

Pa3Me~eune uy Jieii )J.HCKpeTHhiX cncTeM c noMo~LIO 
3KCTpaDOJIHTOpa C HeCT3QHOHapHLIM ycuJieHHeM 

B pa60Te npe,LICTaBJieH HOBbiH MeTO,LI pa3Mern;eHI!UI eyJieH )J.HCKpeTHbiX 06'beKTOB, HMeiOJ.IJ:HX 
O)J,HH BXO,LI H O)J,HH Bb!XO,LI. IlOKa3aHO, '!TO 3TY u;eJ!b MO)KHO ,LIOCTH'lb BBO,Lill B 3KCpaiTOJ!liTOp HYJICBOfO 
nop.H,LIKa HecTau;noHapHoe ycnJieHHe . .LJ:aeTC.H TaK:lKe aJ!fOPliTM .LIJ!ll onpe,LieJieHH.H 3Toro ycHJieHHH. 




