
Control
and Cybernetics
VOL. 13 (1984) No. 1-2

An efficient algorithm for partitioning a network
into minimally interconnected subnetworks

by

WIESLAW STANCZAK

Institute of Computer Science
Polish Academy of Sciences
PKiN, P.O.Box 22
00-901 Warszawa, Poland

This paper presents a new algorithm for determining minimal sets (sometimes called minimal
groups or minimally interconnected subnetworks) in a graph. The upper bound on the number
of iterations and/or simple arithmetic operations in this algorithm is derived, and is shown to comp
are favourably with the upper bounds on the number of iterations required by some earlier algo
rithms.

First, the paper states the idea of a minimal set, and points out the most important properties
of some class of algorithms useful for determining minimal sets. Then, the idea of the earlier com
putational realization of this class is described. It occurs that in the worst case the previous algorithms
need 2"-2 iterations, and a single iteration is of type 0 (n2

), where n is the number of vertices in
a graph considered. The idea of the interdependence between a minimal set and a terminal capacity
matrix, first derived by Nieminen, gives a possibility to improve the efficiency of the algorithm.
This concept is developed and it leads to a faster algorithm with two kinds of iterations. It is shown
that the new algorithm needs 0 (n 5

) simple arithmetic operations.

1. Introduction

The idea of minimal sets was introduced by Luccio and Sami [11] for solving
a problem of dividing a given electrical network into subnetworks. Such a decom
position results in minimizing the total number of interconnections (leads) between
these subnetworks under some specific conditions. Then, Kacprzyk and Stanczak
[7, 9] generalized the concept of minimal sets to an arbitrary weighted graph, spe
cifically to unigraphs with nonnegative real edge weights. The method of minimal
sets proves to be a relatively useful technique for solving some specific graph par
titioning problems. These problems consist in dividing the set of vertices into subsets,
such that the mutual connections between vertices (called similarities) in a subset
are stronger than those between the vertices in the subset and the vertices not belong
ing to the subset. As it was shown in several recent papers of the author et al., we
can use the technique of minimal sets for preliminary partitioning a design problem

7 •

98 W. STAI'<CZAK

into subproblems in many practical fields, e.g. in designing a telephone interex
change network [10], in determining hierarchical structure of a computer network
[8, 16], in seeking the optimal division of a group of enterprises into interacting
subgroups [6), in the hierarchization of data structures [15], etc. Hence, the problem
of determining an efficient algorithm for enumerating all minimal sets in a given
graph is of a great interest. The first algorithm was proposed by Luccio and Sami
in [11]. Kacprzyk and Stanczak have derived a number of additional properties
of minimal sets and also developed an improved algorithm in [7, 9]. Some exten
sions introduced in [16] have led to a new form of the algorithm (or a class of algo
rithms) and its implementation as a computer procedure. It can be proved that
the class of algorithms defined in [9, 16] provides a complete enumeration of mini
mal sets existing in a specified graph (see e.g. [9, 16]). The revised proof of this
feature for this class of algorithms is shown in [14]. Unfortunately, all the previous
realizations have not the polynomial complexity. The purpose of the paper is to
propose and describe in detail a polynomial-type algorithm.

Nieminen fl3] derived some relations between minimal sets and minimal cut-sets
in a graph. These properties make possible to obtain a polynomial-type algorithm
for finding minimal sets.

2. Preliminaries

Let G=(X, E) be a finite complete undirected graph without loops and multiple
edges. X is its vertex-set and E is its edge-set. E= { { x, y}: x, y E X, x# y }, i.e. we
refer to an edge as to an unordered pair of vertices. We assign a nonnegative weight
w (x, y) to all the edges of G, and it results in an ordered pair (G, w). In applications
(see e.g. [6, 8, 10, 15, 16]) w (x, y)'s are of similarity type, and thus (G, w) is called
the edge-weighted graph of similarity or simply a graph of similarity. For brevity
by f(A, B) we denote the following double sum

f(A,B)= ~ ~ w(x, y), (1)
xEA yEB

where A and Bare disjoint subsets of X. Obviously, f(A, B)=f(B, A). Moreover,
f(A, 0)=0, by definition.

A nonempty subsetS of X is called minimal in (G, w) (further, we assume that
our discussion concerns a fixed and specified ordered pair (G, w) , hence the remark
about (G, w) will be omitted), if for each nonempty proper subset R of S the
inequality

f(R, X-R)>f(S, X-S) (2)

holds.
In the introduction we mentioned a class of algorithms generating all minimal

sets in (G, w). To describe any algorithm from this class we need the following
properties of minimal sets (see [16]).

An efficient algorithm 99

THEOREM lA. 1. {x} is a minimal set, for each x eX.
2. Let K be a nonempty set of indices and {Z1: i E K} be a collection

of pairwise disjoint minimal sets. By Sb JcK, we denote

(3)
i EJ

If the following inequality

f(Sb X-SJ)<min {f(Z1, X-Z;): ieJ} (4)

holds for J=K and is not satisfied for any nonempty proper subset J of K, then SK is
a minimal set.

THEOREM lB. A setS, ISI > 1, is a minimal set which does not include another minimal
set consisting of more than a single element if and only if

f(D, X-D)<f({x}, X-{x}) (5)

is fulfilled for each x e D where D = S, and does not hold for any x e D, where D is a
nonempty proper subset of S.

In the sequel, we refer to Theorems lA and lB as to Theorem 1, for brevity.
Since G is a finite graph, then there exists a finite number of nonempty subsets

of its vertices. Thus the number of minimal sets is also finite. The idea of algorithms
creating the class mentioned in the introduction consists in merging some minimal
sets into a new one. Then each ofthese algorithms terminates after performing some
finite number of iterations, say imax iterations, at worst. Let L= {0, 1, 2, ... , imax -1}
be the set of indices of consecutive iterations. Moreover, we denote L 1 =L- {imax -1 },
for short. Each algorithm belonging to the class consists of two alternating phases
which are described below.

Aggregation phase (AP).

For j=O we simply have <G0 , w0)=<G, w).
Let j e L- {0} and let B1.,H/J be a collection of all minimal sets determined in

the (j-1) th iteration of the algorithm, and :Xi be an arbitrary set consisting of
IB11 elements. We assume that di is a bijective function, d1 : Br-"X1. Now, a new
weighted graph <G1, w1) is obtained, where Gi is a complete undirected graph
without loops and multiple edges with a vertex-set Xi. The values of wi are com
puted by using the following formula

wi (x, y)= }; }; wi- 1 (s, t), (6)
sEdj 1 (x) tEdj 1 (y)

where dj 1 denotes the inverse function of di. In other words, each minimal set
obtained in the (j-1) th step is substituted by a single vertex in Gi and then the
individual similarities wi- 1 (s, t) are replaced by joined similarities p- 1 (A, B)
calculated with the aid 0f (1), since the elements of Bi are pairwise disjoint (see SP
below). If the relation w (x, y)=O holds for each edge of the graph Gi, then the
algorithm terminates. Otherwise, we pass to the searching phase.

100 W. STANCZAK

Searching phase (SP).

The U+ 1) th iteration, j e L 1 , of this phase is defined recursively as follows.
In the very beginning of SP we have J=0 and S~=0. We check the minimallity
of subsets of R~=Xj- S~ by using Theorem 1. If we find a new minimal set Z, IZ I > 1,
then the set J is augmented with the index of Z. Moreover, S~ is redefined due to
a formula similar to (3). Then R~ is updated which preserves that the elements of
Bi+ 1 are pairwise disjoint, etc. We terminate the current SP and the (j+1) th step
when there is no subset Z lzl > 1, of R~, which can be a minimal set. Thus, we define
K = J and the partial solution is obtained in the form BJ+ 1 ={Z{: ieK}u{{x}:
x E R'k:} Now we check whether the equality IBH 1 1 = 1 holds. If so, then the algo
rithm terminates . Otherwise, we pass to AP of the next iteration.

Thus, the algorithms of the class considered differ one from another in the
family of functions { dj: j E L1} used in AP and in the method of choosing subsets
for checking their minimallity in the current Rf in SP. The computer implement
ation described in [16] is based on a modification of a fast procedure proposed by
Even [2], which generates all the subsets of a given set in succession. It means that
in the worst case one has to examine all the 21x l _ 2 nonempty proper subsets of X.

Now, we derive the upper bound on the number of minimal sets for a given
<G, w) , G=(X, E). Let ajil denote the number of minimal sets having exactly j
elements, where these minimal sets were obtained by merging some minimal sets
with cardinality at most i. Since two minimal sets can be either disjoint or one of
them is included in the other (see e.g. [7, 11, 16]), then

IXI~(i+l) a)~ 1 +(i+2) an 2+ ... +(IXI -1) af¥1_ 1 (7)

for i=1, 2, ... , IXI -2. Maximizing the value of the sum W(i)=an 1 +a~i2 2+ .. ·
... +afQ

1
_ 1 subject to (7) we obtain a~n=o for k = i+2, i+3, ... , IXI - 1, and an 1 =

(
lXI) · . lXI lXI lXI

=en tier i+ 1 , for each i= 1, 2, ... , lXI - 2. Therefore lXI, -
2
-, -

3
- ... , IXI -

1
is a majorant sequence for lXI, W (1), W (2), ... , W (lXI - 2). Thus we have no
more than lXI [y+ln(IXI - 1)+1] minimal sets for a given <G, w), G=(X,E),
where y= 0.577 ... is the Euler constant. Hence the implementations based on Even's
procedure as described above are of very low efficiency. Our task is to construct
an algorithm which examines a substantially lower number of subsets than 21x1 _ 2.

3. On some specific sets

Let us consider a graph of similarity <G, w), and Se X be a nonempty set of
vertices. For short we denote ISI by s. We assume that the eleme~ts of S are ordered
in a sequence

a (S) = (x;: i=O, 1, 2, ... , s - 1),

where if k=l= r , then xk=l= Xr and that the following condition

(8)

f({xi}, X- {x;}) = w (x(i - 1) mod (S)' xi)+w (x;, X(i+l) mod (s)) (9)

--- --

1\n efficient algorithm 101

holds for each i=O, 1, 2, ... , s-1. Since each weight in (G, w) is nonnegative, the
equality (9) means that each edge joining x E S with ye X- S is weighted by zero.
Moreover, we have w (x;, x1+k)=0 for every i=O, 1, 2, ... , s-k-1, k> 1, for each
X;, x;+k e S. Such ordering of elements of S is called a circuit structure of S (gene
rated by a (S) as in (8)) and denoted by c (S). Furthermore, if w (xs -1> x 0)=0,
then we call c (S) a path structure and denote it by p (S). The parameter s is called
the length of S. By a path substructure of c (S) we understand some path structure R,
where R eS, and the sequence a (R)=(x; (RJ+i: i=O, 1, 2, ... , IRI -1) generatingp (R)
is a subsequence of that generating p (S), i.e. it begins with the i (R) th element
of a (S), where 0:::;; i (R):S; s- I RI. Now, we can state the following lemma.

LEMMA 1. Let us consider a circuit structure c (S) and a collection of its q path sub
structures {p (Hi): j= 1, 2, ... , q }, q > 1. If the path substructures are pairwise dis
joint, then the set

q

Q= UHj (10)

is not minimal.
j= 1

Proof. We can write

(11)

Since these path substructures are pairwise disjoint, then the inequality k < r implies

(12)

for each k, r= 1, 2, ... , q. Due to (10), (11) and (12), if k < r, then there exists an
index t, such that xt e S, xt $ Q and i (Hk)+IHkl - 1 <t<i (Hr). Therefore, we have

q

f(Q, X-Q) = };f(Hi, X-Hj), (13)
j=1

because for each k = 1, 2, ... , q

f(Hk, X - Hk)=w (x; (Hkl - 1 , xi(Hk))+w (x; (Hk)+ JHkJ- 1, X; (Hk)+ JHk l), (14)

where the indices are taken modulo s. According to (13) the inequality

f(Q, X -Q)?;_f(H," X- Hk), (15)

is satisfied for each k= 1, 2, ... , q, and hence Q is not a minimal set. Q.E.D. B
Applying the rule of contraposition we obtain

CoROLLARY 1. Let us consider c (S) and a nonempty subset R of S. If R is a minimal
set, then there exist indices rand q, O:S;r:S;q:S;s - 1, such that

R = {x;: i=r, r+l, ... , q}, (16)

i.~. p (R) is a path substructure of c (S).
This corollary plays a very important role in the proof of validity of our new

algorithm which is derived in the next section.

102 W. STANCZAK

4. A new algorithm

First, we briefly alrec frthat a cut-set C in a graph G= (X, E) consists of a non
empty set of edges CcEln om the original graph G. By deleting C from Ewe obtain
a new graph (X, E - C) w eh the vertex-set X can be divided into two disjoint
non empty sets, say X 1 and X2 , such that there is no edge in E- C, connecting any
x e X 1 with any yE X 2, while in E such edges exist. The deletion of any proper
subset E' of C does not result in such partition. The partition of X into two disjoint
nonempty subsets X1 and X 2 generated by a cut-set C is denoted here by {X1 , X2 }1 C.
After removing all the edges of a cut-set from the original graph there exists no path
joining any x e X1 with ye X 2 • To emphasize this fact we denote the cut-set by
C (x; y) and call it a cut-set separating x and y. In a weighted graph the value V [C]
of a cut-set is defined as the sum of weights of edges from C. In general, there exist
many cut-sets C(x;y) in a given graph G= (X,E). The cut-set C*=C(x;y) se
parating fixed and specified vertices x and y is called minimal when V [C*] attains
the smallest possible value over all the V [C (x; y)].

Moreover, we recall (see e.g. [12]) that the terminal capacity matrix of (G, w)
is a symmetric square matrix, in which the (i,j) th entry, i#j, is equal to the smallest
possible value of C (i;j), i,j EX. At the main diagonal, it usually has a dummy
value, say d.

Now, we consider a symmetric square matrix M with don its main diagonal.
Another entries are assumed to be real and nonegative . We assume that by a si
multaneous permutation of rows and columns of M, the following representation
of this matrix

M=[~~-::'!~]
MC :Mb

is obtained (the superscript T denotes the matrix transposition), where each entry
of Me has the smallest possible value over the (i,j) th elements, i#j, and Mao Mb
are square matrices with d at their main diagonals. We call Ma and Mb the resultant
main submatrices. This representation is known as a principal partition of M [12].
The coincident permutation of rows and columns resulting in a principal partition
of M is said to be the principal partitioning process. The following theorem holds.

THEOREM 2 [12]. A symmetric square matrix M is the terminal capacity matrix
of some< G, w) if and only if its principal partition exists and the process of principal
partitioning can be continued till all the resultant main submatrices have no more
than a single entry d.

~_ .. --~-~- --~
Theorem 2 implies that by successive rearrangements of rows and columns in

the terminal capacity matrix M for< G, w) we obtain consecutive principal partitions
of M and its resultant main submatrices. Evidently, each principal partition gene
rates the same division of X into two disjoint subsets as some minimal cut-set. The
final ordering of rows and columns in M corresponds to an arrangement of vertices
of X in the so-called path realizing the terminal capacity matrix of (G, w). The

An efficient algorithm 103

most important feature of this path is that each minimal cut-set separating its two
vertices, say x and y, has the same value as the minimal C (x; y) in (G, w). This
property of path realizing the terminal capacity matrix is used here for increasing
the efficiency of the algorithm determining minimal sets. Now, we describe a pro
cedure constructing the path realizing the terminal capacity matrix.

First, we define an auxiliary weighted graph < GA, wA) on the basis of < G, w).
Let x• and :Xb be two disjoint subsets of X (X• and/or :Xb may be empty), such that
:X8 =:X- (:Xa u Xb) is nonempty. We merge :xa and :Xb into single vertices, a and b,
respectively and define :XA=X8 u {a, b}, EA={{x, y} : x, yE XA, x# y}, GA=(XA,EA)
If x, yE X 8

, x# y, then wA (x, y)=wA (y, x)=w (x, y). Otherwise, wA (a, y)=
=wA (y, a)=f(Xa, {y}), and similarly for b. Furthermore, wA (a, b)=wA (b , a)=
=f(Xa, Xb). Evidently, if e.g. xa=0, then wA (a, b)=wA (a, y)=O for each yE X 8 •

We use the graph (GA, wA) in the procedure generating some path on the basis
of (G, w). An idea of this procedure is the following. In the first iteration we have
x•=Xb=0, X 8 =X, and, obviously, wA (x, a)=wA (x, b)=wA (a, b)=O, for each
x eX. We seek a cut-set C1 which minimizes the value of minimal cut-sets C (x; y)
over all p"lirs of distinct x; ye X. Obviously, there exists such C1 , but not
necessarily unique. By choosing some C1 we attain a partition {Xi> X2 } I C1

of the original X. IfiX1 I= IX2 j=l, then the procedure terminates. Let us now
assume that jX1 j > 1. We merge X 2 into a single vertex b and we have X•= 0 ,
X 8 =X1 • We find a cut-set C2 which minimizes: the value of C(y, x) over all pairs
of distinct x, ye X 8 , and obtain a new partition {X~, x;} IC2 • We relabel the
subsets of X, such that X~ is now denoted by X 1 , X~- by X 2 , and the old
Xz --by X 3 , etc. Let us consider the general case in which X 1 , X 2 , X 3 , ... , Xq ; q~2,

and IX1 I=l. If IX2 I=l, for each i=l, 2, .. . , q, then the procedure terminates. Other
wise, there exists the smallest subscript, say r, for which IX,I > 1. We have here
Xa=X1 u X 2 u ... u X,_ 1 and either Xb=X,.+ 1 u Xr+z u ... u Xq for q>r, or
Xb=0 for q=r. We seek a cut-set C, minimizing the value of C (x; y) over all pairs
of distinct x, ye X 8 =X, etc. The consecutive step·s of this procedure are as follows .

Construction of a path strurture (CPS).

1. Set :X1 : =X. Merge X1 into a single vertex {X}I.

2. r: = 1 ; q: = 1.
3. Take the set X, corresponding to {X}r and set t: =1.
4. If IX,I=l, then r: =r+l and t: =0.
5. If r=IXI, then STOP.
6. If t=O, then return to Step 3. Otherwise pass to Step 7.

r-1 q

7. Define (GA, wA), where X 8 =X, xa=u X; , and Xb= u X;.
i=l i=r+l

8. Construct a minimal cut-set C (x; y) in (GA, wA), x, ye X 8
, such that

V[C(x;y)]=min{V[C(x;y)]:x,yeX8
, x#y} and determine {X,\X,z}l

IC (x; y).
9. A: =X8 n x;; B: =X8 n X}.

104 W. STANCZAK

10. If r= q, then go to Step 12.

11. For each i= r+1, r+2, ... , q do: X1u: = X 1 and {X}1+1 : = {X}1 (relabelling
the subsets and the vertices).

12. If a E A, then Xr: = A; Xr +l: =Band go to Step 14.
13. Xr: = B; Xr+l: =A.
14. Split the old vertex {X}r into two new vertices {X}n {X}r+l and join them

with the edge weighted by V [C (x; y)].
15. q: =q+I.
16. If q< lXI, then go to Step 3. Otherwise, STOP.

PROPOSITION I. The algorithm CPS generates a path realizing the terminal capacity
matrix for (G, w).

Proof. Evidently, CPS generates a path consisting of all vertices of X. It remains
to prove that the values of minimal cut-sets separating distinct vertices x and y
of X are the same for the path P determined by CPS and for (G, w).

For brevity, we denote by CP (x; y) the minimal cut-set separating x and y
in P and by CA (x; y) that in the current (GA, wA). Let G: (x; y) denote the set of
all C(x;y) in (G, w) for a fixed pair of distinct x,yEX.

In the first iteration X=Xr and

V [CA (x; y)]=min {V [C (x; y)]: x, y E Xn x# y}, (17)

due to Step 8. According to X E xl and yE x2 (or yE xl> X E X2), and (17) we have

V [CP (x; y)]=min {V [C (x; y)]: C (x; y) E G: (x; y)}, (18)

because {X} 1 and {X}z are joined with the edge weighted by V [CA (x; y)] in Step 14.
If for some s, t EX, s# t,

m in {V [C (s; t)]: C (s; t) E G: (s; t)};;, V [CP (x; y)], (19)

then either s, t E X1 or S, t E %2.

In the ith iteration, i> 1, we have X 8 =Xn IXrl > 1. If xa, Xb=0, then by the
same arguments as used in [3, 5] to prove the validity of procedures useful for con
structing a graph realizing a given terminal capacity matrix we obtain (17). We
therefore assume that xa and Xb are nonempty. Let C be a minimal cut-set sepa
rating x and y in (G, w) and {Xt> X2 }IC={A u Xf u Xf, BuX~ u xn, where A, B
are defined by Step 9 and xa=XfuX~, Xb=XfuXg, Xf, X{#0 and X~uXg#0.
We can write V [C]=f(A, B)+f(A, x;)+f(A, xg)+f(X~, B)+f(X~, X~)+f(Xf,
Xg)+f(Xf, B)+J(Xf, X~)+f(Xf, Xg). Due to the construction of xa and Xb and
due to (19) we easily obtain

f(X~, X~)+f(Xf, xg);;,f(A, x; u XD+f(B, x~ uXg)+

+f(X;, Xb)+f(Xa, Xg) (20)

Thus, combining (20) and the expression for V [C] we get

V[C];;,j(AuXauxb,B)+e, (21)

An efficient algorithm 105

where e=2 [f(A, X~u X~)+f(X~, Xf)+f(X;, X~)+f(X~, X~)]>O. Hence, C is
not a minimal cut-set separating x and y in < G, w), i.e. a contradiction. Thus, the
condition (17) is fulfilled, and we obtain (18) again. Q.E.D. •

The path P=(X, Ep) realizing the terminal capacity matrix of< G, w) generates
a graph of similarity (G, w*), where the weights w* are determined by

*(-) _ fV[CP(x;y)]
w x,y -~ 0

if X, y EEp,
if x, y rf:Ep.

It is evident that P is a path structure of< G, w*). Nieminen [13] proved the follow
ing theorem.

THEOREM 3. IfS is a minimal set in (G, w), then S is also a minimal set in each

path structure realizing the terminal capacity matrix of< G, w).

As an immediate consequence of Theorem 3 we obtain the following corollary.

CoROLLARY 2. IfS is not a minimal set in some path structure realizing the terminal

capacity matrix of < G, w), then S is not a minimal set in < G, w).

Due to Corollaries 1 and 2 we have the following proposition.

PROPOSITION 2. R is a minimal set in < G, w) only if it is a minimal set in a path
structure realizing the terminal capacity matrix of (G, w) and there exist indices r
and q, O:::;;r :::;; q:::;; JX I- 1, such that R={xi:i=r,r+ l, ... ,q}.

Hence, we have a simple and efficient method for generating subsets for checking
their minimallity in SP. It can be done in the following way. Let us consider the
(j+ 1) th iteration, j E £ 1, where we handle (GJ, wJ), GJ=(XJ, EJ). We assume that
a(XJ)=(xi: i=O, 1, 2, ... , IXJ I-1) is the sequence of vertices obtained in CPS,
i.e. the sequence generating the path structure p (XJ) (see Section 3). In the very
beginning we check all the subsets Z, for \Vhich we have IZI=2. According to Pro
position 2 it is sufficient to take Z~2)={Xo, xi}, Zi2)={x1, Xz}, ... , Z?) ={x,._1, Xr},
... , Z\i)j

1
_ 1 = {x

1
xj

1
_ 2 , x

1
xj

1
_ 1}. Now let us assume, that Sj#-f/J, and we test t-tuples.

If k, 0:::;; k:::;; JXiJ - t-1, is the smallest index beginning a path substructure of length t
consisting of the elements belonging to Rj, then we take Z~)={xk, xk+ 1 , ••. , xk+t- d,
Z~ = {xk+l> xk+Z• ... , xf,-rr}, etc. If for some t, such k does not exist, then there
is no subset Z, IZ I ~ t, in the current R~ (and thus in the U+ 1) th iteration) which
can be a minimal set. The correctness of the method described above directly follows
from Proposition 2. Let us denote this realization of the searching phase by SP 1 .

Hence, \VC can formulate the following revised algorithm.

Algorithm.

1. Execute the AP.
2. Perform the CPS.
3. Go to Step 5.

106 W. STANCZAK

4. Execute the AP.

5. Realize the SP1 .

6. Update the path structure being the realization of the terminal capacity
matrix by merging the vertices belonging to the same minimal set and then
deleting loops.

7. Return to Step 4.

5. Some properties of the revised algorithm

Now, we consider the relation between the revised algorithm and the class of
algorithms defined in Section 2. We note that CPS can be included in AP for j=O,
SP 1 is some modification of SP, and updating the path structure can be included
in AP for j EL- {0}. Thus, the revised algorithm belongs to the general class de
scribed in Section 2. All the general properties of this class, which are introduced
in [9, 14, 16] hold in the case of our new algorithm. More specifically, we can for
mulate the following important theorems [9, 14, 16].

THEOREM 4. The revised algorithm generates a partition of X in each iteration, i.e.
the minimal sets determined in the jth step are pairwise disjoint and their union is
equal to X1. Furthermore, the algorithm gives all minimal sets in (G, w).

THEOREM 5. The results of the revised algorithm do not depend upon the choice of
the family of functions {di:j E Lt}.

The fact that the algorithm generates a partition of X in each iteration is import
ant from the practical point of view (see, e.g. [6, 8, 10, 11, 15, 16]). Theorem 5
has a real meaning for constructing a computer implementation. It allows to choose
a family {dj:j e Lt} in the way which is more convenient for us (see e.g. [9, 16]),
e.g. in the simplest way from the programmer point of view.

Summarizing, the main idea of the revised algorithm is the same as in the pre
vious algorithms generating minimal sets. The only, but also very important refinem
ent lies in a considerable increase of the efficiency, which is shown in more detail
in the next section.

6. Efficiency of the algorithm

Now, we direct our efforts to the estimation of the complexity of our new al
gorithm. It is evident that we can make the calculations in two separate phases.
The first one concerns the initial construction in CPS. The second phase refers to
the rest of the algorithm, mainly to SP1 . In CPS we seek minimal cut-sets. In the
computer implementation programmed in the Institute of Computer Science of
PAS we generated minimal cut-sets using the algorithm proposed by Edmonds

An efficient algorithm 107

and Karp [1]. Now, we prepare a new version of CPS, which bases on the procedure
described by Galil [4]. Then, it is convenient to make the further analysis in general,
i.e. independently on the procedure used for generating m;nimal cut-sets.

In CPS we need to evaluate IXI-1 terminal capacitieres rath than one minimal
cut-set and we have no way to forecast the size of sets A and B (see Steps 9, 12 and 13
of CPS), which are consecutively generated. Moreover, we do not seek in CPS
a minimal cut-set separating some fixed and specified pair of distinct vertices, but
we look for a minimal cut-set which has the smallest possible value among all the
cut-sets separating all distinct pairs of vertices in X 8 =Xr (see Steps 7 and 8 of CPS).
Hence, the method of Gomory and Hu [5], described also in [3], in its original
form is not sufficient for our purposes, because we should obtain a path realizing
the terminal capacity matrix instand of a tree.

In view of the above remarks we have to describe Step 8 of CPS in detail, then
evaluate its efficiency and finally determine the numerical complexity of the whole
CPS. The realization of Step 8 of CPS can be as follows. Let the vertices of X 8

be arranged in any sequence (x1: i= 1, 2, ... , l.:¥8 1). We determine a minimal cut-set
C (x;; x2), where x: = x1 , merge x~ and x 2 into a single vertex, say x;, determine
a minimal cut-set C (x;; x3), merge x; and x3 into x~, etc. Further, we can use
the following theorem.

THEOREM 6. Let <GA, wA) be given as described in Section 4. If C(x;; x1+ 1), 1~
~ i~ IX8 l-1, is a minimal cut-set with the smallest value obtained by the procedure
defined above, then

V [C (x;; x1+1)]=min {V [C (x; y)]: x, ye X 8
, x#y} (22)

P r o o f. Let a minimal cut-set with the smallest value which separates two vertices
of X8 be denoted by C0 , its value- by V0 , and {X~, X~}={X1 , X2 }IC0

• We assume
that V0 <V[C(x;;x1+ 1)] for each i, l:(i:(jX8 1-l. We also assume that x1 eX~.
Hence, there exists an index t, 1+t:(IX8 I-2, such that

(23)

holds and X 1+1 eX~. Thus, we have V [C (x;; x1 +1)]=f(A1 uD, E):(j(A1 u (X~-A1),
XA-X~)= V0

, for some D, E and x1+ 1 EE (D may be empty). Therefore, we obtain
V0 < V0

, i.e. a contradiction. Q.E.D. •

Now, we note again that there is no way to forecast the size of sets A and B con
secutively generated in CPS. To estimate the computational effort needed for exe
cution of CPS we have to define a vertex weighted arborescence (i.e. a rooted directed
tree) of the partitioning. We proceed in a recurrent way based on the description
of CPS, as follows.

The root is the vertex {Xh defined in Step 1 and its weight equals lXI. Initia~y,
t has no label. From the root there are two arcs directed to vertices {X} 1 and {X}z
obtained in the first iteration by splitting the original {.:¥} 1 . Initially, they are also
unlabelled and their weights are IAI and IBI (see Steps 9, 11 and 13), respectively.

108 W. STANCZAK

We assume that some vertex {X}, was reached in Step 4 of the ith iteration, i> I.
CASE 1. \X,\ = 1. There exists a single arc incident in {X}, and there is no arc in
cident out. We backtrack the arc to the nearest vertex and increment r by 1. It follows
from CPS that a new vertex, we reached, has the current number r, and IX, I> I.
If {X}r is labelled, then we check whether it is the root. If so, the proceaure termim
tes. Otherwise, we backtrack once more, increment r by 1, and again, until we reach
an unlabelled vertex or the labelled root. The latter situation was described before.
In the former one we label the vertex and the arc incoming to the cunent {X}, and
proceed in the direction of the unlabelled arc outgoing from {X},.
CASE 2. \X,\> 1. We introduce two arcs outgoing from the old {X}, to new vertices
{X}, and {X},+ 1 obtained by splitting the original {X}, (see Step 14). Neither the
old ve1 tex {X}, nor the new vertices {X}, and {X},u are labelled. We assign to
the new {X}, and {X},+ 1 the values of \AI and IBJ, respectively, and so on.

Fig. 1. An example of construction of a weighted arborescence.

An example of the walk described above is shown in Fig. 1. It can be easily
stated that each vertex weighted by one WaS passed only once. The other vertices
are passed three times. It is obvious, because to the vertex weighted by one there
is only one incoming arc and no arc is outgoing. To the other vertices, excluding
the root, there are incident three arcs. Two of them are outgoing and a single is
incoming. In fact, each vertex with the weight greater than 1 is split into two parts
and each vertex results from splitting only one vertex. The root is not obtained by
the splitting mechanism, and there are only two arcs outgoing from it. Since we
start om walk from the root, then we are in the root three times, too. From the
above discussion the next proposition follows.

PROPOSITION 3. For each < G, w) and each realization of CPS the abovt. walk ter
minates in a finite number cf steps. It gives an arborescence which has the 'Vertices
weighted by cardinal numbers of sets X, obtained during the execution of CPS.
Each arc is directed from the vertex corresponding to some X, to another vertex
corresponding to a subset of ¥,. All the vertices weighted by more than one are
labelled.

An efficient algorithm 109

The arborescence gives an idea how CPS works. We need it for the estimation
of the efficiency of CPS. The unla belied vertices correspond to the

sets which are not partitioned. Thus, we can remove from the arborescence
each vertex without label and arcs incident to it. Further we can also delete

every vertex weighted by two and then the arcs incident to it. Evidently, the
minimal cut-set in (GA, wA) with IXBI =2 can be obtained at once. It is obvious

that now we also get an arborescence A of the partitioning. We define the value

F (A) of A, as follows

F(A)= }; h (v (x)) ,
xEXA

where XA is the vertex-set of A, v (x) denotes the weight assigned to x e XA, and
h (y) is the complexity of procedure generating minimal cut-sets in a graph with y

vertices. To estimate the upper bound for the computational complexity of the
whole CPS we have to maximize F over all possible arborescences of partitioning.

THEOREM 7. If h is an increasing and nonnegative valued function for arguments not

less than 2, then F reaches its maximal value for A=A*, where A* denotes a path

with vertices weighted by consecutive natural numbers from n= lXI to 3.

P r o o f. First, we introduce some additional notations. Let A, denote any arbo
rescence of partitioning defined for a graph G with n vertices. We have F (A;)=O,
for i= 1, 2. Hence, we notice that the following formula

(25)

holds for every Am n> 1, where An-rand Ar are the subarborescences of An obtained
by removing the root and arcs incident to it from A,.

The proof will be accomplished by induction on n. There is only one A 3 . For
n=4 we have two arborescences. They are shown in Fig. 2. We calculate that F (A:)=
=h (4)<F(A;)=h (4)+h (3), due to the properties of h.

Fig. 2. Two arborescences A4.

Now, let us assume that for each m, 3~m~n-1, and for every Am the following
inequality

(26)

110 W. STANCZAK

is satisfied. According to (25) and (26) we have F(An)-h (n)=F(An-r)+F(A,) ~
~F(A;_r)+F(A;), where obviously

i

F (A=)= _2; h (i) (27)
i= 1

According to the properties of h and due to (27) F(A~-r)+F(A;)~F(A;_ 1) for
r);3 and n-r);3. If r=I or r=2, then F(A;)=O and we have F(A;_r)~F(A~_ 1)
again. Analogously, for n-r=I or n-r=2 we obtain F(A;)~F(A;_ 1). Hence,
o bviouslj, F (A;)~ F (A:). Q.E.D. •

It means that in the whole CPS we have to perform no more than F (A:) simple
arithmetic operations such as additions, subtractions and comparisons. When we
use the !procedure described by Edmonds and Karp we need i (P- k) k 2 these
operations for finding a minimal cut-set separating a given pair of vertices in a graph
with k vertices [1]. Thus, the procedure described above Theorem 6 is of type 0 (n6).

Therefore, due to Theorem 7 the whole CPS needs 0 (n7) simple arithmetic ope
rations. The procedure of Galil is of type 0 (n 5 13 e2 13) [4], where e denotes the cardi
nality of edge-set, i.e. of type 0 (n3) in the worst case in which the square matrix
consisting of entries being the weigh ts w (x, y) is not sparse. Thus, the new form
of CPS now realized in the Institute of Computer Science needs 0 (n 5) simple arith
metic operations.

It can be easily shown that for testing a subset of Xi consisting of i vertices we
i 2 -i

need -
2
- + i+ 1 additions, 1 subtraction and i comparisons, if all the values of

Ji ({x}, Xi- {x}), j EL, are known ((i in <Gi, wi) is defined by the s&me formula
as fin < G, w). In the other cases, the number of these operations is greater. Thus,
the first case is preferable and we consider it now. Therefore, we need at most

k- 1 i2 +3i+4 _2: (k+I-i) -
2

-
i=2

(k-2) (k 3+I2k2 +59k+24)

24

i.e. 0 (k4) simple arithmetic operations in the jth, j E' L , iteration, because we handle
no more than k+ I- i subsets of i elements (see SP 1), where k= IXil. For the initial
evaluation of f 0 ({x}, X 0 -{x}) we need n(n-1) additions. For jEL-{0} the
values of j1 ({x}, Xi-{x}) are obtained as by-products of testing the minimallity
of the subsets from Xi- 1 (see Theorem 1). Thus, the evaluation ofji ({x}, Xi- {x}) 's,,
being in fact a part of AP, can be considered simultaneously with SP1 and has at
most the same complexity as a single SP1 . Moreover, the rest of AP can be executed
by simple changing the indices of two working lists (see [9]) which extremly speeds
up the algorithm and saves the computer memory. Therefore, since imax~n (which
can be easily proved by a construction similar to the arborescence of partitioning),
then AP and SP 1 in the whole algorithm need 0 (n 5) simple arithmetic operations,
which is also the complexity for the new algorithm as a whole. For a comparison
we recall that the upper bound of the old version is 0 (2n n2

) (see Section 2).

An eff'cient algorithm Ill

References

[1] EDMONDS J., KARP R. M. Theoretical improvements in the algorithmic efficiency for network
flow problems. Journal of the ACM, 19 (1972) 2, 248-264.

[2] EvEN S. Algorithmic combinatorics. New York, Macmillan, 1973.
[3] FORD L. R., FULKERSON D. R. Flows in networks. Princeton, N. J., Princeton Univ. Press,1962.
[4] GALIL Z. An 0 (V513E 2 13) algorithm for the maximal flow problem. Acta Informatica, 14,

3 (1980), 221-242.
[5] GoMORY R. E., Hu T. C. Multi-terminal network flows, SIAM J. Appl. Math., 9, (1961),

551-570.
[6] KACPRZYK J., STANCZAK W. Application of the method of minimally interconnected network

for solving the problem of partitioning a group of enterprises into subgroups (in Polish).
Archiwum Autom. i Telemech., 20, 4 (1975), 513- 526.

[7] KACPRZYK J., STANCZAK W. On an extension of the method of minimally interconnected
subnetworks. Control and Cybernetics, 5,4 (1976), 61-77.

[8] KACPRZYK J., STANCZAK W. Partitioning a computer network into subnetworks and allo
cation of distributed data bases. Proc. 8th IFIP Conf. Optimization Techn., WUrzburg, 1976.
Springer, 1977, 464--472.

[9] KACPRZYK J., STANCZAK W. On a further extension of the method of minimally interconnected
subnetworks. Control and Cybernetics 7, (1978) 2, 17-31.

[10] KALISZEWSKI I ., NowiCKI T., STANCZAK W. On the telephone interexchange network struc
ture decomposition using the method of minimally interconnected subgraphs (in Polish).
Rozprawy Elektrotechn., 21, (1975) 2, 573- 580.

[11] BucciO F., SAMI M. On the decomposition of networks in minimally interconnected sub
networks. IEEE Trans. Circuit Theory, CT-16, (1969) 2, 184-188.

[12] MAYEDA W. Graph theory. New York, John Wiley, 1972.
[13] NIEM!NEN J. On minimally interconnected subnetworks of a network. Control and Cyber

netics, 9, (1980) 1-2, 47-52.
[14] NowiCKI T., STANCZAK W. On some class of algorithms using for determination of minimal

groups in cliques. Proc. International Symp. on Applications of Math. in System Theory,
Bra~ov, 1978, 275-280.

[15] NoWICKI T., STANCZAK W. Partitioning a set ot elements into subsets due to their similarity.
Proc. 2nd International Symp. Data Analysis and Informatics, Versailles, 1979. (in) Data
Analysis and Informatics, Diday E. et al. (eds). Amsterdam, North Holland, 1980, 583-591.

[16] STANCZAK W. Application of the method of minimally interconnected subnetworks to com
puterized designing of topological structure and configuration for teleprocessing network
(in Polish). Ph. D. Thesis, Inst. of Computer Sci., Polish Academy of Sci., Warsaw, 1978.

Received, March 1982.

Efektywny algorytm podzialu sieci na zespoly minimalne

W artykule przedstawiono nowy algorytm wyznaczania zespo!6w minimalnych w grafie. Podano
takze g6rne ograniczenie liczby iteracji wykonywanych w trakcie dzialania algorytmu. Okazalo si~,
ze nowy algorytm jest znaczenie lepszy od poprzednich.

Na wst~pie przedstawiono poj~ie zespolu minimalnego i wymieniono najwa:i:niejsze wlasci
wosci pewnej klasy algorytm6w slu:litcych do wyszukiwania zespol6w minimalnych. Nast~pnie
opisano dotychczasow11 realizacj~ wspomnianej klasy algorytm6w. Okazalo si~, :le w najgorszym
przypadku poprzedni algorytm wymagal wykonania 2"-2 iteracji (kazda z nich wymaga co naj
wy:lej 0 (n2

) operacji), gdzie n jest liczb11 wierzcho!k6w w rozpatrywanym grafie. Nieminen by!

112 W. STANCZAK

pierwszym, kt6ry odkryl zalei:nosc mi~;dzy zespolami minimalnymi a macierz<t pojemnosci granicz

nych grafu . Wykorzystanie tego wyniku pozwala zwi~;kszyc efektywnosc algorytmu wyznaczaj<tcego

zespoly minimalne. Rozwini~;cie koncepcji Nieminena doprowadzilo do uzyskania szybkiego algo

rytmu o dw6ch rodzajach iteracji. G6rne ograniczenie czasu dzialania nowego algorytmu wynosi

0 (n 5
) prostych operacji arytmetycznych.

34J«!leKTIIBHhiH aJlrOpHTM !l:CKOMfi0311~UII CCTII Ha MHHIIMaJlLHO

CBH3HLIC rpa<flbl

B CTaTbe rrpe,n:JIO)J(eH HOBbrH amOpli!TM OIIpe,n:eJieHID! MHHHMaJibHO CBH3Hb!X IIO,n:rpa<j!OB.

,[(aeTCH TaK)J(e BepXHHH IIpe,n:eJI '!HCJia HTepal.UIH amopHTMa. HOBblH amopHTM HBJIHeTCl! JIY'fiiie

rrpe,n:bl.D;yll.lero.

BHa'!aJie rrpe,n:JiaraeTCl! IIOHHTHe MHHHMaJibHO CBH3H0f0 IIO,n:rpa<jla H IIpHBO,LIHTCH HaH60Jiee

Ba)J(Hble CBOHCTBa HeKOTOporo KJiaCCa amOpHTMOB, OIIpe,n:eJil!IO!l.IHX JTH IIO,n:rpa<jlbi. 3aTeM rrpe,n:

CTaBJieHa 6onee paHHl!l! peaJIH3ai(lll! Bbiiiie yrroMHHyToro Knacca amopnTMOB. B xy,n:meM cnyqae

oHa Tpe6yeT 2"- 2 HTepai(HH (Ka)J(,n;al! H3 HHX Tpe6yeT He 6onee '!eM 0 (n2) orrepai(nil), r.n;e

n- '!HCJIO sepiilliH paccMaTpnsaeMoro rpa<jla. BrrepBbie HeMHHeH OTKpbiJI 3asncHMoCTb MHHH

MaJibHO CBl!3HbiX IIO,n:rpa<j!OB H MaTpHI(KOHe'!HblX IIpOrryCKHbiX CIIOC06HOCTeif:. IJpHMeHeHHe

JTOfO pe3yJibTaTa ,n:aeT B03MO)J(HOCTb IIOBbiCI!Tb J<jlilJeKTHBHOCTb amopiiTMa orrpe,n:eJieHHH MIIHH

MaJibHO CBH3HbiX rro,n:rpa<jlos. Pa3BHTHe KOHI(eiii(HII HeMHHeHa rrpiiBeno K rronyqeHoiO 6onee

CKOpOCTHOfO aJirOPIHMa, B KOTOpOM cymeCTBYIOT HTepai(HH ,LIBYX THIIOB. BepxHHli npe,n:eJI Bpe

MeHH ,n;eliCTBlll! HOBOfO amopHTMa paBeH 0 (n5
) JJieMeHTapHbiX apH<j!MeTH'ieCKHX OIIepai(HJ:i:. '

