Control
and Cybernetics
VOL. 13 (1984) No. 1-2

An efficient algorithm for partitioning a network
into minimally interconnected subnetworks

by

WIESEAW STANCZAK

Institute of Computer Science
Polish Academy of Sciences
PKiN, P.O.Box 22

00-901 Warszawa, Poland

This paper presents a new algorithm for determining minimal sets (sometimes called minimal
groups or minimally interconnected subnetworks) in a graph. The upper bound on the number
of iterations and/or simple arithmetic operations in this algorithm is derived, and is shown to comp-
are favourably with the upper bounds on the number of iterations required by some earlier algo-
rithms.

First, the paper states the idea of a minimal set, and points out the most important properties
of some class of algorithms useful for determining minimal sets. Then, the idea of the earlier com-
putational realization of this class is described. It occurs that in the worst case the previous algorithms
need 2"—2 iterations, and a single iteration is of type 0 (#?), where 7 is the number of vertices in
a graph considered. The idea of the interdependence between a minimal set and a terminal capacity
matrix, first derived by Nieminen, gives a possibility to improve the efficiency of the algorithm.
This concept is developed and it leads to a faster algorithm with two kinds of iterations. It is shown
that the new algorithm needs O (#°) simple arithmetic operations.

1. Introduction

The idea of minimal sets was introduced by Luccio and Sami [11] for solving
a problem of dividing a given electrical network into subnetworks. Such a decom-
position results in minimizing the total number of interconnections (leads) between
these subnetworks under some specific conditions. Then, Kacprzyk and Staficzak
[7, 9] generalized the concept of minimal sets to an arbitrary weighted graph, spe-
cifically to unigraphs with nonnegative real edge weights. The method of minimal
sets proves to be a relatively useful technique for solving some specific graph par-
titioning problems. These problems consist in dividing the set of vertices into subsets,
such that the mutual connections between vertices (called similarities) in a subset
are stronger than those between the vertices in the subset and the vertices not belong-
ing to the subset. As it was shown in several recent papers of the author et al., we
can use the technique of minimal sets for preliminary partitioning a design problem

7 .

98 W. STANCZAK

into subproblems in many practical fields, e.g. in designing a telephone interex-
change network [10], in determining hierarchical structure of a computer network
[8, 16], in seeking the optimal division of a group of enterprises into interacting
subgroups [6], in the hierarchization of data structures [15], etc. Hence, the problem
of determining an efficient algorithm for enumerating all minimal sets in a given
graph is of a great interest. The first algorithm was proposed by Luccio and Sami
in [11]. Kacprzyk and Staficzak have derived a number of additional properties
of minimal sets and also developed an improved algorithm in [7, 9]. Some exten-
sions introduced in [16] have led to a new form of the algorithm (or a class of algo-
rithms) and its implementation as a computer procedure. It can be proved that
the class of algorithms defined in [9, 16] provides a complete enumeration of mini-
mal sets existing in a specified graph (see e.g. [9, 16]). The revised proof of this
feature for this class of algorithms is shown in [14]. Unfortunately, all the previous
realizations have not the polynomial complexity. The purpose of the paper is to
propose and describe in detail a polynomial-type algorithm.

Nieminen [13] derived some relations between minimal sets and minimal cut-sets

in a graph. These properties make possible to obtain a polynomial-type algorithm
for finding minimal sets.

2. Preliminaries

Let G=(X, E) be a finite complete undirected graph without loops and multiple
edges. X is its vertex-set and E is its edge-set. E={{x, y}: X, ye X, x;éy}, ie. we
refer to an edge as to an unordered pair of vertices. We assign a nonnegative weight
w (x,) to all the edges of G, and it results in an ordered pair (G, w). In applications
(see e.g. [6, 8, 10, 15, 16]) w (x, y)’s are of similarity type, and thus (G, w) is called
the edge-weighted graph of similarity or simply a graph of similarity. For brevity
by f(4, B) we denote the following double sum

fA4,B= D" Y wxy),)
x€A yeB
where 4 and B are disjoint subsets of X. Obviously, f(4, B)=f (B, A). Moreover,
f(4, 9)=0, by definition.

A nonempty subset S of X is called minimal in {G, w) (further, we assume that
our discussion concerns a fixed and specified ordered pair (G, w), hence the remark
about {G, wy will be omitted), if for each nonempty proper subset R of S the
inequality

fR,X=-R)>f(S, X-5) ()
holds.

In the introduction we mentioned a class of algorithms generating all minimal
sets in (G, w). To describe any algorithm from this class we need the following
properties of minimal sets (see [16]).

An efficient algorithm : 99

THEOREM 1A. 1. {x} is a minimal set, for each x € X.
2. Let K be a nonempty set of indices and {Z;: i€ K} be a collection
of pairwise disjoint minimal sets. By S;, J<K, we denote

SJ= U Zi (3)
iedJ
If the following inequality
S8, X=8)<min {f(Z;, X-Z):ieJ} 4

holds for J=K and is not satisfied for any nonempty proper subset J of K, then Sk is
a minimal set.

THEOREM 1B. A4 set S, |S|>1, is a minimal set which does not include another minimal
set consisting of more than a single element if and only if

FD, X—D)<f{x}, X—{x} ©)

is fulfilled for each x € D where D=S, and does not hold for any x € D, where D is a
nonempty proper subset of S.

In the sequel, we refer to Theorems 1A and 1B as to Theorem 1, for brevity.

Since G is a finite graph, then there exists a finite number of nonempty subsets
of its vertices. Thus the number of minimal sets is alse finite. The idea of algorithms
creating the class mentioned in the introduction consists in merging some minimal
sets into a new one. Then each of these algorithms terminates after performing some
finite number of iterations, say i,,, iterations, at worst. Let L=1{0, 1, 2, ..., iy, — 1}
be the set of indices of consecutive iterations. Moreover, we denote Ly =L — {i .. — 1},
for short. Each algorithm belonging to the class consists of two alternating phases
which are described below.

Aggregation phase (AP).

For j=0 we simply have <{G°, w°>={(G, w).

Let je L—{0} and let B;%0 be a collection of all minimal sets determined in
the (j—1) th iteration of the algorithm, and X7 be an arbitrary set consisting of
|B;| elements. We assume that d; is a bijective function, d;: B,—~X7. Now, a new
weighted graph {GY, w/) is obtained, where G’ is a complete undirected graph
without loops and multiple edges with a vertex-set X7. The values of w’/ are com-
puted by using the following formula

W)= X wt, (6)

sedjt (@) ted7t ()

where d; ' denotes the inverse function of d;. In other words, each minimal set
obtained in the (j—1) th step is substituted by a single vertex in G and then the
individual similarities w'=! (s,) are replaced by joined similarities f/~1 (4, B)
calculated with the aid of (1), since the elements of B; are pairwise disjoint (see SP
below). If the relation w (x, ¥)=0 holds for each edge of the graph GY, then the
algorithm terminates. Otherwise, we pass to the searching phase.

100 W. STANCZAK

Searching phase (SP).

The (j+1) th iteration, j€ Ly, of this phase is defined recursively as follows.
In the very beginning of SP we have J=§ and Si=0. We check the minimallity
of subsets of RI=X/— §7 by using Theorem 1. If we find a new minimal set Z, |Z|> 1,
then the set J is augmented with the index of Z. Moreover, S7 is redefined due to
a formula similar to (3). Then R} is updated which preserves that the elements of
B; ., are pairwise disjoint, etc. We terminate the current SP and the (j+1) th step
when there is no subset Z |z|> 1, of RJ, which can be a minimal set. Thus, we define
K=J and the partial solution is obtained in the form B;,,={ZJ:ie K} u{{x}:
x € R}} Now we check whether the equality [B;.,|=1 holds. If so, then the algo-
rithm terminates. Otherwise, we pass to AP of the next iteration.

Thus, the algorithms of the class considered differ one from another in the
family of functions {d;:je L,} used in AP and in the method of choosing subsets
for checking their minimallity in the current R’ in SP. The computer implement-
ation described in [16] is based on a modification of a fast procedure proposed by
Even [2], which generates all the subsets of a given set in succession. It means that
in the worst case one has to examine all the 2'¥! —2 nonempty proper subsets of X.

Now, we derive the upper bound on the number of minimal sets for a given
{G,w), G=(X, E). Let a{” denote the number of minimal sets having exactly j
elements, where these minimal sets were obtained by merging some minimal sets
with cardinality at most i. Since two minimal sets can be either disjoint or one of
them is included in the other (see e.g. [7, 11, 16]), then

X2 G+1) 6, +042) a4+ .. +(X] =1 o _,)
for i=1,2, ..., |X|—2. Maximizing the value of the sum W ())=a{) ,+a®) +..
..+a(® _, subject to (7) we obtain a’=0 for k=i-+2,i+3, ..., |X|—1, and a? =

X|) f:oreachi—l 2 | X|—2. Therefore | X| Xl X |X]
i+1 ’ B : reior 8" 5 A A sees ‘Xl—l

is a majorant sequence for |X|, W (1), W(2), ..., W(X|—2). Thus we have no
more than |X]|[y+In(|X]—1)41] minimal sets for a given <G, w), G=(X, E),
where y=0.577... is the Euler constant. Hence the implementations based on Even’s
procedure as described above are of very low efficiency. Our task is to construct
an algorithm which examines a substantially lower number of subsets than 21X/ -2,

=entier (

3. On some specific sets

Let us consider a graph of similarity (G, w), and S<X be a nonempty set of
vertices. For short we denote |.S| by s. We assume that the elements of S are ordered
in a sequence

o (S)=x:1=0, 1, 2, ..., s=1), ®)

where if k#r, then x,#x, and that the following condition

fx} X={xH=w (X1 1) mod () X1)+W (xin X(i+1) mod (s)) €))

An efficient algorithm 101

holds for each i=0, 1, 2, ..., s—1. Since each weight in {G, w) is nonnegative, the
equality (9) means that each edge joining x € S with y € X¥—S is weighted by zero.
Moreover, we have w (x;, x;,,)=0 for every i=0,1,2, ..., s—k—1, k>1, for each
Xy X141 € S. Such ordering of elements of S is called a circuit structure of S (gene-
rated by o (S) as in (8)) and denoted by ¢ (S). Furthermore, if w (x,_1, x0)=0,
then we call ¢ (S) a path structure and denote it by p (S). The parameter s is called
the length of S. By a path substructure of ¢ (S) we understand some path structure R,
where R< S, and the sequence ¢ (R)=(x; &,+:: i=0, 1, 2, ..., [R| —1) generating p (R)
is a subsequence of that generating p (S), i.e. it begins with the i (R) th element
of ¢ (S), where 0<i(R)<s—|R|. Now, we can state the following lemma.

LeMMA 1. Let us consider a circuit structure ¢ (S) and a collection of its q path sub-
structures {p (H,):j=1,2, ..., 9}, ¢>1. If the path substructures are pairwise dis-
jeint, then the set

o=UH, (10)

is not minimal.
Proof. We can write
Hj={xi(Hj)+i:i=O, 1,2, .., |H; ~1}. (11)
Since these path substructures are pairwise disjoint, then the inequality k<r implies
i (H)+Hdl<i(H) (12)

for each k, r=1, 2, ..., g¢. Due to (10), (11) and (12), if k<r, then there exists an
index £, such that x, € S, x, ¢ Q and i (H)+|H,|—1 <#<i (H,). Therefore, we have

a
1@ X-0)= Y f(H, X—H), vo13)
because for each k=1,2, ..., g e
f(H, X—H)=w (X; ()~ 15 Xt)t W (X g+ 17~ 10 X oy + 11, » (14)
where the indices are taken modulo s. According to (13) the inequality
f©Q, X-0)>f(H, X—Hy, (15)

is satisfied for each k=1, 2, ..., ¢, and hence Q is not a minimal set. Q.E.D. B
Applying the rule of contraposition we obtain

COROLLARY 1. Let us consider ¢ (S) and a nonempty subset R of S. If R is a minimal
set, then there exist indices r and q, 0<r<g<s—1, such that

R={n2i=¥,1+1, .. .9}, (16)

i.e. p(R) is a path substructure of c (S).
This corollary plays a very important role in the proof of validity of our new
algorithm which is derived in the next section.

102 W. STANCZAK

4. A new algorithm

First, we briefly alrec frthat a cut-set C in a graph G=(X, E) consists of a non-
empty set of edges C< Eln om the original graph G. By deleting C from E we obtain
a new graph (X, E—C) w ch the vertex-set X can be divided into two disjoint
nonempty sets, say X,; and X,, such that there is no edge in E— C, connecting any
x €X,; with any y e X,, while in E such edges exist. The deletion of any proper
subset E” of C does not result in such partition. The partition of X into two disjoint
nonempty subsets X; and X, generated by a cut-set C is denoted here by {X;, X,}| C.
After removing all the edges of a cut-set from the original graph there exists no path
joining any x € X; with y € X,. To emphasize this fact we denote the cut-set by
C (x; y) and call it a cut-set separating x and y. In a weighted graph the value V' [C]
of a cut-set is defined as the sum of weights of edges from C. In general, there exist
many cut-sets C (x; y) in a given graph G=(X, E). The cut-set C*=C (x; y) se-
parating fixed and specified vertices x and y is called minimal when V [C*] attains
the smallest possible value over all the ¥V [C (x; »)].

Moreover, we recall (see e.g. [12]) that the terminal capacity matrix of <G, w)
is a symmetric square matrix, in which the (i, /) th entry, i, is equal to the smallest
possible value of C (7)), i,je€ X. At the main diagonal, it usually has a dummy
value, say d.

Now, we consider a symmetric square matrix M with d on its main diagonal.
Another entries are assumed to be real and nonegative. We assume that by a si-
multaneous permutation of rows and columns of M, the following representation
of this matrix

is obtained (the superscript 7' denotes the matrix transposition), where each entry
of M, has the smallest possible value over the (i, j) th elements, i/, and M,, M,
are square matrices with d at their main diagonals. We call M, and M, the resultant
main submatrices. This representation is known as a principal partition of M [12].
The coincident permutation of rows and columus resulting in a principal partition
of M is said to be the principal partitioning process. The following theorem holds.

THEOREM 2 [12]. A symmetric square matrix M is the terminal capacity matrix
of some {G, w) if and only if its principal partition exists and the process of principal
partitioning can be continued till all the resultant main submatrices have no more
than a single entry d.

e IR I V)

Theorem 2 implies that by successive rearrangements of rows and columns in
the terminal capacity matrix M for (G, w) we obtain consecutive principal partitions
of M and its resultant main submatrices. Evidently, each principal partition gene-
rates the same division of X into two disjoint subsets as some minimal cut-set. The
final ordering of rows and columns in M corresponds to an arrangement of vertices
of X in the so-called path realizing the terminal capacity matrix of (G, w). The

An efficient algorithm 103

most important feature of this path is that each minimal cut-set separating its two
vertices, say x and y, has the same value as the minimal C (x; y) in {G, w). This
property of path realizing the terminal capacity matrix is used here for increasing
the efficiency of the algorithm determining minimal sets. Now, we describe a pro-
cedure constructing the path realizing the terminal capacity matrix.

First, we define an auxiliary weighted graph (G4, w4) on the basis of (G, w).
Let X“and X? be two disjoint subsets of X (X* and/or X? may be empty), such that
XB=X—(X"U X?) is nonempty. We merge X* and X? into single vertices, a and 5,
respectively and define X=X?u {a, b}, E4={{x, y}: x, y € X4, x#y}, G*=(X4, E4)
If x,yeX® x#y, then w(x,y)=wi(y,x)=w(x,»). Otherwise, w4 (a, y)=
=w4 (y, &)=f (X% {y}), and similarly for b. Furthermore, w4 (a, b)=w* (b, a)=
=f (X% X?). Evidently, if e.g. X*=0, then w* (a, b)=w* (4, y)=0 for each ye X,

We use the graph <G4, w*)> in the procedure generating some path on the basis
of (G, w). An idea of this procedure is the following. In the first iteration we have
Xo=Xb=(), XB=X, and, obviously, w*(x, a)=w*(x, b)=w* (a, b)=0, for each
x e X. We seek a cut-set C; which minimizes the value of minimal cut-sets C (x; y)
over all pairs of distinct x;,ye X. Obviously, there exists such C;, but not
necessarily unique. By choosing some C; we attain a partition {X;, X,}|C,
of the original X. If|X;|=|X,|=1, then the procedure terminates. Let us now
assume that |X;|>1. We merge X, into a single vertex b and we have X*=g,
XB=X,. We find a cut-set C, which minimizes;the value of C(y, x) over all pairs
of distinct x,yeX®, and obtain a new partition {X,,X,}/C,. We relabel the
subsets of X, such that X, is now denoted by X, X; —by X,, and the old
X, — by X, etc. Let us consider the general case in which X3, X,, X3, ..., X, ¢>2,
and |X;|=1. If |X,| =1, for each i=1, 2, ..., g, then the procedure terminates. Other-
wise, there exists the smallest subscript, say r, for which |X,|>1. We have here
Xo=%, UX; V.. uX,_; and either X?=X,,; VX, ., u..UX, for g>r, or
Xb=(for g=r. We seek a cut-set C, minimizing the value of C (x; y) over all pairs
of distinct x, y € XB=1X,, etc. The consecutive steps of this procedure are as follows.

Construction of a path strurture (CPS).

1. Set X,: =X. Merge X, into a single vertex {X},.

Reprimtle gai=1

3. Take the set X, corresponding to {X}, and set ¢: =1.

4. If |X,|=1, then r: =r+1 and ¢: =0.

5. If r=|X], then STOP.

6. If t=0, then return to Step 3. Otherwise pass to Step 7.

r—1 q

7. Define (G4, w4), where X?=X,, X°=|_) X;, and X*=) X,.

i=1 i=r+1

8. Construct a minimal cut-set C(x;)) in (G4 w%), x,yeX?, such that
V [C (x; y)]=min {V [C (x; »)]: x, y € X®, x#y} and determine {X, X?}|
IC (x; ¥).

9. 4: =X nX}; B: =X n X7,

104 W. STANCZAK

10. If r=gq, then go to Step 12.

11. For each i=r+1, r42, ...,q do: X;;,: =X, and {X};,,: ={X}; (relabelling
the subsets and the vertices).

12. If a€ 4, then X,: =A4; X,,,: =B and go to Step 14.

13,5k =8 Xy =4

14. Split the old vertex {X}, into two new vertices { {X},, {X},+1 and join them
with the edge weighted by V [C (x; »)].

15. q: =q+1.

16. If g¢<|X|, then go to Step 3. Otherwise, STOP.

ProrosiTION 1. The algorithm CPS generates a path realizing the terminal capacity
matrix for {G, w).

Proof Evidently, CPS generates a path consisting of all vertices of X. It remains
to prove that the values of minimal cut-sets separating distinct vertices x and y
of X are the same for the path P determined by CPS and for <G, w).

) For brevity, we denote by C? (x;y) the minimal cut-set separating x and y
in P and by C4 (x;y) that in the current (G4, w4). Let € (x; y) denote the set of
all C(x;y) in {G, w) for a fixed pair of distinct x, y e X.

In the first iteration X=X, and

V[C (x5 p)l=min {V [C (x; »)]: x, y € X,, x#}, a7
due to Step 8. According to x € X; and y € X, (or y € Xy, x € X,), and (17) we have
VICP (x;)l=min {V' [C (x; »)]: C (x; y) € € (x; »)}, (18)

because {X}; and {X}, are joined with the edge weighted by V' [C“ (x;)] in Step 14.
If for some s, 1€ X, s#t,

min {V [C (s; D)]: C(s; 1) e € (s;)} =V [C? (x; »)], (19)
then either s,1€ X, or s, t€X,.

In the ith iteration, i>1, we have XB=X,, |X,|>1. If X9 X"=@, then by the
same arguments as used in [3, 5] to prove the validity of procedures useful for con-
structing a graph realizing a given terminal capacity matrix we obtain (17). We
therefore assume that X* and X? are nonempty. Let C be a minimal cut-set sepa-

rating x and y in <G, w) and {X;, X,}|C={4 v XU X}, BUX?u X3}, where 4, B
are defined by Step 9 and X*=X?0U X2, X’=X? X}, X%, X{#0 and X2uUX2#0.
We can write V [Cl=f (4, B)-Hf (4, X2)-Hf (A, X2)-+f (X7, B)+7 (Xt XD+ (X2,
XD +f (X2, B)+1 (X2, X)+1 (X, X2). Due to the construction of X* and X® and
due to (19) we easily obtain

f X X+ (X7, X3)= (4, X5 0 X3)+f (B, X3 v X3)+
+H&XE X)X X)) (20)
Thus, combining (20) and the expression for V [C] we get
VICl=f(4uX*UX® B)+te, 1)

An efficient algorithm 105

where e=2[f(4, X20 XD)+f(XE, XD+ (X7, XD)+f (X%, XD]>0. Hence, C is
not a minimal cut-set separating x and y in {G, w), i.e. a contradiction. Thus, the
condition (17) is fulfilled, and we obtain (18) again. Q.E.D. 3]

The path P=(X, Ep) realizing the terminal capacity matrix of (G, w) generates
a graph of similarity (G, w*), where the weights w* are determined by

VICP Gy o xyeEy,
LAl | P
L (x’y)“lo if x,y¢E,.

It is evident that P is a path structure of (G, w*). Nieminen [13] proved the follow-
ing theorem.

THEOREM 3. If S is a minimal set in {G, w), then S is also a minimal set in each
path structure realizing the terminal capacity matrix of {G, w).

As an immediate consequence of Theorem 3 we obtain the following corollary.

COROLLARY 2. If S is not a minimal set in some path structure realizing the terminal
capacity matrix of {G,w), then S is not a minimal set in {G, w).
Due to Corollaries 1 and 2 we have the following proposition.

PrOPOSITION 2. R is a minimal set in (G, w) only if it is a minimal set in a path
structure realizing the terminal capacity matrix of (G, w) and there exist indices r
and ¢, 0<r<¢<|X|-1, such that R={x;: i=r,r+1, ..., q}.

Hence, we have a simple and efficient method for generating subsets for checking
their minimallity in SP. It can be done in the following way. Let us consider the
(j-+1) th iteration, j € L,, where we handle {G’, w'), G'=(X”, E’). We assume that
o (X)=(x;:i=0,1, 2, ..., |X7|—1) is the sequence of vertices obtained in CPS,
ie. the sequence generating the path structure p (X”) (see Section 3). In the very
beginning we check all the subsets Z, for which we have |Z|=2. According to Pro-
position 2 it is sufficient to take ZP={xq, 2}, ZP=1{x1, B}, ovss ZP={, 1, %}
vees ZDy _ ={X 35— 5> X35~ }- Now let us assume, that Sj#0, and we test -tuples.
If k, 0<k<|X7|—t—1, is the smallest index beginning a path substructure of length ¢
consisting of the elements belonging to Rj, then we take ZP={x;, Xy 41, «ves X 41— 1}
Z! = {Xyi 15 Xpy25 s Xy e)s otc. If for some #, such k does not exist, then there
is no subset Z, |Z|>1, in the current RJ (and thus in the (j+1) th iteration) which
can be a minimal set. The correctness of the method described above directly follows
from Proposition 2. Let us denote this realization of the searching phase by SP;.
Hence, we can formulate the following revised algorithm.

Algorithm.

1. Execute the AP.
2. Perform the CPS.
3. Go to Step 5.

106 W. STANCZAK

4. Execute the AP.
5. Realize the SP;.

6. Update the path structure being the realization of the terminal capacity
matrix by merging the vertices belonging to the same minimal set and then
deleting loops.

7. Return to Step 4.

5. Some properties of the revised algorithm

Now, we consider the relation between the revised algorithm and the class of
algorithms defined in Section 2. We note that CPS can be included in AP for j=0,
SP, is some modification of SP, and updating the path structure can be included
in AP for je L—{0}. Thus, the revised algorithm belongs to the general class de-
scribed in Section 2. All the general properties of this class, which are introduced
in [9, 14, 16] hold in the case of our new algorithm. More specifically, we can for-
mulate the following important theorems [9, 14, 16].

THEOREM 4. The revised algorithm generates a partition of X in each iteration, i.e.
the minimal sets determined in the jth step are pairwise disjoint and their union is
equal to X7. Furthermore, the algorithm gives all minimal sets in {G, w).

THEOREM 5. The results of the revised algorithm do not depend upon the choice of
the family of functions {d;:je Ly}.

The fact that the algorithm generates a partition of X in each iteration is import-
ant from the practical point of view (see, e.g. [6, 8, 10, 11, 15, 16]). Theorem 5
has a real meaning for constructing a computer implementation. It allows to choose
a family {d;:je L.} in the way which is more convenient for us (see e.g. [9, 16]),
e.g. in the simplest way from the programmer point of view.

Summarizing, the main idea of the revised algorithm is the same as in the pre-
vious algorithms generating minimal sets. The only, but also very important refinem-
ent lies in a considerable increase of the efficiency, which is shown in more detail
in the next section.

6. Efficiency of the algorithm

Now, we direct our efforts to the estimation of the complexity of our new al-
gorithm. It is evident that we can make the calculations in two separate phases.
The first one concerns the initial construction in CPS. The second phase refers to
the rest of the algorithm, mainly to SP,. In CPS we seek minimal cut-sets. In the
computer implementation programmed in the Institute of Computer Science of
PAS we generated minimal cut-sets using the algorithm proposed by Edmonds

An efficient algorithm 107

and Karp [1]. Now, we prepare a new version of CPS, which bases on the procedure
described by Galil [4]. Then, it is convenient to make the further analysis in general,
i.e. independently on the procedure used for generating minimal cut-sets.

In CPS we need to evaluate |X|—1 terminal capacitieres rath than one minimal
cut-set and we have no way to forecast the size of sets 4 and B (see Steps 9, 12 and 13
of CPS), which are consecutively generated. Moreover, we do not seek in CPS
a minimal cut-set separating some fixed and specified pair of distinct vertices, but
we look for a minimal cut-set which has the smallest possible value among all the
cut-sets separating all distinct pairs of vertices in X=X, (see Steps 7 and 8 of CPS).
Hence, the method of Gomory and Hu [5], described also in [3], in its original
form is not sufficient for our purposes, because we should obtain a path realizing
the terminal capacity matrix instand of a tree.

In view of the above remarks we have to describe Step 8 of CPS in detail, then
evaluate its efficiency and finally determine the numerical complexity of the whole
CPS. The realization of Step 8 of CPS can be as follows. Let the vertices of X®
be arranged in any sequence (x;:i=1, 2, ..., |X5|). We determine a minimal cut-set
C (x;; x,), where x;=x;, merge x, and x, into a single vertex, say x,, determine
a minimal cut-set C (x,; X5), merge x, and x; into x;, etc. Further, we can use
the following theorem.

THEOREM 6. Let {G*, w4) be given as described in Section 4. If C(x;; AT I £
<is |XB| =1, is a minimal cut-set with the smallest value obtained by the procedure
defined above, then

V[C (x}; x4)]=min {¥ [C (x; Y)]: x, y € XB, x#y} (22)

Proof. Letaminimal cut-set with the smallest value which separates two vertices
of X® be denoted by C°, its value — by ¥, and {X9, X9} ={X;, X,}|C°. We assume
that Vo<V [C (x}; x;4+1)] for each i, 1<i<|X®|—1. We also assume that x; € X9,
Hence, there exists an index ¢, 14+¢<|X%|—2, such that

Ay={x:i=1,2, .., 1} X° 23)

holds and x, . ; € X3. Thus, we have ¥V [C (x, ; x,+1)]=f (4, D, E)f (4, U (X?—4)),
X4—-X9)=V?°, for some D, E and x,..; € E (D may be empty). Therefore, we obtain
Vo< VO ie. a contradiction. Q.E.D. =

Now, we note again that there is no way to forecast the size of sets 4 and B con-
secutively generated in CPS. To estimate the computational effort needed for exe-
cution of CPS we have to define a vertex weighted arborescence (i.e. a rooted directed
tree) of the partitioning. We proceed in a recurrent way based on the description
of CPS, as follows.

The root is the vertex {X}; defined in Step 1 and its weight equals |X]. Initia.y,
t has no label. From the root there are two arcs directed to vertices {X}, and {X},
obtained in the first iteration by splitting the original {X},. Initially, they are also
unlabelled and their weights are |A4| and |B| (see Steps 9, 11 and 13), respectively.

108 W. STANCZAK

We assume that some vertex {X}, was reached in Step 4 of the ith iteration, i>1.
CASE 1. |X,|=1. There exists a single arc incident in {X}, and there is no arc in-
cident out. We backtrack the arc to the nearest vertex and increment r by 1. It follows
from CPS that a new vertex, we reached, has the current number r, and |X,|>1.
If {X}, is labelled, then we check whether it is the root. If so, the proceaure termina-
tes. Otherwise, we backtrack once more, increment r by 1, and again, until we reach
an unlabelled vertex or the labelled root. The latter situation was described before.
In the former one we label the vertex and the arc incoming to the curtent {X}, and
proceed in the direction of the unlabelled arc outgoing from {X},.

CASE 2. |X,|>1. We introduce two arcs outgoing from the old {X}, to new vertices
{X}, and {X},.; obtained by splitting the original {X}, (see Step 14). Neither the
old veitex {X}, nor the new vertices {X}, and {X},,, are labelled. We assign to
the new {X}, and {X},,; the values of |4| and |B|, respectively, and so on.

Fig. 1. An example of construction of a weighted arborescence.

An example of the walk described above is shown in Fig. 1. It can be easily
stated that each vertex weighted by one was passed only once. The other vertices
are passed three times. It is obvious, because to the vertex weighted by one there
is only one incoming arc and no arc is outgoing. To the other vertices, excluding
the root, there are incident three arcs. Two of them are outgoing and a single is
incoming. In fact, each vertex with the weight greater than 1 is split into two parts
and each vertex results from splitting only one vertex. The root is not obtained by
the splitting mechanism, and there are only two arcs outgoing from it. Since we
start out walk from the root, then we are in the root three times, too. From the
above discussion the next proposition follows.

ProrosiTioN 3. For each {G, w) and each realization of CPS the above walk ter-
minates in a finite number (f steps. It gives an arborescence which has the vertices
weighted by cardinal numbers of sets X, obtained during the execution of CPS.
Each arc is directed from the vertex corresponding to some X, to another vertex
corresponding to a subset of X,. All the vertices weighted by more than one are
labelled. :

An efficient algorithm 109

The arborescence gives an idea how CPS works. We need it for the estimation
of the efficiency of CPS. The wunlabelled vertices correspond to the
sets which are not partitioned. Thus, we can remove from the arborescence
each vertex without label and arcs incident to it. Further we can also delete
every vertex weighted by two and then the arcs incident to it. Evidently, the
minimal cut-set in (G4, w4) with |X®|=2 can be obtained at once. It is obvious
that now we also get an arborescence A of the partitioning. We define the value
F(A) of A, as follows

F(d= DY'h(>®), (24)

xE€EX4
where X, is the vertex-set of 4, v (x) denotes the weight assigned to x € X, and
h (y) is the complexity of procedure generating minimal cut-sets in a graph with y
vertices. To estimate the upper bound for the computational complexity of the
whole CPS we have to maximize F over all possible arborescences of partitioning.

THeOREM 7. If h is an increasing and nonnegative valued function for arguments not
less than 2, then F reaches its maximal value for A=A%*, where A* denotes a path
with vertices weighted by consecutive natural numbers from n=|X| to 3.

Proof. . First, we introduce some additional notations. Let 4, denote any arbo-
rescence of partitioning defined for a graph G with n vertices. We have F (4;)=0,
for i=1, 2. Hence, we notice that the following formula

F(4)=hm)~+F (A,)+F(4) 25)

holds for every 4,, n>1, where 4,_, and A4, are the subarborescences of 4, obtained
by removing the root and arcs incident to it from A4,.

The proof will be accomplished by induction on n. There is only one A5. For
n=4 we have two arborescences. They are shown in Fig. 2. We calculate that F (4,)=
=h (&) <F (4)=h(4)+h (3), due to the properties of A.

®

‘ a3
A A
Fig. 2. Two arborescences Ag.
Now, let us assume that for each m, 3<m<n-—1, and for every 4,, the following

inequality
F(4n<F(4,) (26)

110 W. STANCZAK

is satisfied. According to (25) and (26) we have F(A4,)—h (n)=F (4,_,)+F (4,) <
<F(4,_)+F(A}), where obviously

F(4)=D'h () @7

i=1

According to the properties of 4 and dae to (27) F(A,_,)+F(A)<F(4;_,) for
r=3 and n—r=3. If r=1 or r=2, then F(4))=0 and we have F(4,_)<F(4:_,)
again. Analogously, for n—r=1 or n—r=2 we obtain F (Af)<F (A:_ ,)- Hence,
obviously, F (4,)< F (4,). QED.]

It means that in the whole CPS we have to perform no more than £ (4;) simple
arithmetic operatious such as additions, subtractions and comparisons. When we
use the iprocedure described by Edmonds and Karp we need % (k®—k) k? these
operations for finding a minimal cut-set separating a given pair of vertices in a graph
with k vertices [1]. Thus, the procedure described above Theorem 6 is of type 0 (1°).
Therefore, due to Theorem 7 the whole CPS needs 0 (n7) simple arithmetic ope-
rations. The procedure of Galil is of type 0 (n/3 ¢2/3) [4], where e denotes the cardi-
nality of edge-set, i.e. of type 0 (n®) in the worst case in which the square matrix
consisting of entries being the weights w (x, y) is not sparse. Thus, the new form
of CPS now realized in the Institute of Computer Science needs 0 (»°) simple arith-
metic operations.

It can be easily shown that for testing a subset of X7 consisting of i vertices we
>2
1

2
fi({x}, X7—{x}), je L, are known (f’ in {G’, w’) is defined by the same formula
as fin (G, w). In the other cases, the number of these operations is greater. Thus,
the first case is preferable and we consider it now. Therefore, we need at most

need +i+1 additions, 1 subtraction and i comparisons, if all the values of

el i243i4+4 (k—2) (K3412k2+59k+24)
i;z‘(k—l-l—z) == =~ £

i.e. 0 (k%) simple arithmetic operations in the jth, j € L, iteration, because we handle
no more than k-+1—i subsets of i elements (see SP;), where k=|X”|. For the initial
evaluation of f°({x}, X°—{x}) we need n(n—1) additions. For je L—{0} the
values of f7 ({x}, X/—{x}) are obtained as by-products of testing the minimallity
of the subsets from X7~* (see Theorem 1). Thus, the evaluation of 7/ ({x}, X7/ —{x})’s,
being in fact a part of AP, can be considered simultaneously with SP; and has at
most the same complexity as a single SP;. Moreover, the rest of AP can be executed
by simple changing the indices of two working lists (see [9]) which extremly speeds
up the algorithm and saves the computer memory. Therefore, since i, <n (which
can be easily proved by a construction similar to the arborescence of partitioning),
then AP and SP; in the whole algorithm need G (#3) simple arithmetic operations,
which is also the complexity for the new algorithm as a whole. For a comparison
we recall that the upper bound of the old version is 0 (2" #?) (see Section 2).

An effcient algorithm 111

References

[11 Epmonps J., KarP R. M. Theoretical improvements in the algorithmic efficiency for network
flow problems. Journal of the ACM, 19 (1972) 2, 248-264.

[2]1 Even S. Algorithmic combinatorics. New York, Macmillan, 1973.

[3] Forp L. R., FuLkersoN D. R. Flows in networks. Princeton, N. J., Princeton Univ. Press,1962.

[4] GALIL Z. An O (V5/3E2/3) algorithm for the maximal flow problem. Acta Informatica, 14,
3 (1980), 221-242.

[5] Gomory R.E., Hu T.C. Multi-terminal network flows, SIAM J. Appl. Math., 9, (1961),
551-570.

[6] KacPrzyK J., STANCZAK W. Application of the method of minimally interconnected network
for solving the problem of partitioning a group of enterprises into subgroups (in Polish).
Archiwum Autom. i Telemech., 20, 4 (1975), 513-526.

[7]1 Kacprzyk J., StaNczak W. On an extension of the method of minimally interconnected
subnetworks. Control and Cybernetics, 5,4 (1976), 61-77.

[8]1 KacprzyK J., STANCZAK W. Partitioning a computer network into subnetworks and allo-
cation of distributed data bases. Proc. 8th IFIP Conf. Optimization Techn., Wiirzburg, 1976.
Springer, 1977, 464-472.

[91 KacprzyK J., STANCZAK W. On a further extension of the method of minimally interconnected
subnetworks. Cortrol and Cybernetics 7, (1978) 2, 17-31.

[10] KaLiszewskI 1., Nowickl T., Stakczak W. On the telephone interexchange network struc-
ture decomposition using the method of minimally interconnected subgraphs (in Polish).
Rozprawy Elektrotechn., 21, (1975) 2, 573-580.

[11] Buccio F., Samr M. On the decomposition of networks in minimally interconnected sub-
networks. IEEE Trans. Circuit Theory, CT-16, (1969) 2, 184-188.

[12] MAYEDA W. Graph theory. New York, John Wiley, 1972.

[13] NieMiNEN J. On minimally interconnected subnetworks of a network. Control and Cyber-
netics, 9, (1980) 1-2, 47-52.

[14] Nowickr T., STANCzAK W. On some class of algorithms using for determination of minimal
groups in cliques. Proc. International Symp. on Applications of Math. in System Theory,
Brasov, 1978, 275-280.

[15] Nowickr T., STARczAk W. Partitioning a set ot elements into subsets due to their similarity.
Proc. 2nd International Symp. Data Analysis and Informatics, Versailles, 1979. (in) Data
Analysis and Informatics, Diday E. et al. (eds). Amsterdam, North Holland, 1980, 583-591.

[16] StaNczak W. Application of the method of minimally interconnected subnetworks to com-
puterized designing of topological structure and configuration for teleprocessing network
(in Polish). Ph. D. Thesis, Inst. of Computer Sci., Polish Academy of Sci., Warsaw, 1978.

Received, March 1982,

Efektywny algorytm podzialu sieci na zespoly minimalne

W artykule przedstawiono nowy algorytm wyznaczania zespotéw minimalnych w grafie. Podano
takze gorne ograniczenie liczby iteracji wykonywanych w trakcie dziatania algorytmu. Okazalo sig,
ze nowy algorytm jest znaczenie lepszy od poprzednich.

Na wstepie przedstawiono pojecie zespolu minimalnego i wymieniono najwazniejsze wiasci-
wosci pewnej klasy algorytmow stuzacych do wyszukiwania zespoléw minimalnych. Nastgpnie
opisano dotychczasowa realizacje wspomnianej klasy algorytmow. Okazalo sig, Ze w najgorszym
przypadku poprzedni algorytm wymagat wykonania 2"—2 iteracji (kazda z nich wymaga co naj-
wyzej 0 (n?) operacji), gdzie n jest liczba wierzcholkow w rozpatrywanym grafie. Nieminen byt

12 W. STANCZAK

pierwszym, ktory odkryt zalezno$¢ miedzy zespotami minimalnymi a macierza pojemnosci granicz-
nych grafu. Wykorzystanie tego wyniku pozwala zwiekszy¢ efektywnosé algorytmu wyznaczajacego
zespoly minimalne. Rozwinigcie koncepcji Nieminena doprowadzito do uzyskania szybkiego algo-
rytmu o dwoch rodzajach iteracji. Gorne ograniczenie czasu dzialania nowego algorytmu wynosi
0 (n°) prostych operacji arytmetycznych.

SddexTHBHLI 2MTOPUTM NEeKOMNO3HIHH CeTH HA MHHMMAJLHO
CBAI3HBIE Tpadnl

B cTathe IpEmIONKEH HOBBIM allrfOPUTM OIpPENeNeHUs] MHUHMMAIbHO CBA3HBIX HOArpados.
Jlaercs Tawke BepXHHiT mpenen umcia uTepanuit anroputMa. HOBBIE anrOpUTM SBISETCS JIydile
MPeIBIIYIIErO.

Baauane mpenaraercs MOHATHE MUHHMABHO CBA3HOrO moarpada u mpusomgrcs Haubolee
Ba)KHBIE CBOMCTB2 HEKOTOPOTO KJIacca alrOPUTMOB, ONPEACIISIONINX 3TH Ionrpadsl. 3aTteM mpel-
CTaBJIeHa 0oJiee PAHHSS peajim3anus BBIIE YHOMSHYTOTO Kjacca allfOPETMOB. B Xymmem ciydae
oHa Tpebyer 2" — 2 wrepammii (kaxmas w3 mux Tpebyer He Gosee wem O (n?) omepammii), rae
— YHCIO BEPIIMH paccMaTpuBaeMoro Tpada. Brepesie HeMUHEH OTKPBHUI 32BHCAMOCTE MUHH-~
MaJbHO CBS3HBIX MOATPa(OB W MaTpUI KOHEYHBIX MPOMYCKHBIX CcrocoOHocTed. Ilpumenerue
3TOrC Pe3ybTara OaeT BO3MOXKHOCTH TOBBICHTH 3()(QEKTHBHOCTH ANTOPATMA OIPEICIICHISI MHUHN-
MallbHO CBS3HBIX moxrpados. Passurue xoHmenuud HeMuHEeHA NPHBENO X IIONyYeHOr Oonee
CKOPOCTHOTO aJIrOPUTMA, B KOTOPOM CYILECTBYIOT UTEPALUU OBYX THUIICB. BepXHWil mpemes Bpe-
MeHH HEeiCTBHsSI HOBOTO anroputma paseH 0 (n°) 3iieMEHTapHBIX apubMETHYECKHX Orepauuif.

