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This paper presents a new algorithm for determining minimal sets (sometimes called minimal 
groups or minimally interconnected subnetworks) in a graph. The upper bound on the number 
of iterations and/or simple arithmetic operations in this algorithm is derived, and is shown to comp
are favourably with the upper bounds on the number of iterations required by some earlier algo
rithms. 

First, the paper states the idea of a minimal set, and points out the most important properties 
of some class of algorithms useful for determining minimal sets. Then, the idea of the earlier com
putational realization of this class is described. It occurs that in the worst case the previous algorithms 
need 2"-2 iterations, and a single iteration is of type 0 (n2

), where n is the number of vertices in 
a graph considered. The idea of the interdependence between a minimal set and a terminal capacity 
matrix, first derived by Nieminen, gives a possibility to improve the efficiency of the algorithm. 
This concept is developed and it leads to a faster algorithm with two kinds of iterations. It is shown 
that the new algorithm needs 0 (n 5

) simple arithmetic operations. 

1. Introduction 

The idea of minimal sets was introduced by Luccio and Sami [11] for solving 
a problem of dividing a given electrical network into subnetworks. Such a decom
position results in minimizing the total number of interconnections (leads) between 
these subnetworks under some specific conditions. Then, Kacprzyk and Stanczak 
[7, 9] generalized the concept of minimal sets to an arbitrary weighted graph, spe
cifically to unigraphs with nonnegative real edge weights. The method of minimal 
sets proves to be a relatively useful technique for solving some specific graph par
titioning problems. These problems consist in dividing the set of vertices into subsets, 
such that the mutual connections between vertices (called similarities) in a subset 
are stronger than those between the vertices in the subset and the vertices not belong
ing to the subset. As it was shown in several recent papers of the author et al., we 
can use the technique of minimal sets for preliminary partitioning a design problem 
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into subproblems in many practical fields, e.g. in designing a telephone interex
change network [10], in determining hierarchical structure of a computer network 
[8, 16], in seeking the optimal division of a group of enterprises into interacting 
subgroups [6), in the hierarchization of data structures [15], etc. Hence, the problem 
of determining an efficient algorithm for enumerating all minimal sets in a given 
graph is of a great interest. The first algorithm was proposed by Luccio and Sami 
in [11]. Kacprzyk and Stanczak have derived a number of additional properties 
of minimal sets and also developed an improved algorithm in [7, 9]. Some exten
sions introduced in [16] have led to a new form of the algorithm (or a class of algo
rithms) and its implementation as a computer procedure. It can be proved that 
the class of algorithms defined in [9, 16] provides a complete enumeration of mini
mal sets existing in a specified graph (see e.g. [9, 16]). The revised proof of this 
feature for this class of algorithms is shown in [14]. Unfortunately, all the previous 
realizations have not the polynomial complexity. The purpose of the paper is to 
propose and describe in detail a polynomial-type algorithm. 

Nieminen fl3] derived some relations between minimal sets and minimal cut-sets 
in a graph. These properties make possible to obtain a polynomial-type algorithm 
for finding minimal sets. 

2. Preliminaries 

Let G=(X, E) be a finite complete undirected graph without loops and multiple 
edges. X is its vertex-set and E is its edge-set. E= { { x, y}: x, y E X, x# y }, i.e. we 
refer to an edge as to an unordered pair of vertices. We assign a nonnegative weight 
w (x, y) to all the edges of G, and it results in an ordered pair (G, w). In applications 
(see e.g. [6, 8, 10, 15, 16]) w (x, y)'s are of similarity type, and thus (G, w) is called 
the edge-weighted graph of similarity or simply a graph of similarity. For brevity 
by f(A, B) we denote the following double sum 

f(A,B)= ~ ~ w(x, y), (1) 
xEA yEB 

where A and Bare disjoint subsets of X. Obviously, f(A, B)=f(B, A). Moreover, 
f(A, 0)=0, by definition. 

A nonempty subsetS of X is called minimal in (G, w) (further, we assume that 
our discussion concerns a fixed and specified ordered pair (G, w) , hence the remark 
about (G, w) will be omitted), if for each nonempty proper subset R of S the 
inequality 

f(R, X-R)>f(S, X-S) (2) 

holds. 
In the introduction we mentioned a class of algorithms generating all minimal 

sets in (G, w). To describe any algorithm from this class we need the following 
properties of minimal sets (see [16]). 
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THEOREM lA. 1. {x} is a minimal set, for each x eX. 
2. Let K be a nonempty set of indices and {Z1: i E K} be a collection 

of pairwise disjoint minimal sets. By Sb JcK, we denote 

(3) 
i EJ 

If the following inequality 

f(Sb X-SJ)<min {f(Z1, X-Z;): ieJ} (4) 

holds for J=K and is not satisfied for any nonempty proper subset J of K, then SK is 
a minimal set. 

THEOREM lB. A setS, ISI > 1, is a minimal set which does not include another minimal 
set consisting of more than a single element if and only if 

f(D, X-D)<f({x}, X-{x}) (5) 

is fulfilled for each x e D where D = S, and does not hold for any x e D, where D is a 
nonempty proper subset of S. 

In the sequel, we refer to Theorems lA and lB as to Theorem 1, for brevity. 
Since G is a finite graph, then there exists a finite number of nonempty subsets 

of its vertices. Thus the number of minimal sets is also finite. The idea of algorithms 
creating the class mentioned in the introduction consists in merging some minimal 
sets into a new one. Then each ofthese algorithms terminates after performing some 
finite number of iterations, say imax iterations, at worst. Let L= {0, 1, 2, ... , imax -1} 
be the set of indices of consecutive iterations. Moreover, we denote L 1 =L- {imax -1 }, 
for short. Each algorithm belonging to the class consists of two alternating phases 
which are described below. 

Aggregation phase (AP). 

For j=O we simply have <G0 , w0)=<G, w). 
Let j e L- {0} and let B1.,H/J be a collection of all minimal sets determined in 

the (j-1) th iteration of the algorithm, and :Xi be an arbitrary set consisting of 
IB11 elements. We assume that di is a bijective function, d1 : Br-"X1. Now, a new 
weighted graph <G1, w1) is obtained, where Gi is a complete undirected graph 
without loops and multiple edges with a vertex-set Xi. The values of wi are com
puted by using the following formula 

wi (x, y)= }; }; wi- 1 (s, t), (6) 
sEdj 1 (x) tEdj 1 (y) 

where dj 1 denotes the inverse function of di. In other words, each minimal set 
obtained in the (j-1) th step is substituted by a single vertex in Gi and then the 
individual similarities wi- 1 (s, t) are replaced by joined similarities p- 1 (A, B) 
calculated with the aid 0f (1), since the elements of Bi are pairwise disjoint (see SP 
below). If the relation w (x, y)=O holds for each edge of the graph Gi, then the 
algorithm terminates. Otherwise, we pass to the searching phase. 
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Searching phase (SP). 

The U+ 1) th iteration, j e L 1 , of this phase is defined recursively as follows. 
In the very beginning of SP we have J=0 and S~=0. We check the minimallity 
of subsets of R~=Xj- S~ by using Theorem 1. If we find a new minimal set Z, IZ I > 1, 
then the set J is augmented with the index of Z. Moreover, S~ is redefined due to 
a formula similar to (3). Then R~ is updated which preserves that the elements of 
Bi+ 1 are pairwise disjoint, etc. We terminate the current SP and the (j+1) th step 
when there is no subset Z lzl > 1, of R~, which can be a minimal set. Thus, we define 
K = J and the partial solution is obtained in the form BJ+ 1 ={Z{: ieK}u{{x}: 
x E R'k:} Now we check whether the equality IBH 1 1 = 1 holds. If so, then the algo
rithm terminates . Otherwise, we pass to AP of the next iteration. 

Thus, the algorithms of the class considered differ one from another in the 
family of functions { dj: j E L1} used in AP and in the method of choosing subsets 
for checking their minimallity in the current Rf in SP. The computer implement
ation described in [16] is based on a modification of a fast procedure proposed by 
Even [2], which generates all the subsets of a given set in succession. It means that 
in the worst case one has to examine all the 21x l _ 2 nonempty proper subsets of X. 

Now, we derive the upper bound on the number of minimal sets for a given 
<G, w) , G=(X, E). Let ajil denote the number of minimal sets having exactly j 
elements, where these minimal sets were obtained by merging some minimal sets 
with cardinality at most i. Since two minimal sets can be either disjoint or one of 
them is included in the other (see e.g. [7, 11, 16]), then 

IXI~(i+l) a)~ 1 +(i+2) an 2+ ... +(IXI -1) af¥1_ 1 (7) 

for i=1, 2, ... , IXI -2. Maximizing the value of the sum W(i)=an 1 +a~i2 2+ .. · 
... +afQ

1
_ 1 subject to (7) we obtain a~n=o for k = i+2, i+3, ... , IXI - 1, and an 1 = 

( 
lXI ) · . lXI lXI lXI 

=en tier i+ 1 , for each i= 1, 2, ... , lXI - 2. Therefore lXI, -
2
-, -

3
- ... , IXI -

1 
is a majorant sequence for lXI, W (1), W (2), ... , W (lXI - 2). Thus we have no 
more than lXI [y+ln(IXI - 1)+1] minimal sets for a given <G, w), G=(X,E), 
where y= 0.577 ... is the Euler constant. Hence the implementations based on Even's 
procedure as described above are of very low efficiency. Our task is to construct 
an algorithm which examines a substantially lower number of subsets than 21x1 _ 2. 

3. On some specific sets 

Let us consider a graph of similarity <G, w), and Se X be a nonempty set of 
vertices. For short we denote ISI by s. We assume that the eleme~ts of S are ordered 
in a sequence 

a (S) = (x;: i=O, 1, 2, ... , s - 1), 

where if k=l= r , then xk=l= Xr and that the following condition 

(8) 

f({xi}, X- {x;}) = w (x(i - 1) mod (S)' xi)+w (x;, X(i+l) mod (s)) (9) 

--- ----------------------------------------------------------------
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holds for each i=O, 1, 2, ... , s-1. Since each weight in (G, w) is nonnegative, the 
equality (9) means that each edge joining x E S with ye X- S is weighted by zero. 
Moreover, we have w (x;, x1+k)=0 for every i=O, 1, 2, ... , s-k-1, k> 1, for each 
X;, x;+k e S. Such ordering of elements of S is called a circuit structure of S (gene
rated by a (S) as in (8)) and denoted by c (S). Furthermore, if w (xs -1> x 0)=0, 
then we call c (S) a path structure and denote it by p (S). The parameter s is called 
the length of S. By a path substructure of c (S) we understand some path structure R, 
where R eS, and the sequence a (R)=(x; (RJ+i: i=O, 1, 2, ... , IRI -1) generatingp (R) 
is a subsequence of that generating p (S), i.e. it begins with the i (R) th element 
of a (S), where 0:::;; i (R):S; s- I RI. Now, we can state the following lemma. 

LEMMA 1. Let us consider a circuit structure c (S) and a collection of its q path sub
structures {p (Hi): j= 1, 2, ... , q }, q > 1. If the path substructures are pairwise dis
joint, then the set 

q 

Q= UHj (10) 

is not minimal. 
j= 1 

Proof. We can write 

(11) 

Since these path substructures are pairwise disjoint, then the inequality k < r implies 

(12) 

for each k, r= 1, 2, ... , q. Due to (10), (11) and (12), if k < r, then there exists an 
index t, such that xt e S, xt $ Q and i (Hk)+IHkl - 1 <t<i (Hr). Therefore, we have 

q 

f(Q, X-Q) = };f(Hi, X-Hj), (13) 
j=1 

because for each k = 1, 2, ... , q 

f(Hk, X - Hk)=w (x; (Hkl - 1 , xi(Hk))+w (x; (Hk)+ JHkJ- 1, X; (Hk)+ JHk l), (14) 

where the indices are taken modulo s. According to (13) the inequality 

f(Q, X -Q)?;_f(H," X- Hk), (15) 

is satisfied for each k= 1, 2, ... , q, and hence Q is not a minimal set. Q.E.D. B 
Applying the rule of contraposition we obtain 

CoROLLARY 1. Let us consider c (S) and a nonempty subset R of S. If R is a minimal 
set, then there exist indices rand q, O:S;r:S;q:S;s - 1, such that 

R = {x;: i=r, r+l, ... , q}, (16) 

i.~. p (R) is a path substructure of c (S). 
This corollary plays a very important role in the proof of validity of our new 

algorithm which is derived in the next section. 
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4. A new algorithm 

First, we briefly alrec frthat a cut-set C in a graph G= (X, E) consists of a non
empty set of edges CcEln om the original graph G. By deleting C from Ewe obtain 
a new graph (X, E - C) w eh the vertex-set X can be divided into two disjoint 
non empty sets, say X 1 and X2 , such that there is no edge in E- C, connecting any 
x e X 1 with any yE X 2, while in E such edges exist. The deletion of any proper 
subset E' of C does not result in such partition. The partition of X into two disjoint 
nonempty subsets X1 and X 2 generated by a cut-set C is denoted here by {X1 , X2 }1 C. 
After removing all the edges of a cut-set from the original graph there exists no path 
joining any x e X1 with ye X 2 • To emphasize this fact we denote the cut-set by 
C (x; y) and call it a cut-set separating x and y. In a weighted graph the value V [C] 
of a cut-set is defined as the sum of weights of edges from C. In general, there exist 
many cut-sets C(x;y) in a given graph G= (X,E). The cut-set C*=C(x;y) se
parating fixed and specified vertices x and y is called minimal when V [C*] attains 
the smallest possible value over all the V [C (x; y)]. 

Moreover, we recall (see e.g. [12]) that the terminal capacity matrix of (G, w) 
is a symmetric square matrix, in which the (i,j) th entry, i#j, is equal to the smallest 
possible value of C (i;j), i,j EX. At the main diagonal, it usually has a dummy 
value, say d. 

Now, we consider a symmetric square matrix M with don its main diagonal. 
Another entries are assumed to be real and nonegative . We assume that by a si
multaneous permutation of rows and columns of M, the following representation 
of this matrix 

M=[~~-::'!~] 
MC :Mb 

is obtained (the superscript T denotes the matrix transposition), where each entry 
of Me has the smallest possible value over the (i,j) th elements, i#j, and Mao Mb 
are square matrices with d at their main diagonals. We call Ma and Mb the resultant 
main submatrices. This representation is known as a principal partition of M [12]. 
The coincident permutation of rows and columns resulting in a principal partition 
of M is said to be the principal partitioning process. The following theorem holds. 

THEOREM 2 [12]. A symmetric square matrix M is the terminal capacity matrix 
of some< G, w) if and only if its principal partition exists and the process of principal 
partitioning can be continued till all the resultant main submatrices have no more 
than a single entry d. 

~ . ..._ .. --~-~- . .... --~ ..... 
Theorem 2 implies that by successive rearrangements of rows and columns in 

the terminal capacity matrix M for< G, w) we obtain consecutive principal partitions 
of M and its resultant main submatrices. Evidently, each principal partition gene
rates the same division of X into two disjoint subsets as some minimal cut-set. The 
final ordering of rows and columns in M corresponds to an arrangement of vertices 
of X in the so-called path realizing the terminal capacity matrix of (G, w). The 
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most important feature of this path is that each minimal cut-set separating its two 
vertices, say x and y, has the same value as the minimal C (x; y) in (G, w). This 
property of path realizing the terminal capacity matrix is used here for increasing 
the efficiency of the algorithm determining minimal sets. Now, we describe a pro
cedure constructing the path realizing the terminal capacity matrix. 

First, we define an auxiliary weighted graph < GA, wA) on the basis of < G, w). 
Let x• and :Xb be two disjoint subsets of X (X• and/or :Xb may be empty), such that 
:X8 =:X- (:Xa u Xb) is nonempty. We merge :xa and :Xb into single vertices, a and b, 
respectively and define :XA=X8 u {a, b}, EA={{x, y} : x, yE XA, x# y}, GA=(XA,EA) 
If x, yE X 8

, x# y, then wA (x, y)=wA (y, x)=w (x, y). Otherwise, wA (a, y)= 
=wA (y, a)=f(Xa, {y}), and similarly for b. Furthermore, wA (a, b)=wA (b , a)= 
=f(Xa, Xb). Evidently, if e.g. xa=0, then wA (a, b)=wA (a, y)=O for each yE X 8 • 

We use the graph (GA, wA) in the procedure generating some path on the basis 
of (G, w). An idea of this procedure is the following. In the first iteration we have 
x•=Xb=0, X 8 =X, and, obviously, wA (x, a)=wA (x, b)=wA (a, b)=O, for each 
x eX. We seek a cut-set C1 which minimizes the value of minimal cut-sets C (x; y) 
over all p"lirs of distinct x; ye X. Obviously, there exists such C1 , but not 
necessarily unique. By choosing some C1 we attain a partition {Xi> X2 } I C1 

of the original X. IfiX1 I= IX2 j=l, then the procedure terminates. Let us now 
assume that jX1 j > 1. We merge X 2 into a single vertex b and we have X•= 0 , 
X 8 =X1 • We find a cut-set C2 which minimizes: the value of C(y, x) over all pairs 
of distinct x, ye X 8 , and obtain a new partition {X~, x;} IC2 • We relabel the 
subsets of X, such that X~ is now denoted by X 1 , X~- by X 2 , and the old 
Xz --by X 3 , etc. Let us consider the general case in which X 1 , X 2 , X 3 , ... , Xq ; q~2, 

and IX1 I=l. If IX2 I=l, for each i=l, 2, .. . , q, then the procedure terminates. Other
wise, there exists the smallest subscript, say r, for which IX,I > 1. We have here 
Xa=X1 u X 2 u ... u X,_ 1 and either Xb=X,.+ 1 u Xr+z u ... u Xq for q>r, or 
Xb=0 for q=r. We seek a cut-set C, minimizing the value of C (x; y) over all pairs 
of distinct x, ye X 8 =X, etc. The consecutive step·s of this procedure are as follows . 

Construction of a path strurture (CPS). 

1. Set :X1 : =X. Merge X1 into a single vertex {X}I. 

2. r: = 1 ; q: = 1. 
3. Take the set X, corresponding to {X}r and set t: =1. 
4. If IX,I=l, then r: =r+l and t: =0. 
5. If r=IXI, then STOP. 
6. If t=O, then return to Step 3. Otherwise pass to Step 7. 

r-1 q 

7. Define (GA, wA), where X 8 =X, xa=u X; , and Xb= u X;. 
i=l i=r+l 

8. Construct a minimal cut-set C (x; y) in (GA, wA), x, ye X 8
, such that 

V[C(x;y)]=min{V[C(x;y)]:x,yeX8
, x#y} and determine {X,\X,z}l 

IC (x; y). 
9. A: =X8 n x;; B: =X8 n X}. 
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10. If r= q, then go to Step 12. 

11. For each i= r+1, r+2, ... , q do: X1u: = X 1 and {X}1+1 : = {X}1 (relabelling 
the subsets and the vertices). 

12. If a E A, then Xr: = A; Xr +l: =Band go to Step 14. 
13. Xr: = B; Xr+l: =A. 
14. Split the old vertex {X}r into two new vertices {X}n {X}r+l and join them 

with the edge weighted by V [C (x; y)]. 
15. q: =q+I. 
16. If q< lXI, then go to Step 3. Otherwise, STOP. 

PROPOSITION I. The algorithm CPS generates a path realizing the terminal capacity 
matrix for (G, w). 

Proof. Evidently, CPS generates a path consisting of all vertices of X. It remains 
to prove that the values of minimal cut-sets separating distinct vertices x and y 
of X are the same for the path P determined by CPS and for (G, w). 

For brevity, we denote by CP (x; y) the minimal cut-set separating x and y 
in P and by CA (x; y) that in the current (GA, wA). Let G: (x; y) denote the set of 
all C(x;y) in (G, w) for a fixed pair of distinct x,yEX. 

In the first iteration X=Xr and 

V [CA (x; y)]=min {V [C (x; y)]: x, y E Xn x# y}, (17) 

due to Step 8. According to X E xl and yE x2 (or yE xl> X E X2), and (17) we have 

V [CP (x; y)]=min {V [C (x; y)]: C (x; y) E G: (x; y)}, (18) 

because {X} 1 and {X}z are joined with the edge weighted by V [CA (x; y)] in Step 14. 
If for some s, t EX, s# t, 

m in {V [ C (s; t)]: C (s; t) E G: (s; t)};;, V [ CP (x; y)], (19) 

then either s, t E X1 or S, t E %2. 

In the ith iteration, i> 1, we have X 8 =Xn IXrl > 1. If xa, Xb=0, then by the 
same arguments as used in [3, 5] to prove the validity of procedures useful for con
structing a graph realizing a given terminal capacity matrix we obtain (17). We 
therefore assume that xa and Xb are nonempty. Let C be a minimal cut-set sepa
rating x and y in (G, w) and {Xt> X2 }IC={A u Xf u Xf, BuX~ u xn, where A, B 
are defined by Step 9 and xa=XfuX~, Xb=XfuXg, Xf, X{#0 and X~uXg#0. 
We can write V [C]=f(A, B)+f(A, x;)+f(A, xg)+f(X~, B)+f(X~, X~)+f(Xf, 
Xg)+f(Xf, B)+J(Xf, X~)+f(Xf, Xg). Due to the construction of xa and Xb and 
due to (19) we easily obtain 

f(X~, X~)+f(Xf, xg);;,f(A, x; u XD+f(B, x~ uXg)+ 

+f(X;, Xb)+f(Xa, Xg) (20) 

Thus, combining (20) and the expression for V [ C] we get 

V[C];;,j(AuXauxb,B)+e, (21) 
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where e=2 [f(A, X~u X~)+f(X~, Xf)+f(X;, X~)+f(X~, X~)]>O. Hence, C is 
not a minimal cut-set separating x and y in < G, w), i.e. a contradiction. Thus, the 
condition (17) is fulfilled, and we obtain (18) again. Q.E.D. • 

The path P=(X, Ep) realizing the terminal capacity matrix of< G, w) generates 
a graph of similarity (G, w*), where the weights w* are determined by 

*(- ) _ fV[CP(x;y)] 
w x,y -~ 0 

if X, y EEp, 
if x, y rf:Ep. 

It is evident that P is a path structure of< G, w*). Nieminen [13] proved the follow
ing theorem. 

THEOREM 3. IfS is a minimal set in (G, w), then S is also a minimal set in each 

path structure realizing the terminal capacity matrix of< G, w). 

As an immediate consequence of Theorem 3 we obtain the following corollary. 

CoROLLARY 2. IfS is not a minimal set in some path structure realizing the terminal 

capacity matrix of < G, w), then S is not a minimal set in < G, w). 

Due to Corollaries 1 and 2 we have the following proposition. 

PROPOSITION 2. R is a minimal set in < G, w) only if it is a minimal set in a path 
structure realizing the terminal capacity matrix of (G, w) and there exist indices r 
and q, O:::;;r :::;; q:::;; JX I- 1, such that R={xi:i=r,r+ l, ... ,q}. 

Hence, we have a simple and efficient method for generating subsets for checking 
their minimallity in SP. It can be done in the following way. Let us consider the 
(j+ 1) th iteration, j E £ 1, where we handle ( GJ, wJ), GJ=(XJ, EJ). We assume that 
a(XJ)=(xi: i=O, 1, 2, ... , IXJ I-1) is the sequence of vertices obtained in CPS, 
i.e. the sequence generating the path structure p (XJ) (see Section 3). In the very 
beginning we check all the subsets Z, for \Vhich we have IZI=2. According to Pro
position 2 it is sufficient to take Z~2)={Xo, xi}, Zi2)={x1, Xz}, ... , Z?) ={x,._1, Xr}, 
... , Z\i)j

1
_ 1 = {x

1
xj

1
_ 2 , x

1
xj

1
_ 1}. Now let us assume, that Sj#-f/J, and we test t-tuples. 

If k, 0:::;; k:::;; JXiJ - t-1, is the smallest index beginning a path substructure of length t 
consisting of the elements belonging to Rj, then we take Z~)={xk, xk+ 1 , ••. , xk+t- d, 
Z~ = {xk+l> xk+Z• ... , xf,-rr}, etc. If for some t, such k does not exist, then there 
is no subset Z, IZ I ~ t, in the current R~ (and thus in the U+ 1) th iteration) which 
can be a minimal set. The correctness of the method described above directly follows 
from Proposition 2. Let us denote this realization of the searching phase by SP 1 . 

Hence, \VC can formulate the following revised algorithm. 

Algorithm. 

1. Execute the AP. 
2. Perform the CPS. 
3. Go to Step 5. 
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4. Execute the AP. 

5. Realize the SP1 . 

6. Update the path structure being the realization of the terminal capacity 
matrix by merging the vertices belonging to the same minimal set and then 
deleting loops. 

7. Return to Step 4. 

5. Some properties of the revised algorithm 

Now, we consider the relation between the revised algorithm and the class of 
algorithms defined in Section 2. We note that CPS can be included in AP for j=O, 
SP 1 is some modification of SP, and updating the path structure can be included 
in AP for j EL- {0}. Thus, the revised algorithm belongs to the general class de
scribed in Section 2. All the general properties of this class, which are introduced 
in [9, 14, 16] hold in the case of our new algorithm. More specifically, we can for
mulate the following important theorems [9, 14, 16]. 

THEOREM 4. The revised algorithm generates a partition of X in each iteration, i.e. 
the minimal sets determined in the jth step are pairwise disjoint and their union is 
equal to X1. Furthermore, the algorithm gives all minimal sets in (G, w). 

THEOREM 5. The results of the revised algorithm do not depend upon the choice of 
the family of functions {di:j E Lt}. 

The fact that the algorithm generates a partition of X in each iteration is import
ant from the practical point of view (see, e.g. [6, 8, 10, 11, 15, 16]). Theorem 5 
has a real meaning for constructing a computer implementation. It allows to choose 
a family {dj:j e Lt} in the way which is more convenient for us (see e.g. [9, 16]), 
e.g. in the simplest way from the programmer point of view. 

Summarizing, the main idea of the revised algorithm is the same as in the pre
vious algorithms generating minimal sets. The only, but also very important refinem
ent lies in a considerable increase of the efficiency, which is shown in more detail 
in the next section. 

6. Efficiency of the algorithm 

Now, we direct our efforts to the estimation of the complexity of our new al
gorithm. It is evident that we can make the calculations in two separate phases. 
The first one concerns the initial construction in CPS. The second phase refers to 
the rest of the algorithm, mainly to SP1 . In CPS we seek minimal cut-sets. In the 
computer implementation programmed in the Institute of Computer Science of 
PAS we generated minimal cut-sets using the algorithm proposed by Edmonds 
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and Karp [1]. Now, we prepare a new version of CPS, which bases on the procedure 
described by Galil [4]. Then, it is convenient to make the further analysis in general, 
i.e. independently on the procedure used for generating m;nimal cut-sets. 

In CPS we need to evaluate IXI-1 terminal capacitieres rath than one minimal 
cut-set and we have no way to forecast the size of sets A and B (see Steps 9, 12 and 13 
of CPS), which are consecutively generated. Moreover, we do not seek in CPS 
a minimal cut-set separating some fixed and specified pair of distinct vertices, but 
we look for a minimal cut-set which has the smallest possible value among all the 
cut-sets separating all distinct pairs of vertices in X 8 =Xr (see Steps 7 and 8 of CPS). 
Hence, the method of Gomory and Hu [5], described also in [3], in its original 
form is not sufficient for our purposes, because we should obtain a path realizing 
the terminal capacity matrix instand of a tree. 

In view of the above remarks we have to describe Step 8 of CPS in detail, then 
evaluate its efficiency and finally determine the numerical complexity of the whole 
CPS. The realization of Step 8 of CPS can be as follows. Let the vertices of X 8 

be arranged in any sequence (x1: i= 1, 2, ... , l.:¥8 1). We determine a minimal cut-set 
C (x;; x2), where x: = x1 , merge x~ and x 2 into a single vertex, say x;, determine 
a minimal cut-set C (x;; x3), merge x; and x3 into x~, etc. Further, we can use 
the following theorem. 

THEOREM 6. Let <GA, wA) be given as described in Section 4. If C(x;; x1+ 1), 1~ 
~ i~ IX8 l-1, is a minimal cut-set with the smallest value obtained by the procedure 
defined above, then 

V [C (x;; x1+1)]=min {V [C (x; y)]: x, ye X 8
, x#y} (22) 

P r o o f. Let a minimal cut-set with the smallest value which separates two vertices 
of X8 be denoted by C0 , its value- by V0 , and {X~, X~}={X1 , X2 }IC0

• We assume 
that V0 <V[C(x;;x1+ 1)] for each i, l:(i:( jX8 1-l. We also assume that x1 eX~. 
Hence, there exists an index t, 1+t:(IX8 I-2, such that 

(23) 

holds and X 1+1 eX~. Thus, we have V [C (x;; x1 +1)]=f(A1 uD, E):(j(A1 u (X~-A1), 
XA-X~)= V0

, for some D, E and x1+ 1 EE (D may be empty). Therefore, we obtain 
V0 < V0

, i.e. a contradiction. Q.E.D. • 

Now, we note again that there is no way to forecast the size of sets A and B con
secutively generated in CPS. To estimate the computational effort needed for exe
cution of CPS we have to define a vertex weighted arborescence (i.e. a rooted directed 
tree) of the partitioning. We proceed in a recurrent way based on the description 
of CPS, as follows. 

The root is the vertex {Xh defined in Step 1 and its weight equals lXI. Initia~y, 
t has no label. From the root there are two arcs directed to vertices {X} 1 and {X}z 
obtained in the first iteration by splitting the original {.:¥} 1 . Initially, they are also 
unlabelled and their weights are IAI and IBI (see Steps 9, 11 and 13), respectively. 
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We assume that some vertex {X}, was reached in Step 4 of the ith iteration, i> I. 
CASE 1. \X,\ = 1. There exists a single arc incident in {X}, and there is no arc in
cident out. We backtrack the arc to the nearest vertex and increment r by 1. It follows 
from CPS that a new vertex, we reached, has the current number r, and IX, I> I. 
If {X}r is labelled, then we check whether it is the root. If so, the proceaure termim
tes. Otherwise, we backtrack once more, increment r by 1, and again, until we reach 
an unlabelled vertex or the labelled root. The latter situation was described before. 
In the former one we label the vertex and the arc incoming to the cunent {X}, and 
proceed in the direction of the unlabelled arc outgoing from {X},. 
CASE 2. \X,\> 1. We introduce two arcs outgoing from the old {X}, to new vertices 
{X}, and {X},+ 1 obtained by splitting the original {X}, (see Step 14). Neither the 
old ve1 tex {X}, nor the new vertices {X}, and {X},u are labelled. We assign to 
the new {X}, and {X},+ 1 the values of \AI and IBJ, respectively, and so on. 

Fig. 1. An example of construction of a weighted arborescence. 

An example of the walk described above is shown in Fig. 1. It can be easily 
stated that each vertex weighted by one WaS passed only once. The other vertices 
are passed three times. It is obvious, because to the vertex weighted by one there 
is only one incoming arc and no arc is outgoing. To the other vertices, excluding 
the root, there are incident three arcs. Two of them are outgoing and a single is 
incoming. In fact, each vertex with the weight greater than 1 is split into two parts 
and each vertex results from splitting only one vertex. The root is not obtained by 
the splitting mechanism, and there are only two arcs outgoing from it. Since we 
start om walk from the root, then we are in the root three times, too. From the 
above discussion the next proposition follows. 

PROPOSITION 3. For each < G, w) and each realization of CPS the abovt. walk ter
minates in a finite number cf steps. It gives an arborescence which has the 'Vertices 
weighted by cardinal numbers of sets X, obtained during the execution of CPS. 
Each arc is directed from the vertex corresponding to some X, to another vertex 
corresponding to a subset of ¥,. All the vertices weighted by more than one are 
labelled. 
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The arborescence gives an idea how CPS works. We need it for the estimation 
of the efficiency of CPS. The unla belied vertices correspond to the 

sets which are not partitioned. Thus, we can remove from the arborescence 
each vertex without label and arcs incident to it. Further we can also delete 

every vertex weighted by two and then the arcs incident to it. Evidently, the 
minimal cut-set in ( GA, wA) with IXBI =2 can be obtained at once. It is obvious 

that now we also get an arborescence A of the partitioning. We define the value 

F (A) of A, as follows 

F(A)= }; h (v (x)) , 
xEXA 

where XA is the vertex-set of A, v (x) denotes the weight assigned to x e XA, and 
h (y) is the complexity of procedure generating minimal cut-sets in a graph with y 

vertices. To estimate the upper bound for the computational complexity of the 
whole CPS we have to maximize F over all possible arborescences of partitioning. 

THEOREM 7. If h is an increasing and nonnegative valued function for arguments not 

less than 2, then F reaches its maximal value for A=A*, where A* denotes a path 

with vertices weighted by consecutive natural numbers from n= lXI to 3. 

P r o o f. First, we introduce some additional notations. Let A, denote any arbo
rescence of partitioning defined for a graph G with n vertices. We have F (A;)=O, 
for i= 1, 2. Hence, we notice that the following formula 

(25) 

holds for every Am n> 1, where An-rand Ar are the subarborescences of An obtained 
by removing the root and arcs incident to it from A,. 

The proof will be accomplished by induction on n. There is only one A 3 . For 
n=4 we have two arborescences. They are shown in Fig. 2. We calculate that F (A:)= 
=h (4)<F(A;)=h (4)+h (3), due to the properties of h. 

Fig. 2. Two arborescences A4. 

Now, let us assume that for each m, 3~m~n-1, and for every Am the following 
inequality 

(26) 
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is satisfied. According to (25) and (26) we have F(An)-h (n)=F(An-r)+F(A,) ~ 
~F(A;_r)+F(A;), where obviously 

i 

F (A=)= _2; h (i) (27) 
i= 1 

According to the properties of h and due to (27) F(A~-r)+F(A;)~F(A;_ 1 ) for 
r);3 and n-r);3. If r=I or r=2, then F(A;)=O and we have F(A;_r)~F(A~_ 1 ) 
again. Analogously, for n-r=I or n-r=2 we obtain F(A;)~F(A;_ 1 ). Hence, 
o bviouslj, F (A;)~ F (A:). Q.E.D. • 

It means that in the whole CPS we have to perform no more than F (A:) simple 
arithmetic operations such as additions, subtractions and comparisons. When we 
use the !procedure described by Edmonds and Karp we need i (P- k) k 2 these 
operations for finding a minimal cut-set separating a given pair of vertices in a graph 
with k vertices [1]. Thus, the procedure described above Theorem 6 is of type 0 (n6 ). 

Therefore, due to Theorem 7 the whole CPS needs 0 (n7) simple arithmetic ope
rations. The procedure of Galil is of type 0 (n 5 13 e2 13 ) [4], where e denotes the cardi
nality of edge-set, i.e. of type 0 (n3) in the worst case in which the square matrix 
consisting of entries being the weigh ts w (x, y) is not sparse. Thus, the new form 
of CPS now realized in the Institute of Computer Science needs 0 (n 5 ) simple arith
metic operations. 

It can be easily shown that for testing a subset of Xi consisting of i vertices we 
i 2 -i 

need -
2
- + i+ 1 additions, 1 subtraction and i comparisons, if all the values of 

Ji ({x}, Xi- {x}), j EL, are known ((i in <Gi, wi) is defined by the s&me formula 
as fin < G, w). In the other cases, the number of these operations is greater. Thus, 
the first case is preferable and we consider it now. Therefore, we need at most 

k- 1 i2 +3i+4 _2: (k+I-i) -
2

-
i=2 

(k-2) (k 3+I2k2 +59k+24) 

24 

i.e. 0 (k4) simple arithmetic operations in the jth, j E' L , iteration, because we handle 
no more than k+ I- i subsets of i elements (see SP 1), where k= IXil. For the initial 
evaluation of f 0 ({x}, X 0 -{x}) we need n(n-1) additions. For jEL-{0} the 
values of j1 ({x}, Xi-{x}) are obtained as by-products of testing the minimallity 
of the subsets from Xi- 1 (see Theorem 1). Thus, the evaluation ofji ({x}, Xi- {x}) 's,, 
being in fact a part of AP, can be considered simultaneously with SP1 and has at 
most the same complexity as a single SP1 . Moreover, the rest of AP can be executed 
by simple changing the indices of two working lists (see [9]) which extremly speeds 
up the algorithm and saves the computer memory. Therefore, since imax~n (which 
can be easily proved by a construction similar to the arborescence of partitioning), 
then AP and SP 1 in the whole algorithm need 0 (n 5) simple arithmetic operations, 
which is also the complexity for the new algorithm as a whole. For a comparison 
we recall that the upper bound of the old version is 0 (2n n2

) (see Section 2). 
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Efektywny algorytm podzialu sieci na zespoly minimalne 

W artykule przedstawiono nowy algorytm wyznaczania zespo!6w minimalnych w grafie. Podano 
takze g6rne ograniczenie liczby iteracji wykonywanych w trakcie dzialania algorytmu. Okazalo si~, 
ze nowy algorytm jest znaczenie lepszy od poprzednich. 

Na wst~pie przedstawiono poj~ie zespolu minimalnego i wymieniono najwa:i:niejsze wlasci
wosci pewnej klasy algorytm6w slu:litcych do wyszukiwania zespol6w minimalnych. Nast~pnie 
opisano dotychczasow11 realizacj~ wspomnianej klasy algorytm6w. Okazalo si~, :le w najgorszym 
przypadku poprzedni algorytm wymagal wykonania 2"-2 iteracji (kazda z nich wymaga co naj
wy:lej 0 (n2

) operacji), gdzie n jest liczb11 wierzcho!k6w w rozpatrywanym grafie. Nieminen by! 
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pierwszym, kt6ry odkryl zalei:nosc mi~;dzy zespolami minimalnymi a macierz<t pojemnosci granicz

nych grafu . Wykorzystanie tego wyniku pozwala zwi~;kszyc efektywnosc algorytmu wyznaczaj<tcego 

zespoly minimalne. Rozwini~;cie koncepcji Nieminena doprowadzilo do uzyskania szybkiego algo

rytmu o dw6ch rodzajach iteracji. G6rne ograniczenie czasu dzialania nowego algorytmu wynosi 

0 (n 5
) prostych operacji arytmetycznych. 

34J«!leKTIIBHhiH aJlrOpHTM !l:CKOMfi0311~UII CCTII Ha MHHIIMaJlLHO 

CBH3HLIC rpa<flbl 

B CTaTbe rrpe,n:JIO)J(eH HOBbrH amOpli!TM OIIpe,n:eJieHID! MHHHMaJibHO CBH3Hb!X IIO,n:rpa<j!OB. 

,[(aeTCH TaK)J(e BepXHHH IIpe,n:eJI '!HCJia HTepal.UIH amopHTMa. HOBblH amopHTM HBJIHeTCl! JIY'fiiie 

rrpe,n:bl.D;yll.lero. 

BHa'!aJie rrpe,n:JiaraeTCl! IIOHHTHe MHHHMaJibHO CBH3H0f0 IIO,n:rpa<jla H IIpHBO,LIHTCH HaH60Jiee 

Ba)J(Hble CBOHCTBa HeKOTOporo KJiaCCa amOpHTMOB, OIIpe,n:eJil!IO!l.IHX JTH IIO,n:rpa<jlbi. 3aTeM rrpe,n:

CTaBJieHa 6onee paHHl!l! peaJIH3ai(lll! Bbiiiie yrroMHHyToro Knacca amopnTMOB. B xy,n:meM cnyqae 

oHa Tpe6yeT 2"- 2 HTepai(HH (Ka)J(,n;al! H3 HHX Tpe6yeT He 6onee '!eM 0 (n2) orrepai(nil), r.n;e 

n- '!HCJIO sepiilliH paccMaTpnsaeMoro rpa<jla. BrrepBbie HeMHHeH OTKpbiJI 3asncHMoCTb MHHH

MaJibHO CBl!3HbiX IIO,n:rpa<j!OB H MaTpHI( KOHe'!HblX IIpOrryCKHbiX CIIOC06HOCTeif:. IJpHMeHeHHe 

JTOfO pe3yJibTaTa ,n:aeT B03MO)J(HOCTb IIOBbiCI!Tb J<jlilJeKTHBHOCTb amopiiTMa orrpe,n:eJieHHH MIIHH

MaJibHO CBH3HbiX rro,n:rpa<jlos. Pa3BHTHe KOHI(eiii(HII HeMHHeHa rrpiiBeno K rronyqeHoiO 6onee 

CKOpOCTHOfO aJirOPIHMa, B KOTOpOM cymeCTBYIOT HTepai(HH ,LIBYX THIIOB. BepxHHli npe,n:eJI Bpe

MeHH ,n;eliCTBlll! HOBOfO amopHTMa paBeH 0 (n5
) JJieMeHTapHbiX apH<j!MeTH'ieCKHX OIIepai(HJ:i:. ' 


