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Introduction 

The problem of finding suitable representations of fuzzy-set-theoretic operations 
has been often debated. Significant progress along this line has been recently obser
ved. The first part of this paper provides a structured presentation of multiple
-valued logical connectives which correspond to the intersection, union, comple
mentation, difference and inclusion of fuzzy sets. Systematic generation procedures 
are developed. 

Already acknowledged as basic in natural language and approximate reasonning 
modeling techniques, these connectives shed also some light on fuzzy arithmetics 
as demonstrated in the second part of this paper. Namely, a general formulation 
of a solution of equations involving fuzzy numbers is proposed, based on the use 
of the introduced implication connectives. 

"') This paper is a thoroughly revised version of a communication [7] presented at the 5th 
International Seminar on Fuzzy Set Theory held at Linz (Austria) in September 1983. 
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While fuzzy arithmetics, as studied in [4], extend the interval analysis [13] to 
fuzzy intervals, and allow for no compensation of imprecision, the study of fuzzy 
equations leads to another concept of fuzzy arithmetics where a maximal com
pensation of imprecision is allowed. 

Although mainly concerned with theory, this paper contains results which are 
first steps towards finding fuzzy solutions to imprecisely specified equations which 
may model some optimization problems. 

1. Differences and inclusions of fuzzy sets: a generation procedure 

In this section we consider a set X and fuzzy sets A, B, ... on X defined by mem
bership functions tlA> flB ... from X to the unit interval, I=[O, 1]. 

1.1. A note on, intersection the union and complementation 

Given two fuzzy sets A and B on X, their intersection, denoted A n * B is point
wisely defined on the basis of the membership functions J-lA and flB by: 

Vx EX, flAn* B (x)= tlA (x)* flB (x) (1) 

where * is a triangular norm. A triangular norm *(t-norm for short) [20] is a map
ping from I 2 to I such that V (a, b, c, d) E I\ i) a*b=b*a, ii) a*(b*c)=(a*b)*c, 
iii) 0*0=0; iv) hb, v) if a~b and c~d, then a*c~b*d. These axioms are meant 
to preserve the basic properties of set-intersection, i.e. commutativity (i), associa
tivity (ii), (/) n f/1=0 (iii), X nB=B (iv), a lack of monotonicity (v) would also be 
very much counterintuitive. The greatest triangular norm is a*b=min (a, b) and 
the least one is defined by 

la if b=l 
a*b=Tw (a, b)= b if a= I 

0 otherwise 

The basic triangular norms are, in an increasing order 

Tw (a, b)~Tm (a, b)=max (0, a+b-l)~a · b~min (a, b) (2) 

The suitability of triangular norms as models of fuzzy set intersections was 
shown in [15], [2], [11], etc. Of course, they are proper models of fuzzy Cartesian 
products too [5]. 

Similarly, the union A v.l B of the two fuzzy sets A and B is defined by (see 
[15], [2], [11] for justifications) 

(3) 

where j_ is a triangular conorm [20], i.e. a mapping from I 2 to I which satisfies the 
same axioms as a triangular norm except that iii) and iv) are changed into 1 j_ 1 = 1 
and 0 j_ b=b, respectively. Note that while t-norms are semigroups of [0, 1] with 
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identity 1, and absorbing element 0, conorms are semi-groups of [0, 1] with identity 0 
and absorbing element 1. 

The basic conorms are, in an increasing order: 

la if b=O 
max (a, b)~a+b-ab~min (1, a+b)~r; (a, b)= b if a=O 

1 otherwise . 
(4) 

A continuous triangular eo-norm ..L, such that vi) VaE(O, 1), a..La>a, is said 
to be Archimedean. It can be expressed in terms of a generator rp which is a con
tinuous strictly increasing function from I to [0, +oo) such that rp (0)=0, as, [12]: 

where rp* is the pseudo-inverse of rp, defined by 

*(a)= f rp- 1 (a) if a E [0, rp (1)] 
rp ll if aE[rp(1),+oo) 

A similar result holds for continuous Archimedean t-norms (a*a<a). 

The complement Ac of a fuzzy set A is defined by 

'tx EX, JlA c (x)=c (JiA (x)) 

(5) 

(6) 

where c is a strong negation, see [21]. A strong negation is a continuous strictly 
decreasing function c from I to I, such that i) c (0)= 1, ii) c (c (a))=a (involution). 
For instance, c (a)=1-a is a strong negation. Any strong negation c can be ex
pressed by means of a continuous strictly, increasing mapping t from I to [0, +oo ], 
such that t (0)=0 and t (1) is finite, as, [21] 

c (a)=t- 1 (t (1)-t (a)) (7) 

With a triangular norm * and a strong negation c, we can associate a triangular 
eo-norm defined by 

a ..L b=c (c (a)*c (b)) (8) 

Then, we have a*b=c(c(a))..L(c(b)), and* and ..L are said to be c-dual [1]; and 
to be just for c (a)= 1-a. 

The main families of intersections and union of fuzzy sets are obtained from the 
following classes oft-norms and t-co-norms. 

a) STRICT OPERATIONS 

They are continuous, Archimedean, strictly increasing t-norms (resp. t-co-norms). 
They are isomorphic to the product a· b (resp. a+b-ab). Strict eo-norms can be 
represented by (5) with rp (l)=+oo; then it is clear that rp*=rp- 1 holds. Any c-dual 
of a strict t-co-norm is a strict t-norm and conversely. Such a strict t-norm can be 
represented by (5), changing rp into f= rp o c. Intersections and unions of this family 
are neither idempotent nor mutually distributive, nor are the excluded middle and 
non-contradiction laws valid for any choice of a complementation. 
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b) NILPOTENT OPERATIONS 

They are continuous, Archimedean t-norms (resp: t-co-norms) such that for 
any sequence (an)n eN of numbers in (0, 1), 

(resp.: a 1 .l. a1 .l. ... .l. a"o = 1) 

Nilpotent t-co-norms (or : t-norms) are isomorphic to the bounded sum min (1, a+b) 
(or : ! 111). They can be represented by (5) where q; is such that q; (1) < +oo. Note 
that q; also generates a strong negation c,P, by changing t into q; in (7). The c"'-dua1 
of* is a nilpotent t-norm generated by (5), changing q; into q; (1)- q;. Intersection 
and union operations generated by c..,-dual t-norms and t-co-norms satisfy the 
excluded middle and non-contradiction laws, if the complementation is based 
on c..,. But they are neither idempotent nor mutually distributive. For * =7'11., .l.= 
= bounded sum, c.., (a)= l-a. 

c) IDEMPOTENT OPERATIONS (AuA)=A=(AnA) 

The only idempotent fuzzy set union and intersection are "max" and "min", 
respectively. Then all usual properties of union and intersection are recovered 
(for any choice of c) except for the excluded middle and non-contradiction laws. 
Note that max and min cannot be represented by (5). 

1.2. Set differences and inclusions: a first construction 

In the classical set theory the set difference is defined by 

VA E2x, VBE2x, A -B=AnBc (9) 

where Be denotes the complement of Bin X. The complementary operation (A- BY= 
= Ac u B is directly related to the set inclusion since 

(10) 

Turning to fuzzy sets, given a strong negation c and a triangular norm *, we can 
define 

(11) 

Fuzzy set inclusions can be defined by generalizing (10), using a strong negation 
c and a triangular eo-norm .l., if we define: 

A <;;;.B~Vx EX, c (JiA (x)) .l. JiB (x)= 1 

When * and .l. are c-dual, we have (A-B)c = Acul. B. 

(12) 

Table 1 gives the operations which correspond to A-B and to Acul.B for 
basic triangular norms and eo-norms, c being defined by c (a)= 1-· a. The deriva
tion of more general families based on strict or nilpotent operations, according 
to (11) or (12) is left to the reader (see [3, 7]). 
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Table 1. Differences and inclusions (I'A (x)=a, l'n (x)=b). 

An* B I A-B 
11 

Au.LB j Acu.L B 
J 

min (a, b) min (a, 1-b) max (a, b) max (1-a, b) (Dienes) 

a,b a- a. b a+b-ab 1-a+ab (Reichenbach) 

max (0, a+b-l) max (0, a-b) min(l, a+b) min (1, 1-a+b) 
(bounded difference, 

I Zadeh) 
1 

(Lukasiewicz) 

On the right side of table 1 we recognize several implication functions used in 

multi-valued logic. 

It can be checked that with definition (12) for the inclusion, we have: 

• If the triangular eo-norm _!_ is nilpotent and has the same generator as the 

strong negation c, then 

A <;;.B<:c> Vx EX, f.lA (x)~ flB (x) (13) 

which is the usual definition of inclusion in the fuzzy set theory, originally 

proposed by Zadeh. 

• If_!_ =max or if_!_ is a strict triangular eo-norm, whatever c is, then (12) yields 

A<;;.B<:c>VxEX, J.lA(x)=O or J.lB(x)=l 

<:c>suppA <;;.coreR 
(14) 

where suppA={x EX, J.lA (x)>O} and coreB={x EX, J.lB (x)=1}. (14) still holds if 
we use in (12) a triangular eo-norm _!_ such that V a, Vb, max (a, b)~a _!_b~ 

~a_!_' b where _!_' is a strict triangular eo-norm. (14) corresponds to a very 

.strong form of the inclusion. 

REMARK 1. We may think of relaxing (14) by choosing a threshold a, such that 

(15) 

where _!_ is max or a strict triangular eo-norm and c a strong negation. 

However, <;;." is generally either not transitive, or not consistent with the usual 

definition of inclusion (13). For a discussion on this point, see [4, 7]. A slight modi

fication of (15), for a=!, _!_ =max, c (a)= 1-a, ensures transitivity and consis

tency (i.e. A<;;.B~A<;;.!B), by stating [(4, p. 22]): 

(16) 

N.B.2. Symmetrical differences can be defined as (A-B)u.L(B-A), among other 

possibilities. See [6] for a preliminary discussion. 
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1.3. Set differences: a second construction 

In this section we take the standard definition of inclusion, i.e. (13), for granted, 

and build set differences on this basis. 

In the classical set theory the set difference A - B can also be defined as the 
smallest S such that Bu S contains A, i.e. 

A-B=n {S,A£BUS} 

The complement operation (A- BY can also be similarly defined by 

(A-BY=U {S, AnS£B} 

(17) 

(18) 

Both formulae can be readily extended to fuzzy sets taking (13) as a definition 
of inclusion and choosing a triangular eo-norm j_ and a triangular norm * for 
extending BuS in (17) and An S in (18), respectively, hence we get 

(19) 

and 

'v'x EX, JlA-+B (x)=sup {sE [0, 1], fl.A (x) * s~p8 (x)} (20) 

where s represents Jls (x); inf and sup are used for extending ns in (17) and us 
in (18) respectively, since min and max are the only triangular norm and eo-norm 
which are idempotent and can easily be extended to a possibly non-finite number 
of arguments. (19) and (20) are usual in Brouwerian and dual Brouwerian lattices, 
and define relative pseudo-complements (e.g., see Sanchez [18]). (19) and (20) are 
symbolically written as 

(21) 

and 

'v'x E: X, JlA-+B (x)=fl.A (x) H JlB (x) (22) 

Table 2 gives the analytic expressions of E and *-+ (which are mappings from 
P to I), for the basic triangular norms and eo-norms. 

In case of triangular norms or eo-norms which are not continuous (e.g. Tw 
or r:), it may occur that the greatest lower bound in (19) or the least upper bound 
in (20) does not belong to the set defined between brackets. See also Pedrycz [14] 
for the operation E and Pedrycz [14], Prade [16], Dubois, Prade [4] for the ope
ration *-+· The operation *-+ corresponds to implication functions which are 
encountered in multi-valued logics. 

A noticeable result is that Tm and the bounded sum yield the same set difference 
and inclusion in tables I and 2 (i.e. Zadeh's bounded difference and Lukasiewicz's 
implication). This remark still applies to operations generated from cfJ)-dual t-norms 
and t-co-norms, where the complementation is based on c in (11) and (12) (see 
[3, 7]). 
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Table 2a. Differences of the second kind 

aj_b 

max (a, b) 

a+ b-a· b 

min (1, a+b) 

T:, (a, b) 

{ 
0 if a~b (Sanchez [18]) 
a if a>b 

{

Oifb = 1 

max (o, ·a-b ) if b7q 
1-b 

max (0, a-b) (Zadeh [22]) 

{
0 if b>O 
a if b=O 

Table 2b. Inclusions of the second kind 

a *b 
I 

a *-+b 

min (a, b) 
{ 1 if a~b (Godel, see 

b if a>b Sanchez [18]) 

a·b 
{ 1 if a= O (Goguen [10]) 

min (1, bja) if a*O 

max (0, a+b-1) min (1, 1-a+b) (Lukasiewicz) 

Tw (a, b) r if a<1 
b if a=1 

135 

REMARK 1. It can be checked that (A-B) ul. Bs;A ul. B where A-B is issued 
from ..L in the sense of (19) and where £ is defined by (13); the equality holds 
for .l=max. 

REMARK 2. Since (17) and (18), respectively, yield 

Ac= n {S, X=A VS} 

Ac=U {S, AnS=0} 
(23) 

(24) 

as particular cases in the classical set theory, we can use (19) and (20) for defining 
fuzzy set complementation operations without the t-norms or t-co-norms. New 
operl:).tions are obtained, which are generally not involutive. However, nilpotent 
intersections and unions yield back strong negations introduced earlier. See [7]. 

1.4. Dual set-differences 

Let c be a strong negation and let ( *, ..L) be a pair of a c-dual triangular norm 
and eo-norm. Then it can be easily checked that 

(A-BY=Bc-+Ac 

(A-+B)C=SC-Ac 

where A-B is defined by (19) and A--+ B by (20). 

(25) 

(26) 
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(27) 

(28) 

no longer hold generally for set-differences and inclusions introduced in 1.3. More 
specifically, (27) and (28) never hold for the following choices of generative connec
tives: (*, _L)=(min, max), (product, a+b-ab) and any pair of c-dual strict ope
rations (see [7]). Hence a new family of set differences and inclusions can be obtained 
under the form c (JlB) ~ c (JlA) and c (JlB) H c (JtA) instead of (21) and (22) respec
tively. 

(27) and (28) are valid for set differences and inclusions built from c1P-dual nil
potent operations, with c=c"' in (27) and (28). This is true especially for c (a)= 
= 1-a, a* b=max (0, a+b-1), a l_b=min (1, a+b). Table 3 gives the expressions 
of set-differences an inclusions obtained from basic t-norms and t-co-norms other 
than the nil potent ones, and for c (a)= 1-a. 

Table 3. Dual set-differences and inclusions 

I 

I a*b 
I 

a.lb set difference operations 
(1-b)~(l -a) 

min (a, b) max (a, b) 
( 0 if a~b 
li - b if a>b r if a=O a·b a+ b- ab 

max (o, a:b) if a* O 

Tw (a, b) r,: (a, b) 
{ 0 if a< 1 

1-b if a=l 

1.5. Pseudo-intersections and unions 

Since we have in the classical set theory 

A nB=A - Bc 

I 
implication operations 

(1-b) *-+ (1 - a) 

{ 1 if a~b 
1- a if a>b r if b=I 

min (1, I-a) if b* 1 
1- b 

f 1 if b>O 
\1 - a if b=O 

(29) 

(30) 

where -+ denotes a set operation corresponding to the implication connective, 
we may think of extending (29) and (30) to fuzzy sets in order to define the intersec
tion and the union from a set difference or an implication operation and a strong 
negation. It is clear that, in the framework of the first constructioni (see 1 .2), the 

' application of (29) and (30) just yields the intersection and the union operations 
which generate the set difference and the operation -+. However, when A - B and 
A-+B are defined by (19) and (20) (or also by the dual approach, as in table 3), 
new intersection-like or union-like operations can be obtained by applying (29) 
and (30). The results of this procedure are given in table 4, for basic t-norms and 
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Table 4. Pseudo-intersections and unions 

triangular 
co-nonn from Pseudo-intersections defined from Pseudo-intersections defined from 
which~ is table 2 as a ( (1 - b) table 3 as b ~ (1-a) 

issued 

max (a, b) I 
f 0 if a+b~l { 0 if a+b~ l 
la if a+b> 1 b if a+b>l 

a+b-a· b 
f 0 if b=O r if a= O ) ( a+b-1) a+b - 1 

max 0, - -b- if b =!= O max ( 0, -;-~) if a =/=0 

r,: (a, b) 
f 0 if b< 1 f 0 if a< l 
\aifb = l l 0 if a< 1 

triangular norm Pseudo-unions defined from Pseudo-unions defined from 
from which ;t- > table 2 as (l - a) *--} b table 3 as (1 - b) ·:t-t a 

is issued 

min (a, b) 
f 1 if a+b~ l J 1 if a+b~1 
l b if a+b< 1 la if a+ b<l 

t: r'-_b__) 
r if b=l a·b 

if a =!= 1 min (1,-a- ) if b =i=1 
1-a 1-b 

Tw (a, b) 
f 1 if a>O 
l b if a=O 

J 1 if b>O 
la if b=O 

t-co-norms, except nilpotent operations which are self-generated through (29) and 
(30) (and c=c<P where (j) is the common generator). 

Note that the operations which appear in table 4 are not commutative, and that 
is why we call them pseudo-intersections and pseudo-unions. Nevertheless, starting 
from a "symmetrized" form of the set difference operation, i.e. s (a {:_ b, (1 - b){:_ 
~ (1 - a)) and from a "symmetrized" form of the implication operation, i.e. s (a ~Hb, 
(1 -b) *-t(l - a)), where s is an operation such as min or max for instance, then 
we obtain the commutative operations s(a~(l-b), b t (l - a)) and s((1 - a),:<->b, 
(1-b) *-}a), which respectively coincide with the binary conjunction and the binary 
disjunction when (a, b) E {0, 1 Y. It is worth noticing that the pseudo-intersections 
and the pseudo-unions of table 4 satisfy De Morgan'slaw, since 1 -(a ~(l - b))= 
= b*--}(1-a) from (25) and 1 - ((l - a)Hb)=(1- b) ~ a from (26). Besides, the 
operations of table 4 are not always associative : 

{ 
0 if a+b~ 1 . . . h .! { 0 if b < 1 . . . A d e.g. .f b 

1 
IS not assoc1at1Ve w 1 e .f b 

1 
IS associative. pseu o-

a 1 a+ > a 1 = 
. . { 0 if a+b~ 1 ld d fi . ... . " d ·r h -mtersectwn such as .f b 

1 
wou e ne an mtersectwn ma e o t e 

a 1 a+ > 
elements of A which sufficiently belong to B with respect to their membership degree 

. in A, where a=JL...t (x) and b=p6 (x). 
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1.6. The generation process is closed 

In section 1.5 we obtained some new intersections and unions. From them, 
using the first or the second construction, it is possible to define set difference 
and implication operations. Surprisingly, we do not get new operations, as is 
indicated now. 

Let us define the following transformations, for any 2-place operation 0 on 1: 
a) fc (0) is a 2-place operation on I such that afc(0) b=c (aOc(b)). For c(a)= 
=l-a, fc is denoted f, for short. Note that fc is involutive (fc o fc=identity). 
b) f& (0) is a 2-place operation on I such that 

af&(O)b=sup{s,sE[O, 1], a0s~b} 

Then the following diagram holds for the t-norm min, or any continuous Archi
medean t-norm (cf (5)), and any strong negation c: Notice that the second con
struction of implications applied to pseudo-intersections yields implications of the 

'"'"'""'" , ,1 . 1,.------=cc-------~,,~ j',: tmpuoa'''" 

implication a-b C a • b = b ~ c (a ) 

(f irs t ki nd) 

Fig. 1. 

(second kind ) 

pseudo- intersection 

first kind: fc(*)=f&ofcof&(*), and do not produce new operations. For a nil
potent intersection and a strong negation having the same generator, we have 
f& o fc=id., i.e. A*=*· Lastly, considering a dual implication a *=>b t:,. c (b) *-+c (a), 
generated from t-norms. we have, under the same assumptions 

where 
a 0 b=a rf:c (b)=b A.* a (the other pseudo-intersection) 

From a nilpotent intersection and a strong negation based on the same generator 
we can derive: a*=>b=a*-+b=a~b. 

Proofs of these statements are easily obtained by a direct check for min and Tw, 
and using the functional representations (5) and (7) in other cases*). 

2. Fuzzy equations and "optimistic" fuzzy aritllm:!tics 

Using Zadeh [22]'s extension principle, it is possible to introduce fuzzy quanti
ties in arithmetic-algebraic expressions, ar_d to perform calculations with them. 
A theory of fuzzy numbers, which parallels that of rar..dom variables, is now quite 

*) Details of proofs can be found in Dubois, D., Prade, H. A theorem on implication func
tions defined from triangular norms. BUSEFAL no 18, L.S.l., Univ. P. Sabatier, Toulouse, April1984. 
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well-developed and efficient methods for practical calculation exist (see [4], and 
[3, chap. 4] for an up-to-date survey). Fuzzy arithmetics, in its standard form, in
volves error interval analysis, [13], i.e. generalizes best and worst case calculation. 
In that sense, usual fuzzy arithmetics is "pessimistic". This section presents the "opti
In mistic" approach to dealing with fuzzy quantities and relates it to solving equa
tions involving fuzzy parameters. 

2.1. Minkowski operations on crisp sets 

Here we first consider the case of crisp, albeit imprecise quantities. Let A and B 
be two subsets of X. X is closed under some operation denoted by ' · '. The quantity 
A ( ·) B is defined by 

A(·)B={z,3xEA, 3yEB, z=x·y} 

Denoting A· y 6 {x · y I x EA}, (31) can be expressed as 

A ( · )B=U {A· ylyEB} 

(31) 

(32) 

(31) yields interval analysis when A and B are real intervals. A ( ·) B is the set of 
elements which may be attained by A · y, when yE: B. It is then natural to consider 
the set of elements which are contained in A · y, for any choice of y in B, i.e. 

A)·(B 6 n{A · y iyEB} 

={ziVyEB, 3xEA, x· y=z} 

(33) 

(34) 

Operations ( · ) and ) · ( have been first studied by Minkowski, when · is the usual 
addition. )+( is usually called "subtraction" although both operations extend the 
addition to set-valued arguments. The following properties hold 

i) A) · (BsA(·)B 
i.e. ) · ( gives more precise results than ( · ) 

ii) [A)· (B]c2Ac ( ·) B when· is left-reducible (x · y=x' · y=x=x') 
If, moreover, Vz, Vy, 3x, x · y=z, i.e. Vy, X· y=X, then [A)· (BY=Ac (·)B. 

iii) if (X, · ) has a group structure, denoting B- 1 6 {y- 1ly E B} where y- 1 is the 
inverse of y, and z·B- 1 ={z· y-I,y·B}, we have 
A ( ·) B={z, (z · B- 1) nA;t:~}; A)· ( B={z I (z · B- 1)sA} 

iv) If· is commutative, then ( ·) is also commutative but ) · ( is not. 

Assume now that A and Bare closed intervals [a, a'], and [b, b'] of the real line. 
The operation · is supposed to be continuous, isotonic (x~x', y~y'=x · y~x' · y'), 
and provides a subset X of the real line, containing A and B, with a group structure. 
Under such assumptions [3]: 

A ( ·) B=[a · b, a'· b'] 

A)·(B=([a·b', a'.·b] ifa·b'~a'·b 
l f/J otherwise 
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If · is the usual addition, note that length (A ( +) B=length (A)+ length (B), 
length (A )+( B)=length (A)- length (B). Hence ( +) provides pessimistic results 
(no compensation of imprecision) while ) + ( provides optimistic results (maximal 
compensation of imprecision). Note that(+) is only a semi-group (A (+)-A# O) 
while A)+( -A=O, where -A=[ -a', -a] . 

Considering the equation with imprecise coefficients 

S(-) A=B 

The greatest set S such that (35) holds for S=S is, when non-empty, 

S={xl\fz c= B, :lyEA, x·y=z} 

={x l x·Ac;:B} 

(35) 

(36) 

When · is a group operation, then (36) can be written S=B) · (A -l following (34). 
Hence " optimistic" operations are useful for solving imprecisely specified equations. 

2.2. Equations involving fuzzy numbers [3, 7, 8] 

Any operation · on the real line can be extended to fuzzy-valued operands, 
A and B, fuzzy set of numbers, in the spirit of (31) (see [4, 5]. A ( ·) B is a fuzzy 
quantity with membership function: 

( ) f sup {.UA (x)*.UB (y ) I x · y=z} 
!lA(.)B z =\o ifnot:J(x,y), x·y=z 

(37) 

where the triangular norm *, supposedly continuous, models a fuzzy Cartesian 
product. Indeed, (37) yields (31) when A and Bare crisp sets of numbers, and gene
ralizes error interval analysis [13]. Let x · B be the fuzzy quantity defined by 

y XER, xoB(z)=J SU? { ftB (y)l X. y = z} 
.U. l 0 If not :J y, x · y=z 

which is a particularization of (37), tben (37) may read 

.UA (·) 8 (z) =sup {.UA (x) * .Ux·B (z) I x ER} 

What is obtained is an extension of (32). 

(38) 

(39) 

If · is a group operation on a subset of R containing the supports of A and B, 
then for *• being continuous or not, (37) may also read 

JlA (·) B (z) = sup { .UA (z · y - 1)* .UB (y) I yE R} 

Consider now the equation in S : 

S( ·) A = B 

(40) 

(41) 

It is a natural generalization of imprecisely specified equations (35) to fuzzy 
coefficients. Defining a fuzzy relation RA by f.lRA (x, z)=f.lx·A (z), \fx, z, this equa
tion is actually equivalent to the fuzzy relational equation 

SoRA=B (42) 
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Where o denotes a sup-':' composition as in (39). It is easy to figure out that if S1 

and S 2 are solutions of ( 41 ), then S 1 u S 2 (in the sense of maximum) is also a solution, 
i.e. if (41) has a solution, then it has a greatest solution in the sense of Zadeh's in
clusion. Greatest solutions of fuzzy relational equations have been found by San
chez [18] ( * =min) and Pedrycz [14]. Applying their results, the greatest solution 
S of (41), when it exists, is defined by the extension of (36): 

Y x, fls (x)=irtf {.Ux ·A (z) H .Us (z) I z ER} (43) 

provided that * is continuous. *-+ is the implication operation CC ( *) associated 
with ="• introduced in 1.3. eqn. (20). If · is a group operation, then (43) can be ex
pressed as 

provided A ) · ( B is defined by 

.UA ).( s (z)=inf {flz·B-1 (x) H flA (x) I X eR} 

=inf {,Lt8 (y) :H JlA (x) I x · y=z} 

(44) 

(45) 

where ,u8 _, (x)=,u8 (x- 1
). Note th'lt (45) reduces to (34) when A and Bare crisp. 

Thus a canonical definition of "optimistic" operation on fuzzy quantities requires 
the use of implications introduced earlier. 

In the following, A and Bare supposed to be fuzzy intervals, i.e. convex (V a, Aa= 
= {xi JlA (x)~a} is convex), normalized (3x, .UA (x)=l) fuzzy quantities with up
per-semi-continuous membership functions. Closed intervals belong to this class. 
Also, operation ' · ' is supposed to be continuous and isotonic. 

If B) · ((A - 1)=0, the equation S (·)A =B has no solution ; however, it can be 
checked that we may have B) · ( (A -l) =10 while the equation S ( · ) A =B has no 
solution. Indeed, it is clear that S given by ( 44) is normalized if and only if 

(46) 

since a>:<->b=l <o>a~b. Thus (46) is a necessary condition for the existence of a so
lution for S ( · ) A =B, since S must be normalized, A and B being supposed to be 
normalized (as it can be easily proved from (37)). (46) is not a sufficient condition. 
Indeed if A and B are fuzzy intervals, then if *=min, 

(47) 

i.e. a fuzzy equation is equivalent to an infinite set of crisp-set equations. ( 46) ensures 
that V a, 3S" solving Sa ( ·) Aa=B". However, the S", are not necessarily a-cuts oJ 
a fuzzy set, since the monotonicity condition a~/3=>Sa2Sn may not hold. Hence 
the fuzzy set S defined by 

Vx, fls (x)=sup {a I x E Sa} (48) 

may not be a solution of (41). If the equality in (41) is weakened into an inclusion 
(in Zadeh's sense), 

S'(·)AsB (49) 
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then S solving ( 49) always exists (it is possibly the empty set) and it is B)· (A - 1 . 

N.B. Using c (a)= 1-a for the complementation, the equality (A)· ( BY=Ac ( ·) B 
holds, provided ( ·) is defined via (37), where the t-norm * is changed into the 
pseudo-intersection /\* =/(*->)=/ o~(*). This remark leads to the consideration 
of new pessimistic operations on fuzzy numbers. The corresponding "optimistic" 
operations are based on implications f ( *), i.e. of the 1st kind. More details appear 
in [7]. 

2.3. Linear equations and optimistic sum and product of fuzzy numbers 

This section reports results about practical computation of operation ) · ( when 
· =sum (on R) or product (on R+) and *=min. A fuzzy interval A can be repre
sented by two decreasing functions L and R from R+ to [0, 1] such that L (0)= 
=R (0)= 1, and four parameters, a, a', a,/], where [a, a'] is the peak of A (i.e. 
{x ill A (x)= 1 }), a, a' are the spreads and are positive numbers. Then JlA is of the 
form (see [4]): 

(
a-x) 

JlA (x)=L -a- x~a 

(50) 

x";;::.a' 

A is said to be of the L-R type. For simplicity, a=a' in the following, and A is 
then represented by (a, a, a')LR as in [4]. 

It is well known [4] that if A and B are fuzzy intervals of the L- R type, then 
the sum A ( +) B, in the sense of (37), is also of the L- R type and: 

(a, a, a')LR ( +) (b, /], fJ')LR =(a+b, a+/], a'+ fJ')LR (51) 

As a consequence the greatest solution S of equation S (+)A =B where A and B 
are L-R fuzzy numbers is, when it exists, also of the L-R type i.e. S=(s, w, w')LR 
and s=b-a, w=fJ- a, w' =fJ'- a'. The necessary condition of existence (46) is 
also sufficient, and is equivalent to both /]";:;::.a and /]'";:;::.a' (positivity of w and w'). 

Note that for ·=sum, (46) expresses that it is possible to shift A and have the 
result included in B. The corresponding optimistic sum is )+( such that [8]: 

A)+( B=(a, a, a')LR )+( (b, /], fJ')u =(a+b, a+/]', a'- fJhR (52) 

it is clear that S=B)+( -A, where -A=( -a, a', a)RL· 

Turning to the product of fuzzy numbers on R+, denoted A () B (the product 
of two numbers is denoted ab), it is known [4] that even if A and Bare of the L -- R 
type, then A() B is not; however, the peak of A ()B is ab, and JlA()B is obtained by 
solving the simple equations ([4]), whose unknown is 11. E [0, 1] 

z=(a-aL- 1 (11.)) (b-fJL- 1 (11.)), Vz~ab 

z=(a+a' R - 1 (11.)) (b+fJ' R- 1 (11.)), Vz";;::.ab 

(53) 

(54) 
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where A=f.lA() 8 (z) . Bearing this in mind, the equation S () A=B can be solved 
by considering the following equations induced from (53) and (54): 

b-PL - 1 ().)=z (a- aL - 1 (A.)), 
b 

z~
a 

b 
z):

a 

(55) 

(56) 

where f.ls (z)=A., when Sexists. It is easily checked that Sexists if and only if : ;;:::: 

?;::max (; , ;: ) . This condition is equivalent to (46). Then S=B) ( A- 1 such that 

b ( b-az) Vz<-, w(z)=L --
a 5 P-az 

P' b ( b-az ) 
Vz, - , ?;::z?;::-, Ps (z)=R , P' 

a a a z-

P' 
Vz?:::-,, J.ls(z)=O. 

a 

(57) 

(58) 

Hence if A is of the L- R type and so is s- 1
, the optimistic product A) ( B is easily 

obtained by a suitable modification of (57) and (58). The latter equations express 
an optimistic quotient B): ( A. Similarly, the solution of equation S EB A =B is an 
optimistic difference S=B)-( A. 

2.4. Comparison of optimistic and pessimistic operations 

To illustrate the difference in meaning between pessimistic and optimistic ope
ration, let us consider a simple example. Suppose somebody has to figure out at 
what time he must wake up one morning in order not to miss a plane. Between 
getting up and catching the plane, he has a sequence of n tasks (washing, eating 
breakfast, etc ... ) to accomplish. Let tw be the wake up time, d1 the duration of task 
i , t A the arri\ dl time at the airport. 

The duration of each task is subjectively assessed by a fuzzy number D1 so that 
the total duration is D1 ( +) D2 ( +) ... ( +) Dn !:!, D. D encompasses both the upper 

" and lower bounds on :he total time 2; d1• 

i=l 

Suppose the man decides to get up by Tw (a fuzzy value for tw). Now, what can 
be known about his arrival time at the airport? The answer requires the compu
tation ofT w ( +) D (pessimistic sum) to be performed. Tw ( +) D is the set of possible 
values of the variable fA-

Now if the man wants to make sure he arrives at the airport by time TA (ex
pressed as a fuzzy number) in spite of the imprecision on the duration D of his 
preceding activities, then he can obtain a range of wake up times under the form 
TA)- (D. If he manages to wake up at twin this time range, he is then sure of reach-
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ing the airport on time independently of the actual durations of his various tasks. 
There are two reasons why he may fail to find a solution to his problem: 

a) the required arrival time is too early, and TA) - ( D overlaps too much a sleeping 
period. Such information could be obtained without using fuzzy arithmetics. 

b) The knowledge on the duration of tasks is too imprecise, so that TA )-(D simply 
does not exist. Only optimistic fuzzy arithmetics can provide such information. 
Then the man must either decide to be more precise about Di, Vi, or to reiax 
the precision of his demands about the arrival time TA-

This example demonstrates that the choice between optimistic and pessimistic 
operations on fuzzy numbers is dictated by the way the problem under considera
tion is stated. 

3. Concluding remarks 

Results pertaining to equations involving fuzzy numbers are still rather scarce. 
This paper is only a first step towards a proper understanding of such equations. 
For instance, we can notice that the general fuzzy equation is of the form 

A ( ·) S=B ( ·) S 

which cannot be reduced to (41). The corresponding fuzzy relational equation is 
of the form So RA= So RB, which has never been considered in the past. Another 
interesting development would be the analysis of systems of fuzzy linear equations 
(see Dubois and Prade [4], and Pedrycz [14] for some discussions). Note that the 
particular feature of our problem is that we look for fuzzy solutions; usual fuzzy 
linear programming techniques (Zimmermann [23]) only consider optimal crisp 
solutions of imprecisely specified problems. Finding fuzzy solutions looks more 
attractive (because of providing ranges of flexibility) but is far more difficult. 
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Operacje ro:lnicy i zawierania zbiorow C02 mytych i ich zastosowanie w analizie rownan 
rozmytych 

Dokonano przegli!du operacji na zbiorach rozmytych ze szczeg6lnym uwzgl~dnieniem r6:Znic 
zbior6w i ich zawierania. Ma to przede wszystkim dui:e znaczenie dla wlasciwego formulowania 
i analizowania r6wna6 zawierajilcych liczby rozmyte. Pokazano, i:e dla r6wna6 tych moi:na otrzy
ma6 nowy rodzaj arytmetyki rozmytej, w kt6rej bl~dy czy niescislosci wzajemnie si~ kompensuji\. 
Takie arytmetyki ,optymistyczne" oparte Si'! na zawieraniu, a wi~;c implikacji, w przeciwienstwie 
do zazwyczaj stosowanych , pesymistycznych" arytmetyk rozmytych, opartych na przeci~;eiu zbior6w. 

3 
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Onepa~HH pa3HOCTH 11 BKJIIoqeuHB ueqeTKHX MHOXCCCTB H IIX 

npHMeueHHe B auaJIH3e ueqeTKHX ypasueuuii 

D. DUBOIS, H. PRADE 

Ilpose,n;eH o63op onepa~IDi: Ha He'Ienrnx MHOJKecrsax c oco6J>IM y'IeToM onepa~ pa3HOCTH 

H BKmo'!eHHH. OnacaHJ>r o6~ae npo~e,n;ypr,r cacreMaTH'lecKoro reHepapoBaHHH onpe,n;erremtii: 

TaKHX onepa~Hll. 3TO HMeeT cy~ecTBeHHOe 3Ha'leHHe npeJK,n;e BCefO )J;Jlll KOppeKTHOH <iJOPMYJIHPOBKH 

H aHaJIH3a ypaBHeHHH, Co,n;epJKa~ He'!eTKHe 'UICJia. IloKa3aHO, '!TO )J;Jlll 3THX ypaBHemtii: MOJKHO 

ITOJIY'illTb HOBbrH BH)J; He'!eTKOH apH<iJMeTHKH, B KOTOpOH OIIIH6KH HJIH HeTO'IHOCTH B3aHMHO KOM

neHCHPYIOTCH. TaKife ,OIITHMHCTH'lecKHe" apH<iJMeTHKH OCHOBaHJ>I Ha BKillO'lemm, a 3Ha'!HT HMIIJIH

Ka~, B ITpOTHBOI!OJIOJKHOCTb K Ofibl'IHO HCIIOJib3yeMJ>IM ,ITeccHMHCTH'!ecKHM" He'IeTKHM apH<iJMe

THKaM, OCHOBaffilbiM Ha nepece'!eHHR MHOJKecTB. 


