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The introduction of some natural language elements into basic formulations of fuzzy multi­
criteria and multistage decision making is discussed. First, we introduce fuzzy linguistic quan­
tifiers exemplified by most, almost all, etc. For multicriteria decision making, instead of seeking 
an optimal decision which best satisfies all the fuzzy objectives as it has been traditionally assumed, 
we seek an optimal decision which best satisfies most, almost all, etc. (a linguistic quantifier, in ge­
neral) fuzzy objectives. For multistage decision making we seek an optimal sequence of controls 
which best satisfies the fuzzy constraints and fuzzy goals at most, almost all, etc. control stages. 
A calculus of linguistically quantified propositions is employed based upon fuzzy sets and possi­
bility theory. Second, we employ belief qualification to reflect a possibly varying belief (or certainty 
or confidence) as to the pieces of evidence concerning the (degree of) fulfilment of fuzzy objectives, 
constraints, and goals. The approach presented is a further step in bringing decision making models 
closer to a real practical perception of the essence of decision making. 

1. Introduction 

Omnipresence and vital importance of decision making in virtually all human 
activities triggered many attempts to formalize and solve it using some mathematical 
means. They were often successful, although much more so in "hard" problems 
arising in, e.g., technology than in "soft" problems commonly encountered in 
practically relevant problems of systems analysis which must account for both con­
siderable uncertainties and many subjective, intangible, vague, etc. aspects. The 
former may be dealt with in probabilistic and statistical terms but for the latter, 
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which are inherently imprecise, the conventional "precise" mathematics seems not 
to be the best suited. 

Fuzzy sets and possibility theory (Zadeh [19]) provide tools meant to formally 
represent and manipulate imprecise and vague (fuzzy) concepts and relationships ; 
they are relatively simple and intuitively appealing. Since their inception they have 
been applied in a variety of fields, with decision making as a notable example. The 
use of fuzzy sets for dealing with " soft" decision making problems was triggered by 
Bellman and Zadeh [1] who introduced a general framework involving as the main 
elements: fuzzy goals, fuzzy constraints, and a fuzzy decision; an optimal decision 
is sought which best satisfies the fuzzy goals and fuzzy constraints. This framework 
is a point of departure for virtually all fuzzy decision making models developed 
later on, including that in this paper. 

Since real decisions are (or are intended to be) made by people for people, p rob­
lem statements and solutions should be as consistent as possible with human per­
ceptions of their underlying real problems. Since natural language is the only fully 
natural human communication means, the above consistency requirement may be 
viewed as suggesting tbat "softening" of decision making models should involve 
introduction of some elements of natural language. 

A rich source of such elements is the so-called commonsense knowledge (Zadeh, 
[22]). One of important elements used for representing the commonsense knowledge 
is a disposition as, e.g., "winter days are cold". A disposition implicitly involves 
a linquistic quantifier (e.g., most), i .e. what the quoted disposition really says is 
exemplified by "most winter days are cold". The linguistic quantifiers play there­
fore a crucial role in the representation and handling of commonsense knowledge. 

The above direction to use the linguistic quantifiers for "softening" decision 
models has been pursued by the authors for some time, involving: multicriteria 
decision making (e.g., Yager [14, 17], Yager and Kacprzyk [18], Kacprzyk and 
Yager [11]), multistage decision making and control (e.g., Kacprzyk [4, 6]), and 
group decision making (e.g., Kacprzyk [7, 8]); an application for evidence aggre­
gation in knowledge engineering is Kacprzyk and Yager [9]. The purpose of this 
paper is to further explore this topic. 

In conventional approaches to fuzzy multicriteria decision making (e.g., Blin [2], 
Kaufmann [12], Yager [13]) the problem is to find an optimal decision which best 
satisfies all the fuzzy objectives (goals and/or constraints), while for fuzzy multi­
stage decision making (control) (e.g., Kacprzyk [4, 6]) the problem is to find an 
optimal sequence of controls which best satisfies the fuzzy constraints and fuzzy 
goals at all the control stages. The above "all" may often be viewed too restrictive 
and counter-intuitive; in many practical cases it may well be replaced by some 
milder requirement, e.g. , "most" , "almost all", etc., specified by a linguistic quanti­

fier. Thus, we may seek in the multicriteria case an optimal decision which best 

satisfies most, almost all, etc. fuzzy objectives, and in the multistage case - an 

optimal sequence of controls which best satisfies the fuzzy constraints and fuzzy 

goals at most, almost all, etc. control stages . 
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The above idea which was proposed in the author's [4, 6, 11, 14, 17, 18] proved 
to be very fruitful and promising. It will be further explored here. We will also 
introduce a degree of importance of a particular objective or control stage, hence 
making it possible to seek, respectively, an optimal decision which best satisfies, 
e.g., most of the important objectives, or an optimal sequence of controls which 
best satisfies the fuzzy constraints and fuzzy goals at most of the important (earlier) 
control stages. Moreover, we will provide a belief qualification mechanism to account 
for a possibly varying belief (or certainty or confidence) as to a piece of evidence 
concerning the (degree of) fulfilment of a fuzzy objective (fuzzy constraint or goal). 

First, we briefly sketch a calculus of linguistically quantified propositions pro­
viding means for handling fuzzy linguistic quantifiers. Then we consecutively show 
the application of these quantifiers in multicriteria and multistage decision making. 

Some notational remarks: 

The notation used will be standard. A fuzzy set A in X, A~ X, will be characterized 
by (and often equated with) its membership function J1A: x~[O, 1]. For a finite 
X ={xl> ... , Xn} A will be written as A=flA (x1)/x1+··· JlA (xn)fxn. 

As to a more specific notation. we will also use the following binary operations: 
(1) A t-norm, (t): [0, 1] x [0, 1]~[0, 1], such that: 

(a) a (t) 1 =a 
(b) a (t) b=b (t) a 
(c) a(t)b"?:c(t)d if a)::c and b"?:d 
(d) a (t) b (t) c=a (t) (b (t) c))=(a (t) b) (t) c 

Some examples of t-norms are: 

a Ab=min (a, b) 
a·b 
1-(1/\ ((1-a)P+(l-b)P)1/p p):: 1 

We will also denote: 
n 

(t) a1=adt) ... (t) an 
1=1 

and in particular 
n 

1\ at=all\ ... 1\ an 
1=1 

A t-norm generalizes the "and" operation in multivalued logic. The intersection 
of two fuzzy sets may be in general represented by a t-norm. 
(2) An s-norm (t-conorm), (s): [0, 1] ?< [0, l]~[o, 1], such that: 

(a) a (s) O=a 
(b)- (d) as for a t-norm 

Some examples of s-norms are: 

a v b=max (a, b) 

a+b-a · b 

1A(aP+bP)l/p p)::1 
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An s-norm generalizes the "or" operation in multivalued logic. The union of 
two fuzzy sets may be in general represented by an s-norm. 
(3) A generalized implication or ply operation<~): [0, 1] x [0, 1]-+[0, 1], such that: 

(a) a(~) 1=1; O(~)a=1; 1 (~)a=a 
(b) a(~) b~a (~) c if b~c 

(c) a(~) b~c (~) b if a~c 

Some examples of ( ~) are: 
ba 
(1-a)(s) b 
1 (t) (1-a+b) 

where s is any s-norm (" v" in particular) 
where t is any t-norm (" 1\" in particular) 

2. A calculus of linguistically quantified propositions 

A linguistically quantified proposition is examplified by "most experts are con­
vinced". In general, it may be written as 

QY's are F (1) 

where Q is a linguistic quantifier (e.g., most), Y={y} is a set of objects (e.g., experts) 
and F is a property (e.g., convinced). 

Importance B may also be introduced into (1) yielding 

QBY's are F (2) 

i.e. "most of the important experts are convinced". 

Basically, the problem is to find truth (QY's are F) knowing all truth (y1 is F), 
y 1 e Y, or- in case of (2)- to find truth (QBY's are F). 

Moreover, with each "y1 is F" a degree of belief (or confidence or certainty) 
about this piece of evidence may be associated. The problem becomes then to find 
truth (QY's are F) knowing all truth (y1 is Flbel), y 1 e Y, where bel is a degree of 
belief. And analogously for (2). 

Since the conventional two-valued predicate calculus makes it possible to find 
the above truths for the quantifiers "all" and "at least one", we will sketch now 
a fuzzy-logic-based calculus to account for more general quantifiers commonly 
used in practice as, e.g., most, almost all, much more than 50%, etc. Two methods 
of this calculus will be presented. 

2.1. Tbe algebraic or consensory method 

In this classical method proposed by Zadeh [20, 21], the quantifier Q is assumed 
to be a fuzzy set in [0; 1], Q~ [0, 1]. For instance, Q="most" may be given as 

for x~0.8 
for 0.3 <x<0.8 
for x~0.3 

(3) 
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Throughout the paper we will use only the so-called proportional fuzzy quantifiers 
exemplified by "most", "almost all", etc. For the so-called absolute quantifiers, 
e.g., "about 5", "much more than 10", etc. the reasoning is similar, but they should 
be defined as fuzzy sets in R, the real line. 

Property F is defined as a fuzzy set in Y, F~ Y. If Y={y1 , ••• , yP}, then truth 
(Y; is F)=J1F(Yi), i=1, ... ,p. 

The calculation of truth (QY's are F) is based on the (nonfuzzy) cardinalities, 
I Counts, of the respective fuzzy sets (see, e.g., Zadeh [21]) and proceeds as follows: 

1. Calculate 

2. Calculate 

1 p 

r= 1; Count (F)/ 1; Count (Y)=- .2; JlF (Y;) 
p i=l 

truth (QY's are F)=JlQ (r) 

(4) 

(5) 

Importance is introduced into the above as follows. B="important" is defined 
as a fuzzy set in Y, B~ Y, such that Jlo (Y;) E [0, 1] is a degree of importance of 
y1: the higher its value the more important y1• 

We rewrite first "QBY's are F" as "Q (B and F) Y's are F" which leads to the 
following counterparts of (4) and (5): 

1. Calculate 

r' = 1; Count (B and F)/}.; Count (F)= 
p p 

= .2: (J.iB (y;) (f) J.lF (y;))/ .2; JlF (yl) (6) 
i=l i= 1 

In the most common case, (t) is "1\" and (6) becomes 

p p 

r' =}; (J.lB (y;) 1\ f.lF (yl))j .2; J.lF (yi) (7) 
i=1 i=l 

2. Calculate 
truth (QBY's are F)= JlQ (r') (8) 

EXAMPLE 1. Let Y="experts"={Mr. :K, Mr. Y, Mr. Z}; F="convinced"= 
=0.1/MR. X+0.6/MR. Y+0.8jMR. Z; Q="most" is given by (3); B="import­
ant"=0.2jMR. :.¥+0.5/MR. Y+0.6/MR.Z; (t) is "A". 

Then, on the one hand 

r=t (0.1+0.6+0.8)=0.5 
and 

truth ("most experts are convinced")=2 · 0.5-0.6=0.4 

On the other hand 

r' ==((0.1/\ 0.2)+(0.6/\ 0.5)+(0.8/\ 0.6))/1.5-= 1.2/1.5= 0.8 
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and 
truth ("most of the important experts are convinced")= 1 

Instead of the nonfuzzy cordinalities of the respective fuzzy sets, J: Counts, 
the fuzzy cardinalitics, F Counts, may also be used. For details, see Zadeh [21]. 

Consideration of belief (or confidence or certainty) as to the piece of evidence 
"y1 is F" may be done through a belief qualification procedure by Yager [15]. Namely, 
we introduce a degree of belief bel1 E [0, 1] and "y1 is Flbcl;'' denotes "y1 is F" 

with belief equal to bel;. Now, "y; is Flbel;'' is translated to "y; is F*" with implied 
bel1=1, such that 

(9) 

Its particular, widely used form is 

(10) 

Notice that bel1= 1 means that we are certain that "y/' is F", while bel;-=0 
means that we know nothing, hence each Y; is possible, i.e. f1F (y;)= 1 for each 
y1 eY. 

The method presented may be viewed as yielding a consensory like aggregation 
of the pieces of evidence "y1 is F", with or without importance and belief (for details, 
see Kacprzyk [7] or Yager [16]). 

2.2. The substitution or competitive method 

This alternative method is proposed by Yager [14, 16]. As in Section 2.1 we 
have here Y={Yl> ... , yP} and F£ Y. A proposition "y1 is F" is denoted by P;, 
i=1 , ... ,p, and 

(11) 

We introduce the set 
(12) 

whose generic element {v} is {Pkl, ... , Pkm} meant as the proposition Pu arid ... and 
Pkm• and written as {Pkl and ... and Pkm}· In the sequel v and {Pkl and ... and Pkm} 
will be used interchangeably. 

Each v, or its corresponding proposition Pkl and ... and Pkm• is seen to have 
the truth 

JlT (v)=truth (Pkl and ... and Pkm)=truth Pkl (t) ... (t) truth Pkm= 
m m 

= (t) truth Pk1= f.J-F (k1) (t) ... (t) flF (km)= (t) f.J-F (ki) (13) 
i= 1 i=l 

Its particular, widely used form for (t) being "1\" is 

m 

Jlr (v)= flF (kl) 1\ ..• 1\ PF (km)= 1\ J1F (ki) (14) 
1=1 

w~ obtain therefore a fuzzy set T£ V. 
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'The fuzzy linguistic quantifier Q is defined as a fuzzy set in V, Q;;; V. 
The truth of '·'QY's are F" is now seen as the possibility that some V E V both 

satisfies the meaning of Q and is true (T), i.e. (Zadeh [19]) 

truth (QY's are F)=max (f.lQ (v) (t) fly (v)) (15) 
vEV 

and for the most widely used (t)- being" 1\" 

truth (QY's are F)=max (f.lQ (v) 1\ f.ly (v)) (16) 
vEV 

Assume no\v that B;;; Y denotes importance. Then 

km 

truth (QBY's are F) = max (f.lQ (v)(tl) ((t2) (f.18 (y;)(~) flF (Y;)))) (17) 
v EV i =kl 

where (tl) and (t2) are t-norms and ( ~) is an implication operator (for a derivation 
of (17), see Yager [17]). 

For instance, if (tl) and (t2) are "1\" and ( ~) is "(1 - a) v b", then 

km 

truth (QBY's are F) = max (f.lQ (v) 1\ 1\ (1 - fl 8 (Yi)) v flF (y;)) (18) 
vEV i=kl 

Evidently, in (17) and (18) {v} is equivalent to {Pkl and ... and Pkm}· 

ExAMPLE 2. For the same data as in Example 1, let (tl) and (t2) be" 1\ ",(~)be 

"(1-a) v b", and Q= "most" be 

J.l"most" (v) = ( ~.7 
0.3 

for v E {P1 and P2 and P 3 } 

for v E {P1 and P 2 , P 1 and P3 , P 2 and P3 } 

for v E {P1 , P 2 , P 3} 

(19) 

Since (14) yields: fly (P1 and P2 and P 3)= 0.1. fly (P1 and P2)= 0.1, J.ty (P1 
and P 3)= 0.1, f.ly (P2 and P 3)=0.6, fly (P1)= 0.l, fly (P2)=0.6, flT (P3)= 0.8), then 
due to (16) 

truth ("most experts are convinced")=(1 1\ 0.1) v (0.7 1\ 0.1) v (0.7 1\ 

1\ 0.1) V (0.7 1\ 0.6) V (0.2 1\ 0.1) V (0.2 1\ 0.6) V (0.2 1\ 0.8) = 0.6 

and due to (18), with B= "important" as in Example 1 

truth ("most of the important experts are convinced") = 

= (1 1\ ((0.8 V 0.1) 1\ (0.5 V 0.6) 1\ (0.4 V 0.8))) V (0.7 1\ 

1\ ((0.8 V 0.1) 1\ (0.5 V 0.6))) V (0.7 V ((0.8 V 0.1) 1\ 

1\ (0.4 V 0.8))) V (0.7 1\ ((0.5 V 0.6}/\ (0.4 V 0.8))) V 

V (0.3 1\ ((0.0 V 0.1))) V (0.3 1\ ((0.5 V 0.6))) V (0.3 1\ 

1\ ((0.4 V 0.8))) = 0.8 V 0.6 V 0.7 V 0.6 V 0.3 V 0.3 V 0.3 = 0.8 

Notice that the substitution method may yield different results than the algebraic 
method. 

4 
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The substitution method may be viewed to provide a competitive like . aggre­
gation of pieces of evidence (for details, see Kacprzyk [7] or Yager [16]). 

Belief qualification may evidently proceed analogously as in Section 2.1. 
We will now apply both methods of dealing with linguistically quantified pro­

positions to multicriteria and multistage decision making. 

3. Molticriteria decision making under fuzziness 

As outlined in Section 1, multicriteria decision making under fuzziness may be 
formalized as: if A={a}={a1 , ••• , aq} is a set of possible alternative decisions (op­
tions) and o={o1 , ••• , oP} is a set offuzzy objectives (fuzzy constraints and/or goals) 
to be satisfied, then the degree to which a EA satisfies o; E o is given by truth 
(o1 is satisfied (by a))=flo, (a). 

Traditionally it is postulated (e.g., Bellman and Zadeh [I]) that a EA satisfy 
"o1 and ... and op'', i.e. all the fuzzy objectives and hence the degree of that satis­
faction is given by the fuzzy decision 

flD (aj"al"l)=truth (o 1 and ... and Op are satisfied (by a))= 

=truth ("all" o's are satisfied)=truth (o 1 is satisfied) (t) ... 

... (t) truth (op is satisfied)) = flo
1 

(a) (t) ... (t) flop (a) (20) 

and the problem is to find an optimal decision a* EA, such that 

a*=arg max flD (aj"all") (21) 
a EA 

It is easy to see that the requirement of satisfying "all" the fuzzy objectives 
exexpressed by (20) may be viewed too rigid and restrictive for practical purposes. 
An idea to replace that "all" by a milder requirement as e.g., "most" appeared in 
Yager [14], Yager and Kacprzyk [18], Kacprzyk and Yager [11]. Basically, it 
consists in requiring the fulfilment of Q (e.g., "most") fuzzy objectives, where Q 
is a linguistic quantifier, i.e. we seek an a* EA, such that 

a*=arg max flD (a IQ) (22) 
a EA 

The purpose of this paper is to further analyze this type of problems. 

3.1. Solution by the algebraic method 

Following Section 2.1, we introduce first the fuzzy set S="satisfied"~o, such 
that J.l.(o1)=truth (o1 is satisfied (by a))=flo

1 
(a), i=I, ... ,p, and a fuzzy set B= 

="important" ~o, such that flB (o1) E [0, 1] is the degree of importance of objective 
o1• A linguistic quantifier is Q~ [0, 1]. 

The fuzzy decision is 

flD (a!QB)= flD (ai"most" "important")=truth ("most" of the 

"important" o's are satisfied)=truth (QBo's are satisfied) (23) 
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and the problem is to find an optimal a* EA, such that 

a* =arg max Jln (a I QB) (24) 
a EA 

Using the algebraic method, we calculate first 

p p 

r (a)=}; (JlB (o1) (t) llo1 (a))/}; Po1 (a) (25) 
i=l i= 1 

and then 
Pn (a I QB)= JiQ (r (a)) (26) 

Thus 
a*=arg max llQ (r (a)) (27) 

a EA 

Notice that if we do not wish to account for importance, we set JiB (o1)= 1 for 
each o1 Eo, and (25) becomes 

1 p 

r (a)=-}; f.lo. (a) 
p i=l ' 

(28) 

while (26) and (27) remain the same. 

It is easy to see that it is difficult to say something about the solution of (27) 
for a general Q. We introduce therefore the so-called nondecreasing quantifiers 
defined as follows 

r' > r" => JiQ (r')~ JiQ (r") for each r', r" E [0, 1] (29) 

i.e. the more objectives are satisfied the better. "Most" given by (19) is such a quanti­
fier. Let us notice that the nondecreasing quantifiers are the only practically relevant 
in our topic. 

A particularty important nondecreasing quantifier is the linear quantifier L 
defined as f.lL (r)=r for each rE R. 

As shown in, e.g., Yager [14, 17] or Yager and Kacprzyk [18], any optimal 
solution of (27) with the linear quantifier is also an optimal solution for an arbitrary 
nondecreasing quantifier, i.e. (27) becomes for a nondecreasing Q 

p p 

a* =arg max lln(aiLB)=arg max(.2;(.uB(01)(t)tL01 (a))/}; llo
1 

(a)) (30) 
aEA aEA i=l i=l 

EXAMPLE 3. Let: A={al> a2 , a 3}, o1 =1/a1 +0.8ja2 +0.3ja3 , o2 -0.6/a1 +1/a2 + 
+0.5ja3 , o3 =0.5ja1 +0.8/a2 +1/a3, Q="most" be given by (19), (t) be "A", and 
B="important" =0.3/o1 +0.8fo2 +0.5jo3 • 

Then: 

lln ( a 1 I "most" "important")= 1.4/2.1 =2/3 
.Un (a2 1 "most" "important")=2.4/2.6=12jl3 
Jln (a3 j "most" "important")= 1.3/1.8= 13/18 

i.e. a*=a2 • 
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3.2. Solution by the substitution method 

Following Section 2.2, we introduce the propositions P;: "oi is satisfied (by a)" 
and a fuzzy set S= "satisfied" such that 

Jls (o;)= Jlo
1 
(a)=truth P; i= 1, ... , p (31) 

The set V is 

(32) 

The truth of v (a), or its corresponding proposition Pk 1 and ... and Pkm is 

Jlr ( v (a)) =truth (Pkl and ... and Pk 111)= Jlok, (a)(t) ... (t) Jlokm (a) (33 

IfB~o denotes importance, and Q~ V, then 

truth (QBo's are satisfied (by a))= 
km 

= max (JiQ (v (a)) (tl) ((t2) (JLn (o;) (~) Jlo
1 
(a)))) (34) 

v(a)EV i=kl 

and the problem is to find a* "'A such that 

km 

a* =arg max max (Jto (v (a)) (tl) ( (t2) (JLn (o;) ( ~) JLo
1 
(a)))) (35) 

aEA V(a)EV i=U 

where (tl) and (t2) are arbitrary t-norms. 

EXAMPLE 4. Let us assume the same data as in Example 3 with Q="most" given 
by (19), and: (tl)=(t2)="A", a(~)b=(1-a)vb. Then, (35) becomes 

a*=arg max truth (QBO's are satisfied (by a))= 
a EA 

~~m 

=arg max max (JLo (v (a)) A 1\ ((1 - Jln (o;)) vp0 (a))) (36) 
uEA v (a)EV i=kl 

Thus, (36) yields: 
truth (QBO's are satisfied (by a 1))=0.6 
truth (QBO's are satisfied (by a2))=0.8 
truth (QBO's are satisfied (by a3))=0.7 

Thus, a* =a2 , i.e. the same as in Example 3 although it need not be so, in general. 

The solution of (35) is analytically difficult; it may be transformed into an equi­
valent 0-1 programming problem (Yager [17]). 

In practice, some simplified form of (38) is often used - with (t) being " A" 

and all the objectives of the same importance, i.e. JLn (o;)= 1 for each o; Eo- which 
leads to the search of a* EA such that 

km 

a*=arg max max (JLQ(v(a))A 1\ JLo
1
(a)) (37) 

aE.4. v(a)EV i=kl 

which is relatively easy to solve analytically. 
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Namely (see, e.g., Yager and Kacprzyk [18] for proofs), if: 
(I) the linguistic quantifier Q ~V is monotonic, i.e. 

J.lQ (v3);?!: J.lQ (v1) V J.lQ (v2 ) 

165 

(38) 

for any v1 , Vz. v3 E V such that v 3 =v1 and v 2 (for instance "most" given by (I9) 
is monotonic). This monotonicity is close in spirit to the nondecreasingness (29) 
but not the same; 
(2) there is a finite number of distinct membership grades of J.lQ (v), say b1 ~b2~ ... 
... ~b3; 
(3) di is the i-th largest element of the set {J.lo

2 
(a), ... , J.lov (a)} containing for 

a fixed a the grades of membership of a in the particular fuzzy objectives; then (37) 
is equivalent to seeking a* EA such that 

a* =arg max max (d1 1\ bJ (39) 
aEA i=l, ... , s 

EXAMPLE 5. For the same data as in Example 3 (but without importance, i.e. 
B=I/01 +1/02 +I/03), we have: 
-for a1 : d1 =I, d2 =0.6, d3 =0.5; and b1 =0.2, b2 =0.7, b3 =1. Hence 

max (di 1\ bJ=0.2 v 0.6 v 0.5=0.6 
i=1~2,3 

-for a 2 : d1 =l, d2 =0.8; and b1 =0.2, b2 =0.7. Hence 
max (d;AbJ=0.2v0.7=0.7 
i=1, 2 

-for a3 : d1 =1, dz=0.5, d3 =0.3; and b1 =0.2, b2 =0.7, b3 =1. Hence 
max (d; 1\ bi)=0.2 v 0.5 v 0.3 =0.5 

'i=1,2, 3 

Therefore, a* =a2 • 

Belief qualification as to a piece of evidence "oi is satisfied (by a)" may be easily 
introduced into (26), (30), (35) or (36). Namely we should first calculate J.lo* (a) 

. f 

using J.lo, (a) and beli, i=l, ... , p, due to (9). Then, we should replace J.lo, (a)'s with 
J.lo* (a) 's in the respective formulas. 

! . 

4. Multistage decision making under fuzziness 

The essence of multistage decision making (control) under fuzziness may be 
stated as follows. At each time (control stage) t, the control u1 E U={cl> ... , cm} 
is subjected to a fuzzy constraint J.lcr(ur), arid on the state attained x1+ 1 EX= 
= {s1, ... , sn} a fuzzy goal J.lG<+l x 1+ 1) ~s imposed; the state transitions are governed 
by xt+l =f(x1, ut); Xr, Xr+ 1 EX, u1 ·E U, t=O, 1, ... , N; N is some termination time. 
For exten~ions of .the above basic statement, see Kacprzyk [3, 5]. 

It is commonly postulated (e.g., Bellman and Zadeh [I] or Kacprzyk [3, 5]) 
that at each t ut satisfy the fuzzy constraint C 1 and the fuzzy goal Gt + 1 , to be 
written as Pr + 1 : "C1 and G1 + 1 are satisfied (by u1)''. This satisfaction is evidently 
to the degree equal to truth 

Pt+l ~truth ("Ct and Gt+l are satisfied")=J.lc• (u,) (t) J.lGh+l (x1+ 1) (40) 
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Moreover, traditionally we require a sequence of controls to satisfy the fuzzy 
constraints and fuzzy goals at all the subsequent control stages, hence the fuzzy 
decision expressing the degree of that satisfaction is 

J.lD (u0 , ••• , uN_ 1Ix0 , "all")=truth (P1 and ... andPNI"all")= 
N-1 N-1 

= (t) !"all") truthP,+ 1 = (t) !"all") (J.lc• (ur)(t) J.lG<+l (xr+1)) (41) 
t=O t=O 

and the problem is to find an optimal sequence of controls u*, ... , u;_ 1, such that 

u~, ... , u;_ 1 =arg max J.lv (u0 , ... , uN_ 1 lx0 , "all") (42) 
Uo, •••1 UN-1 

It is easy to see that the above requirement to satisfy the fuzzy constraints and 
fuzzy goals at all the control stages may be viewed as too rigid and counter-intuitive 
in practice. An approach to replace that "all" by a milder requirement expressed 
by a fuzzy linguistic quantifier Q, say "most", "almost all", etc., was proposed by 
Kacprzyk [4, 6]. Basically, u 0 , ... , uN_ 1 is required to fulfill the fuzzy constraints 
and fuzzy goals at Q control stages, hence (41) and (42) become, respectively: 

N-1 

J.lv (uo, ... , uN - 1 uo, Q)= (t) IQ) truth P, + 1 = 
t=O 

N-1 

= (t) IQ) (J.lo (ur) (t) J.lG•+l (xr+1)) (43) 
t=1 

and 
u~, ... , u;_ 1 =arg max J.lD (u0 , ••• , uN-1IQ) (44) 

Uo, •••• UN-1 

We will now present the solution of this basic formulation using both the alge­
braic and substitution method. lmportances will not be accounted for in order 
to be able to efficiently solve the resulting problems. Then, we will comment upon 
the role of importances and belief qualification with respect to discounting. 

4.1. Solution by the algebraic method 

To solve (44) by the algebraic method (see Section 2.1), we first calculate 

N -1 

r (uo, ... , uN- 1Ixo)=(lfN) .J: truth Pr+ 1= 
t=O 

N-1 
={1/N).}; (f.let (u,) (t) J.lG<+l (x,+ 1)) (45) 

t=O 

then 

llo (uo, ... , UN- dxo. Q)=llo (r (uo, ... , uN-t!Xo))= 
N-1 

=J.lo ((1/N) }; (f.lc• (u') (t) f.lGt+l (Xr+t))} (46) 
' ' t=O 
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and the problem is to find 

N-1 

u~, ... , uN-l =arg max f/.Q {Cl/N)}; (flc' (u1) (t) fl.G<+l (x1+ 1))) (47) 
llo, .,, IZN- 1 t = 0 

As for (27), it is difficult to say something about the solution of (47) for an ar­
bitrary Q. However, by an analogous line of reasoning as in Section 3.1 it may 
be shown (Kacprzyk [4]) that for a nondecreasing Q (in the sense of (29)) an optimal 
solution to (47) may be obtained by solving it for the linear quantifier, i.e. (47) 

becomes to find 
N-1 

u~, ... , u;_ 1 =arg max (lfN)}; (flc< (ur) (t) fl.G<+l (xr+1)) (48) 
Uo, , .. , UN-1 t=O 

This may be solved, e.g., by dynamic programming. The set of recurrence equa­
tions yielding the solution is 

UN-i 

XN-i+l =j(XN-i> UN-!) 
where JlGN (xN)=O for each Xt~· 

' Evidently, from (49) we obtain optimal policies a; : x-u, such that u;=a; (xr), 
t=O, 1, ... ,N-1. 

EXAMPLE 6. Let N = 3, the fuzzy constraints and fuzzy goals be 

C0 =0.5jcl +1/Cz 

C1 =1/c1 +0.1/cz 

C2 = 1/cl +0.6/Cz 

G1 =0.lts1 +0.6fsz+1/s3 

G2 =0.6fs1 + 1/s2 +0.5/s3 

0 3 = 1(s1 +0.8fsz+0.3(s3 

(t) be "1\ ", and the state transitions be governed by 

Xr 

s1 s2 s3 

et s3 s3 s3 
Xr+ 1 =Ur c2 Sz S1 Sz 

Solving (49) consecutively for i= 1, 2, 3 we obtain: 

next 

and finally 
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4.2. Solution by the substitution method 

Following the reasoning applied in Sections 2.2 and 3.2, we denote P1 + 1 : "Ct 
and G1+ 1 are satisfied (by u,)" and 

Next 
V={v}=2{Pl, ... PNl 

and Q~ V; {v} is equivalent to {Pkl and ... and Pkm}· 

The fuzzy decision (46) is now 

JlD (ua, ... , uN-1lx0, Q)=truth (P1 and ... and PNIQ)= 
N- 1 

(50) 

(51) 

=( (t) IQ) truth P, + 1 =Poss (Q n T)=max (flQ (v) (t) fiT ('v)) (52) 
t = O v E V 

km-l 

where J1T (v)=Jly (Pkl and ... and Pkm)= (t) (flcr (u,) (t) flc<+l (xt+1)). 

The problem (47) becomes to find 
t=kl-1 

u~, ... , u~_ 1 =arg max max (J.lQ (YJ) (t) flT (v)) (53) 
uo, ... , llN-1 vEV 

Evidently, flT (v) is a function of u0 , ... , uN_ 1• 

It may readily be seen that (53) virtually consists of the following two problems: 
(a) the calculation of 

(b) 

flD (ua, ... , uN-1 Xo, Q)=max (flQ (v) (t) flT (v)) 
v EV 

for fixed u0 , ••. , uN- 1 and xi> ... , xN; 
the optimization of u0 , ••• , uN .c.. 1o i.e. the determination of 
which (53) holds. 

* * Ua, ... ,UN-1 for 

Problem (a) is in fact equivalent to that ofmulticriteria decision making discussed 
in Section 3.1, hence will not be dealt with here. We will consider below the problem 
(b), i.e. optimization of the sequence of controls. 

Since we assume that the control space U is finite, the multistage decision making 
process may be portrayed as a decision tree of the type shown in Fig. 1. Its nodes 
correspond to the successive states attained (x0 in the root), and with its arcs there 
are associated the controls applied and the values of flet (u1) (t) Jlcr+1 (x,+ 1). The 
determination of u~, .. . , u~_ 1 is therefore equivalent to finding a path in that decision 
tree for which (53) holds. An implicit enumeration algorithm giv~n below may be used. 

The point of departure is the solution of the conventional (i.e. for Q=" all") 
multi stage decision making problem: find 

* * ( I "all")= . u0, ... , uN_ 1 =arg max flD u0, ... , uN- 1 x 0, 
uQ, •.. , llN-1 

N-1 

=arg max (t) (flcr(u,)(t)Jlc<+t(X1 +1)) (54} 
uo, ...• uN-1 t=O 
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which may be efficiently solved by dynamic programming or branch-and-bound 
(Kacprzyk [5]). 

We have now an important property. 

PROPOSITION 1. For any monatomic Q and any u0 , ... , uN_ 1 : 

( I Q)>- ( I " all") Jlo Uo, ... ,uN-.tXo, ~Pn Uo, ... ,uN-.tXo, (55) 

and in particular 

( * * I Q) >- ( * * I "all") Jln u0, . .. ,uN-lX0, ,_.-JID u0, ... ,uN_ 1 x 0, (56) 

The proof is analogous to that in Kacprzyk [4] . 

The solution of the generalized problem (53) is therefore never worse than that 
of the conventional one (54). 

And the necessary condition for a path (its corresponding u0 , .. . , uN_ 1) to be an 
optimal solution of the generalized problem (53) is given below. 

• 
PROPOSITION 2. Ifu~, ... , u~_ 1 is an optimal solution to (53) for some monotonic Q, 
then in its corresponding path there exists at least one arc such that for u; associated 
with this arc there holds 

Pc• (u~)(t) Jlcr+t (f (x1, u:'))~ Jln (u~, ... , u~- 1 lxo, "all") 

The proof is analogous to that in Kacprzyk [4]. 

(57) 

The above properties lead to the following algorithm for solving the problem 
considered (54): 

1. Construct the decision tree of the type mentioned before (see, e.g., Fig. 1). 

2. Solve the conventional problem (53), i.e. find 

u~, ... , u~ _ 1 =arg max Jlo (u0 , ... , u.v _1 ]x0 , "all") 
llo, . ,., llN- 1 

3. Find such arcs in the decision tree for which 

(58) 

Notice that we have here only "> ", but we already have some arcs for which 
"="holds, i.e. those corresponding to a solution found in Step 2. Here \ Ve seek 
a better solution. 

4. Determine all the paths from x0 to xN containing the arcs found in Step 3. 

5. For each path (its corresponding u0 , ... , uN _ 1 ) found in Step 4, determine 

Jln (uo, ... , uN-1Ixo, Q)=max (JLQ (v) (t) JlT (v)) (59) 
v EV 

and take as the optimal solution(s) the sequence(s) for which (59) takes on the 
maximum. 
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EXAMPLE 7. Let the problem specifications be the same as in Example 6. Assume 
that x0 =s, N=3, (t) is "1\" and Q="most" is given by (19). We will seek 

2 

=arg max (/\ l"most")(Jlcr(u1)/\JtG,+•(xr+1)) 
u0 ,U!Jil2 t=O 

The consecutive steps of the algorithm are: 

1. The decision tree is as in Fig. 1. 

Xo = 

t = 0 
0.5 

Xl = 53 

t = , 
• 

optimum (..most") optimuml..all") 

Fig. 1. Decision tree with the optimal solutions 

2. The solution of the conventional problem (54) is u~=c2, u~=c2, u;=c2 , for 
which JlD ( ·ls1o "all")=0.6, and corresponds to the path "-". 

3. The arcs for which (58) holds are shown by "· • ·". 

4. The arcs found in Step 3 are contained in the two paths denoted by "---" 
which correspond to 

S. For the paths found in Step 4 we calculate using (59): 

as given below the respective x~ s. 
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The optimal solution to our problem, i.e. the sequence of controls u~, u~, u; 
which best satisfies the fuzzy constraints and fuzzy goals at most of the control 
stages, is 

4.3. Some remarks on importances and belief qualification and discounting 

It is clear that if we introduced importances of the particular control stages 
following the reasoning presented in Sections 3.1 and 3.2, the counterparts of the 
problems to be solved would stand for "find an optimal sequence of controls which 
best satisfies the fuzzy constraints and fuzzy goals at, e.g., most of the important 
(earlier) control stages". We obtain therefore a mechanism for introducing discount­
ing which is an important element of many multistage decision making models, 
reflecting a natural tendency to put more emphasis on what happens in the short 
term rather than in the distant future. 

A different mechanism for introducing some sort of discounting is through 
belief qualification. Namely, if the degree of belief is decreasing as t increases, the 
consecutive pieces of evidence with implied bel= 1, due to (9), have "flatter and 
flatter" membership functions, i.e. more and more values of the (degree of) ful­
filment of the fuzzy constraints and goals are considered possible. Hence, they 
have a diminishing influence on the fuzzy decision, and as a consequence on the 
results. The above virtually reflects the fact that \\-e know less about the later control 
stages, i.e. those in the distant future. 

The above two views on discounting imply some interesting properties and will 
be discussed in a later paper. 

5. Concluding remarks 

In ther paper we discussed the introduction of fuzzy linguistic quantifiers and 
belief qualification into multicriteria and multistage decision making models . to 
further "soften" them. The proposed problem formulations seem to be very intuiti­
vely appealing by better reflecting how the problems considered are really perceived 
by humans. On the other hand, in most cases the solutions may be efficiently obtained. 

The approach discussed seems to be a further step in introducing elements of 
a natural language into decision making models to bring them closer to reality, and 
hence to make them easier implementa ble. 
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Linguistic quantifiers 

Kwantyfikatory lingwistyczne i kwalifikacja ufno§ci 
w wi elokryterialnym i wieloetapowym podejmowaniu decyzji 
w warunkach rozmytosci 

173 

Rozpatruje sie< wprowadzenie pewnych element6w j~zyka naturalnego do podstawowego 
sformulowania wielokryterialnego i wieloetapowego podejmowania decyzji w warunkach roz­
mytosci. Wprowadzaj'lc najpierw kwantyfikatory lingwistyczne, zaproponowano modele umozli­
wiaj~tce: po pierwsze, poszukiwanie optymalnej decyzji najlepiej spelniaj<tcej wi~<kszosc, prawie 
wszystkie itp. rozmyte cele i ograniczenia, a po drugie, optymalnego ci<tgu sterowan najlepiej spel­
niaj~tcych rozmyte cele i ograniczenia na wi~<kszosci, prawie wszystkich itp. etapach sterowania. 
Ponadto, w modelach umozliwiono przypisanie kazdemu rozmytemu celowi i ograniczeniu waz­
nosci i ufnosci . Zastosowano rachunek zdan z kwantyfikatorami lingwistycznymi oparty na logice 
rozmytej . 

.JhmrJBUCTif'leCime KBaHTOpLI H KBaJIHIInmai(HH 

,!1\0BepeHHOCTII B MHOI'OKpHTepHaJILIIOM H MIIOI'O:nanHOM 

ll!pi!JiEJ{eCCe 11p11HHTHSI pemennii B ycJIOBHSIX He'leTKOCTif 

PaCCMaTpi!BaeTCJI BBe,U~HllC HCKOTOpbiX ::meMCHTOB ecTecTBeHHOfO ll3biKa B OCHOBHYlO I):>OpMy­
JIHpOBKY MHOfOKpFITCpHaJibHOfO H MHOf03TaiiHOfO IlpOJ.:(ecCa IlpliHJITl!ll pemelilli1: B ycJIOBHllX 
HC'ICTKOCTJI. BBO.llll BHa'faJTe JJHHTBIICTH'!eCKHe KBaHTOpbT IIpe,unaraiOTCll MO,UeJIH, ll03BOJJJilOII(HC 
BO-nepBhJX IIpOBO,ll,liTh IIOHCK OllTIIMaJibHOfO pemeHIDI, HaHJJy'flliHM o6pa30M Y.UOB.ilCTBOpl!IOII(CfO 
60JJh!IIIlHCTBO, IIO'fTH BCC R T.II. HC'fCTKHe J.:(CJIH H orpaHH'!CHHll, a BO-BTOpbTX, llPOBO,li,HTh IIOHCK 
OJJTHMaJTbHOH IIOCJTC,UOBaTCJThHOCTH yrrpaBJTeHlii1:, HaHJTY'flllliMH o6pa30M y,[(OBJTeTBOpl!IOII(HX 
HC'l'CTKHC J.:(CJTH H orpaHH'fCHIIll B 60JTbiiiHHCTBe, IIO'fTH BCCX H T.fl. 3TaiiaX yrrpaBJTeHIDI. KpoMe 
:noro B MO,li,CJJJIX :llMCCTCJl B03MOJKHOCTh IlpHilliCaHHl! KaJK,[(OH He'feTKOH J.:(CJIH H orpaHH'!CHHlO 
BllJKBOCTH R .UOBepeHHOCHJ. JiiCIIOJib3yeTCll RC'fiiCJJCHHe BhiCKa3hiBaHHH C JJHHfBliCTII'ICCKHMII 
KBaHTOpaMH, OCHOBaHHOC He He'feTKOH JJOfHKe. 




