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The introduction of some natural language elements into basic formulations of fuzzy multi-
criteria and multistage decision making is discussed. First, we introduce fuzzy linguistic quan-
tifiers exemplified by most, almost all, etc. For multicriteria decision making, instead of seeking
an optimal decision which best satisfies all the fuzzy objectives as it has been traditionally assumed,
we seek an opiimal decision which best satisfies most, almost all, etc. (a linguistic quantifier, in ge-
neral) fuzzy objectives. For multistage decision making we seek an optimal sequence of controls
which best satisfies the fuzzy constraints and fuzzy goals at most, almost all, etc. control stages.
A calculus of linguistically quantified propositions is employed based upon fuzzy sets and possi-
bility theory. Second, we employ belief qualification to reflect a possibly varying belief (or certainty
or confidence) as to the pieces of evidence concerning the (degree of) fulfilment of fuzzy objectives,
constraints, and goals. The approach presented is a further step in bringing decision making models
closer to a real practical perception of the essence of decision making.

1. Introduction

Omnipresence and vital importance of decision making in virtually all human
activities triggered many attempts to formalize and solve it using some mathematical
means. They were often successful, although much more so in “hard” problems
arising in, e.g., technology than in “soft” problems commonly encountered in
practically relevant problems of systems analysis which must account for both con-
siderable uncertainties and many subjective, intangible, vague, etc. aspects. The
former may be dealt with in probabilistic and statistical terms but for the latter,
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which are inherently imprecise, the conventional “precise’ mathematics seems not
to be the best suited.

Fuzzy sets and possibility theory (Zadeh [19]) provide tools meant to formally
represent and manipulate imprecise and vague (fuzzy) concepts and relationships;
they are relatively simple and intuitively appealing. Since their inception they have
been applied in a variety of fields, with decision making as a notable example. The
use of fuzzy sets for dealing with “soft” decision making problems was triggered by
Bellman and Zadeh [1] who introduced a general framework involving as the main
elements: fuzzy goals, fuzzy constraints, and a fuzzy decision; an optimal decision
is sought which best satisfies the fuzzy goals and fuzzy constraints. This framework
is a point of departure for virtually all fuzzy decision making models developed
later on, including that in this paper.

Since real decisions are (or are intended to be) made by people for people, prob-
Iem statements and solutions should be as consistent as possible with human per-
ceptions of their underlying real problems. Since natural language is the only fully
natural human communication means, the above consistency requirement may be
viewed as suggesting that “softening™ of decision making models should involve
introduction of some elements of natural language.

A rich source of such elements is the so-called commonsense knowledge (Zadeh,
[22]). One of important elements used for representing the commonsense knowledge
is a disposition as, e.g., “winter days are cold”. A disposition implicitly involves
a linquistic quantifier (e.g., most), i.e. what the quoted disposition really says is
exemplified by “most winter days are cold”. The linguistic quantifiers play there-
fore a crucial role in the representation and handling of commonsense knowledge.

The above direction to use the linguistic quantifiers for “softening” decision
models has been pursued by the authors for some time, involving: multicriteria
decision making (e.g., Yager [14, 17], Yager and Kacprzyk [18], Kacprzyk and
Yager [11]), multistage decision making and control (e.g., Kacprzyk [4, 6]), and
group decision making (e.g., Kacprzyk [7, 8]); an application for evidence aggre-
gation in knowledge engineering is Kacprzyk and Yager [9]. The purpose of this
paper is to further explore this topic.

In conventional approaches to fuzzy multicriteria decision making (e.g., Blin [2],
Kaufmann [12], Yager [13]) the problem is to find an optimal decision which best
satisfies all the fuzzy objectives (goals and/or constraints), while for fuzzy multi-
stage decision making (control) (e.g., Kacprzyk [4, 6]) the problem is to find an
optimal sequence of controls which best satisfies the fuzzy constraints and fuzzy
goals at all the control stages. The above “all”” may often be viewed too restrictive
and counter-intuitive; in many practical cases it may well be replaced by some
milder requirement, e.g., “most”, “almost all”, etc., specified by a linguistic quanti-
fier. Thus, we may seek in the multicriteria case an optimal decision which best
satisfies most, almost all, etc. fuzzy objectives, and in the multistage case —an
optimal sequence of controls which best satisfies the fuzzy constraints and fuzzy
goals at most, almost all, etc. control stages.
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The above idea which was proposed in the author’s [4, 6, 11, 14, 17, 18] proved
to be very fruitful and promising. It will be further explored here. We will also
introduce a degree of importance of a particular objective or control stage, hence
making it possible to seek, respectively, an optimal decision which best satisfies,
e.g., most of the important objectives, or an optimal sequence of controls which
best satisfies the fuzzy constraints and fuzzy goals at most of the important (earlier)
control stages. Moreover, we will provide a belief qualification mechanism to account
for a possibly varying belief (or certainty or confidence) as to a piece of evidence
concerning the (degree of) fulfilment of a fuzzy objective (fuzzy constraint or goal).

First, we briefly sketch a calculus of linguistically quantified propositions pro-
viding means for handling fuzzy linguistic quantifiers. Then we consecutively show
the application of these quantifiers in multicriteria and multistage decision making.

Some notational remarks:

The notation used will be standard. A fuzzy set 4 in X, A S X, will be characterized
by (and often equated with) its membership function z,: X—][0, 1]. For a finite
X={x1, ..., xny A will be written as A=p, (x)/xs4... s (%) Xn.

As to a more specific notation, we will also use the following binary operations:
(1) A f-norm, (#): [0, 1]x[0, 1]-[0, 1], such that:

(a) a()l=a

() a@b=b@)a

(¢) a(@b=c(t)d if az>c and b>2d

@ a@b@®c=a@®@@®)N=@@®d)@®)c

Some examples of t-norms are:

aAb=min (a, b)

a-b

1—(LA((=ap+(1-Bp)*"  p>1

We will also denote:

(t") a=a, (t)...(t) a,
i=1

and in particular

n
N a=aA..Aa,
i=1

A t-norm generalizes the “and” operation in multivalued logic. The intersection
of two fuzzy sets may be in general represented by a z-norm.
(2) An s-norm (f-conorm), (s): [0, 1]1x[0, 1]-[0, 1], such that:

(a) a(s)0=a

(b) — (d) as for a t-norm

Some examples of s-norms are:

av b=max (g, b)
at+b—a-b
T (ap_{_bp)lfp p=1
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An s-norm generalizes the “or’ operation in multivalued logic. The union of
two fuzzy sets may be in general represented by an s-norm.
(3) A generalized implication or ply operation (=): [0, 1] [0, 1]—[0, 1], such that:
(a) a(=)1l=1l; 0(=)a=l; 1(=)a=a
(b) a(=)bza(=s)e if bxc
(¢) a(=)bzc(=»)b if a<c
Some examples of (-) are:

ba
(1—a)(s) b where s is any s-norm (v in particular)
1@)(1—a+b) where ¢ is any f-norm (“A” in particular)

2. A calculus of linguistically quantified propositions

A linguistically quantified proposition is examplified by “most experts are con-
vinced”. In general, it may be written as

QY’s are F 0y

where Q is a linguistic quantifier (e.g., most), Y={y} is a set of objects (e.g., experts)
and F is a property (e.g., convinced).
Importance B may also be introduced into (1) yielding

QBY’s are F 2

i-e. “most of the important experts are convinced”.

Basically, the problem is to find truth (QY’s are F) knowing all truth (y; is F),
¥: € Y, or —in case of (2) — to find truth (QBY’s are F).

Moreover, with each “y; is F”’ a degree of belief (or confidence or certainty)
about this piece of evidence may be associated. The problem becomes then to find
truth (QY’s are F) knowing all truth (y; is F|bel), y; € ¥, where bel is a degree of
belief. And analogously for (2).

Since the conventional two-valued predicate calculus makes it possible to find
the above truths for the quantifiers “all” and “at least one”, we will sketch now
a fuzzy-logic-based calculus to account for more general quantifiers commonly
used in practice as, e.g., most, almost all, much more than 50 %, etc. Two methods
of this calculus will be presented.

2.1. The algebraic or consensory method

In this classical method proposed by Zadeh [20, 21], the quantifier Q is assumed
to be a fuzzy set in [0, 1], @<[0, 1]. For instance, Q=“most” may be given as

1 for x2>0.8
Homost» (X)=12x—0.6 for 0.3<x<0.8 3)
0 for x<0.3
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Throughout the paper we will use only the so-called proportional fuzzy quantifiers
exemplified by “most”, “almost all”, etc. For the so-called absolute quantifiers,
e.g., “about 57, “much more than 10", etc. the reasoning is similar, but they should
be defined as fuzzy sets in R, the real line.

Property F is defined as a fuzzy set in ¥, FSY. If Y={y,, ..., ¥,}, then truth
(v is Fy=pp (»), i=1, ..., p.

The calculation of truth (QY’s are F) is based on the (nonfuzzy) cardinalities,
X Counts, of the respective fuzzy sets (see, e.g., Zadeh [21]) and proceeds as follows:

1. Calculate

1 P
r=3 Count (F)/ ' Count (V)=— >' e () (4)

2. Calculate
truth (QY’s are F)=u, (r) (5)

Importance is introduced into the above as follows. B=“important” is defined
as a fuzzy set in ¥, BS Y, such that pgz(y;) €[0, 1] is a degree of importance of
¥;: the higher its value the more important y;.

We rewrite first “OBY’s are F*” as “Q (B and F) Y’s are F”’ which leads to the
following counterparts of (4) and (5):

1. Calculate

r'= Y Count (B and F)/} Count (F)=

=Y (o) O w0 Y 1) 6

f=1

"

In the most common case, (f) is “A”" and (6) becomes

r'= 3 (s OD A tr GD) Y 1 () )
2. Calculate o i
truth (OBY’s are F)=y, (r') (8)

ExaMPLE 1. Let Y="‘experts”={Mr.X, Mr.Y, Mr.2Z}; F="convinced”=
=0.1/MR. X+0.6/MR. Y+0.8/MR. Z; O="most” is given by (3); B="import-
ant”’=0.2/MR. X-0.5/MR. Y+0.6/MR.Z; (£) is “A”.
Then, on the one hand
r=%(0.140.64-0.8)=0.5
and
truth (“most experts are convinced”)=2-0.5-0.6=0.4

On the other hand
7'=((0.1 A0.2)4(0.6 A 0.5)+(0.8 A 0.6))/1.5=1.2/1.5= 0.8
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and
trath (“most of the important experts are convinced”)=1

Instead of the nonfuzzy cordinalities of the respective fuzzy sets, X Counts,
the fuzzy cardinalities, F Counts, may also be used. For details, sce Zadeh [21].

Consideration of belief (or confidence or certainty) as to the piece of evidence
“y;1s F? may be done through a belief qualification procedure by Yager [15]. Namely,
we introduce a degree of belief bel; € [0, 1] and “y; is F|bcl,” denotes “y; is F”
with belief equal to bel;. Now, “y; is F|bel,” is translated to “y; is F*”* with implied
bel;=1, such that

Hre (,V:J=(ﬂr () () bel;) (s) (1 —bel,) ®)
Its particular, widely used form is
trs (V)= (y;) Abely)+(1—bel,) (10)

Notice that bel,;=1 means that we are certain that “y,”* is F”°, while bel;=0
means that we know nothing, hence each y, is possible, i.e. pur(y)=1 for each
yiel.

The method presented may be viewed as yielding a consensory like aggregation
of the pieces of evidence “‘y, is F*’, with or without importance and belief (for details,
see Kacprzyk [7] or Yager [16]).

2.2. The substitution or competitive method

This alternative method is proposed by Yager [14, 16]. As in Section 2.1 we
have here Y={y,, .., y,} and FSY. A proposition “y; is F” is denoted by P,
i=1,..,p, and

truth P;=truth (y; is F)=uz(»;) (11)

We introduce the set
V= {p}=2F1r Pp) (12)

whose generic element {v} is {Pyy, ..., Py} meant as the proposition P,y and ... and
Py, and written as {P, and ... and P,,}. In the sequel v and {P,; and ... and P,,}
will be used interchangeably.

Each v, or its corresponding proposition P, and ... and P, is seen to have
the truth

pr (v)=truth (P,, and... and Py, )=truth Py, (¢) ... (f) truth P, =
= (t) truth Py,=pp (k1) (¢) ... (€) pr (km)= (2) pe (ki) (13)
i=1 i=1
Its particular, widely used form for (¢) being “A™ is

i )=t (K1) A A pip (k)= 1\ pip (ki) 4)

i=1
We obtain therefore a fuzzy set TS V.
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‘The fuzzy linguistic quantifier Q is defined as a fuzzy set in ¥, QSV.
The truth of “Q¥’s are F* is now seen as the possibility that some v € I both
satisfies the meaning of @ and is true (7), i.e. (Zadeh [19])

truth (QY’s are F)=max (s (v) () itr (v)) (15)
reV
and for the most widely used (£) — being “A™
truth (QY’s are F)=max (Juq (o) Aty (‘I.’)) (16)
revV

Assume now that BS Y denotes importance. Then

km

truth (QBY’s are F)=max (g (@) (1) ((2) (45 00 () e 0)) (17

peEV

where (¢1) and (£2) are -norms and (-) is an implication operator (for a derivation
of (17), see Yager [17]).
For instance, if (£1) and (£2) are “ A" and (=) is “(1—a) v b, then

truth (QBY’s are F)=max (uq (v) A‘_/;! (A=pus ) v ur () (18)

vEV

Evidently, in (17) and (18) {v} is equivalent to {P;; and ... and P,,}.

ExaMPLE 2. For the same data as in Example 1, let (#1) and (¢2) be “ A, (=) be
“(1—a)vb”, and O="most™ be

1 for wve{P; and P, and P}
Moo (2)=10.7 for wve{P; and P,, P, and P;, P, and P;} (19)
03 for oe{P, P, P3}
Since (14) yields: py (P; and P, and P3)=0.1. py(P; and P,)=0.1, pus (P,
and P3)=0.1, ur (P, and P3)=0.6, pr (P,)=0.1, sty (P3)=0.6, pr (P5)=0.8), then
due to (16)

truth (*most experts are convinced”)=(1 A0.1) v(0.7A0.1) v (0.7 A
A0 V(0.7A0.6)V(0.2A0.1) v(0.2A0.6) v(0.2A0.8)=0.6

and due to (18), with B=“important’” as in Example 1

truth (“most of the important experts are convinced™)=
=(1 A((0.8v0.1)A(0.5v0.6) A(0.4v0.8))) v (0.7 A
A((0.8v0.1)A(0.5v0.6))) v(0.7v((0.8v0.1)A
A(0.4v0.8)) v (0.7A((0.5v0.6) A(0.4v0.8))) v
v(0.3A((0.0v0.1))) v(0.3A((0.5v0.6))) v(0.3 A
A((0.4v0.8))=08v0.6v0.7v0.6v0.3v0.3v0.3=08

Notice that the substitution method may yield different results than the algebraic
method.

4
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The substitution method may be viewed to provide a competitive like aggre-
gation of pieces of evidence (for details, see Kacprzyk [7] or Yager [16]).

Belief qualification may evidently proceed analogously as in Section 2.1.

We will now apply both methods of dealing with linguistically quantified pro-
positions to multicriteria and multistage decision making.

3. Multicriteria decision making under fuzziness

As outlined in Section 1, multicriteria decision making under fuzziness may be
formalized as: if A={a}={ay, ..., a,} is a set of possible alternative decisions (op-
tions) and o={oy, ..., 0,} is a set of fuzzy objectives (fuzzy constraints and/or goals)
to be satisfied, then the degree to which ae 4 satisfies 0; € 0 is given by truth
(o0; is satisfied (by a))=puo, ().

Traditionally it is postulated (e.g., Bellman and Zadeh [1]) that ae A satisfy
“0; and ... and 0,7, i.e. all the fuzzy objectives and hence the degree of that satis-
faction is given by the fuzzy decision

#p (a]“al’)=truth (o, and ... and o, are satisfied (by a))=
=truth (“all” o’s are satisfied)=truth (o, is satisfied) (z)...
... (£) truth (o0, is satisfied)) = u,, (@) (?) ... (¥) Ho, (@) (20)
and the problem is to find an optimal decision a* € 4, such that
a*=arg max pu, (a|““all’”) (21)
acA
It is easy to see that the requirement of satisfying “all” the fuzzy objectives
exexpressed by (20) may be viewed too rigid and restrictive for practical purposes.
An idea to replace that “all” by a milder requirement as e.g., “most™ appeared in
Yager [14], Yager and Kacprzyk [18], Kacprzyk and Yager [11]. Basically, it
consists in requiring the fulfilment of Q (e.g., “most™) fuzzy objectives, where Q
is a linguistic quantifier, i.e. we seek an a* € 4, such that
a*=arg max up(a|Q) (22)
acAd

The purpose of this paper is to further analyze this type of problems.

3.1, Solution by the algebraic method

Following Section 2.1, we introduce first the fuzzy set S=*satisfied” So, such
that p,(o;)=truth (o, is satisfied (by a))=p,, (@), i=1, ..., p, and a fuzzy set B=
=“important” So, such that ug (o) € [0, 1] is the degree of importance of objective
0;- A linguistic quantifier is 0<J0, 11.

The fuzzy decision is

Up (alOB)=py, (a|“most” “important’)=truth (“most™ of the

“important” o’s are satisfied)=truth (QBo’s are satisfied) (23)
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and the problem is to find an optimal a* € 4, such that

a*=arg max u, (a|OB) (24)

acAd

Using the algebraic method, we calculate first

r@= ) (us(0) @) po, @)/ ) o, (@) (25)
and then - o
tp (@| QB)=pq (r (@)) (26)
Thus
a*=arg max y, (r (a)) 27

Notice that if we do not wish to account for importance, we set uz (0;)=1 for
each o; € 0, and (25) becomes

1 P
r@=— 3 o, @ (28)

i=1
while (26) and (27) remain the same.
It is easy to see that it is difficult to say something about the solution of (27)

for a general Q. We introduce therefore the so-called nondecreasing quantifiers
defined as follows

r'>r"=u,)=u, (') foreach r,r'"€el0,1] 29)

i.e. the more objectives are satisfied the better. “Most” given by (19) is such a quanti-
fier. Let us notice that the nondecreasing quantifiers are the only practically relevant
- in our topic.

A particularty important nondecreasing quantifier is the linear quantifier L
defined as y;, (r)=rforeachreR.

As shown in, e.g., Yager [14,17] or Yager and Kacprzyk [18], any optimal
solution of (27) with the linear quantifier is also an optimal solution for an arbitrary
nondecreasing quantifier, i.e. (27) becomes for a nondecreasing Q

a*=arg max up (a| LB)=arg max( 3 (s (0) () 1o, (@) Y o, @) ~ (30)

acA i=1

Exampig 3. Let: Ad={a,, a5, a;:}, 0,=1/a;}+0.8/a,+0.3/a;, 0,=0.6/a;+1ja,+
-+0.5/as, 05=0.5/a;+0.8/a,+1/as;, Q=“most” be given by (19), () be “A™, and
B="important”=0.3/0,40.8/0,+0.5/0;.

Then:

Hp (@ | “most” “important™)=1.4/2.1=2/3

sip (az | “most™ “important’)=2.4/2.6=12/13

pp (as| “most™ “important”)=1.3/1.8=13/18
i.e. a¥=a,.
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3.2. Solution by the substitution method

Following Section 2.2, we introduce the propositions P;: “o, is satisfied (by a)”
and a fuzzy set S="satisfied”” such that

ts (0)=pio, (@=truth P; i=1,..,p ' 3D
The set V is
V=~{v (@)} =2+ st (32)

The truth of © (@), or its corresponding proposition Py, and ... and P, is

r (v (@)=truth (Py and ... and P =fto,, (@) () .. () to,,, (@) (33

If BSo denotes importance, and Q< V, then

truth (QBo’s are satisfied (by a))=

= max (g (v (@) 1) (( 2) (18 (0) (=) 1o, @))) (34

vl{a)eV i=
and the problem is to find a* =4 such that

km

a*=arg max max (o (v (@) (D () (15 ) () o, @) G9)

acd vila)eV

where (1) and (¢2) are arbitrary f-norms.

ExaMpLE 4. Let us assume the same data as in Example 3 with O="most” given
by (19), and: ¢1)=(2)=“A"", a(~) b=(1—a) v b. Then, (35) becomes

=arg max truth (QBO’s are satisfied (by a))=

acA

=arg madx r{n)a: (1o (@ (@) A /\ (1= (0)) 2126 (@))) (36}
Thus, (36) yields:
truth (QBO’s are satisfied (by @))=0.6
truth (QBO’s are satisfied (by a,))=0.8
truth (QBO’s are satisfied (by a3))=0.7
Thus, a*=a,, i.e. the same as in Example 3 although it need not be so, in general.

The solution of (35) is analytically difficult; it may be transformed into an equi-
valent 0—1 programming problem (Yager [17]).

In practice, some simplified form of (38) is often used — with (£) being *“ A
and all the objectives of the same importance, i.e. ug (0;)=1 for each g, € 0 — which

leads to the search of a* € 4 such that
km

a*=arg max max (o (2 (a))A /\ to, (@) (37

acd vi{aeV

which is relatively easy to solve analytically.
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Namely (see, e.g., Yager and Kacprzyk [18] for proofs), if:
(1) the linguistic quantifier Q <V is monotonic, i.e.
to (23)2 to (V1) V g (22) (38)

for any v, v,,9; € V such that vy=v, and v, (for instance “most” given by (19)
is monotonic). This monotonicity is close in spirit to the nondecreasingness (29)
but not the same;
(2) thereis a finite number of distinct membership grades of y, (v), say b;<b,<...
.-, P
(3) d; is the i-th largest element of the set {uq, (a), ..., Ho, (@)} containing for
a fixed a the grades of membership of a in the particular fuzzy objectives; then (37)
is equivalent to seeking a* € A such that

a*=arg max max (d;Ab,) (39)

acAd i=1,..,58

ExaMmpPLE 5. For the same data as in Example 3 (but without importance, i.e.
B=1/0,--1/0,4-1/0;), we have:
— for a,: dy=1, d,=0.6, d;=0.5; and b;=0.2, b,=0.7, b3=1. Hence

max (d; Ab;)=0.2v0.6 v0.5=0.6

i=1,2,3

— for a,: d,=1, d,=0.8; and b,=0.2, b,=0.7. Hence
max (d; Ab;)=0.2v0.7=0.7

i=1,2

— for a;: di=1, d,=0.5, d;=0.3; and 5,=0.2, b,=0.7, b;=1. Hence
max (d;Ab)=02v0.5v03=0.5
i=1,2,3
Therefore, a*=ua,.
Belief qualification as to a piece of evidence “og, is satisfied (by a)’* may be easily
introduced into (26), (30), (35) or (36). Namely we should first calculate o5 (a)
using wo, (@) and bel,, i=1,..., p, due to (9). Then, we should replace z,, (a)’s with

Ko (@) ’s in the respective formulas.

4, Multistage decision making under fuzziness

The essence of multistage decision making (control) under fuzziness may be
stated as follows. At each time (control stage) 7, the control u, € U={cy, ..., ¢,,}
is subjected to a fuzzy constraint g, (u,), and on the state attained x,.,e€X=
={Sy, ... S} @ fUzZy goal pgesq X; 4 1) is imposed; the state transitions are governed
by X,41=f (X )3 X, Xe41 €X, 4, € U, 1=0,1,..., N; N is some termination time.
For extensions of the above basic statement, see Kacprzyk [3, 5].

It is commonly postulated (e.g., Bellman and Zadeh [1] or Kacprzyk [3, 5])
that at each 7 wu, satisfy the fuzzy constraint C* and the fuzzy goal G**!, to be
written as P, ;: “C* and G*** are satisfied (by ). This satisfaction is evidently
to the degree equal to truth

P, y=truth (“C* and G'r *+1 are satisfied™) = .« (1) (€) porsa (%; 1) (40)
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Moreover, traditionally we require a sequence of controls to satisfy the fuzzy
constraints and fuzzy goals at all the subsequent control stages, hence the fuzzy
decision expressing the degree of that satisfaction is

Up (Uo, ooy tiy—_ 1] X0, “all’”)=truth (P; and ... and Py|“all”)=

N—1 N-1
= (1) [“all”) truth Py y= (¢) |“all”) (pce () (@) pgesa (5e4)) (41
=0 t=0

and the problem is to find an optimal sequence of controls w*, ..., uy_,, such that

Ugy oy Uy =Arg MAX iy (Uo, .-mp Un—1 | X0, “all”) (42)
Upy aaes N = 1

It is easy to see that the above requirement to satisfy the fuzzy constraints and
fuzzy goals at all the control stages may be viewed as too rigid and counter-intuitive
in practice. An approach to replace that “all” by a milder requirement expressed
by a fuzzy linguistic quantifier O, say “most”, “almost all”, etc., was proposed by
Kacprzyk [4, 6]. Basically, u, ..., uy_y is required to fulfill the fuzzy constraints

and fuzzy goals at Q control stages, hence (41) and (42) become, respectively:

Hp (o, «vos Uy—y U, Q)=?;)1 |Q) truth P, ;=

t=0

N-1
= (1) |Q) (#tcr () (1) pgisr (Xi41) (43)
t=1
and

Ugy o Uy_y=2rg Max p (Yo, ..., Uy—4|0) 449

Moy poey UN -3

We will now present the solution of this basic formulation using both the alge-
braic and substitution method. Importances will not be accounted for in order
to be able to efficiently solve the resulting problems. Then, we will comment upon
the role of importances and belief qualification with respect to discounting.

4.1, Solution by the algebraic method

To solve (44) by the algebraic method (see Section 2.1), we first calculate

N-—1

r (Uoy <y ty—1X0)=(1/N) D truth Py, y=

=0

—/M) ) (ter ) O) v (5040))  (49)

t=0
then

p (tigy sy Uy 11X0, @)=Hg (f (tgy ors “N-ﬂxo))=

ALY 3 (e ) @ thorns (02))) (46)

t=0
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and the problem is to find

N-1
gy oy tiy-1=arg  max  sig (N) 3 (hc* @) @ Horna (5esn)))  (47)

Moy wses BN 1 =0
As for (27), it is difficult to say something about the solution of (47) for an ar-
bitrary Q. However, by an analogous line of reasoning as in Section 3.1 it may
be shown (Kacprzyk [4]) that for a nondecreasing Q (in the sense of (29)) an optimal
solution to (47) may be obtained by solving it for the lincar quantifier, i.e. 147)

becomes to find
N-1

tgy ooy ty_y=arg  max (UN) D' (dee @) @ Horn (5i20))  (48)
=0

Moy gees UN =1

This may be solved, e.g., by dynamic programming. The set of recurrence equa-
tions yielding the solution is

Mey-1 (Xy—1)=max ((UN) (ﬂc?\'-l (tty—1) (€) Han -v41 (Xn -1+ 1))+
UN=—1i
+pey-ter (Xy_i4 1)) i=1,..,N 49)
Xn—i+1=S (Xn—i> Un-3)
where pgn (xy)=0 for each x.

‘Evidently, from (49) we obtain optimal policies a; : X— U, such that u} =a} (x,),
=0, 1, ..., N—1.

ExAaMPLE 6. Let N=3, the fuzzy constraints and fuzzy goals be

C°=0.5/cy+1/c,  G'=0.1/5;+0.6/s,+1/s5
C'=1/e;+0.7/c;  G*>=0.6/s,+1[s,+0.5/s5
C?*=1/c;+0.6[c, G3=1[5;+0.8/s,40.3/s4

() be “A™, and the state transitions be governed by

x!
51 82 53

Cy| 83 83 53
Xe41=U  Cz| Sz 51 52

Solving (49) consecutively for i=1, 2, 3 we obtain:
a; (s)=cs @ (s2)=¢3 a; (s3)=c3;
next

a3 (s:)=cz, @} (s))=cs @} (ss)=c3;
and finally

“; (s1)=c; or ¢, a; (s2)=cy, “; (s3)=c, or c,.
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4.2. Solution by the substitution method

Following the reasoning applied in Sections 2.2 and 3.2, we denote P, : “C"
and G**! are satisfied (by ) and

truth Py = ptee () (€) fgesn (Xi44) (50)
Next ;
Vo) = QtFoucn (51)

and QS V; {v} is equivalent to {P; and...and Py,}.
The fuzzy decision (46) is now

Hp (Uoy woy Uy —1]Xo, @Q)=truth (P, and ... and Py|0)=
=(N(;)IEQ) truth P, ,=Poss (Q N T)=max (uq (¢) (t) 11 () (52)
=0 eV
km—1

where yiy (9)=pr (Pyy 80d...and Puj= () (ﬂcr (u) (®) Hgra (xr+l))'
The problem (47) becomes to find 7!

Ugs ooy Uy_ =arg max max (g (v) (7) ur (v)) (53)

Uy oy Iy =1 DEV
Evidently, py (v) is a function of ug, ..., uy_y.

It may readily be seen that (53) virtually consists of the following two problems:
(a) the calculation of
Hp (Uoy ooy Uy -1 Xo, Q)=m'jx (1o @) (@) ptr ()
vE
for fixed wy, ..., uy—_1 and xj, ..., Xn;
(b) the optimization of wuo, ..., uy_y, i.e. the determination of uj, ..., uy_, for
which (53) holds.

Problem (a) is in fact equivalent to that of multicriteria decision making discussed
in Section 3.1, hence will not be dealt with here. We will consider below the problem
(b), i.e. optimization of the sequence of controls. .

Since we assume that the control space U is finite, the multistage decision making
process may be portrayed as a decision tree of the type shown in Fig. 1. Its nodes
correspond to the successive states attained (x, in the root), and with its arcs there
are associated the controls applied and the values of uce () (#) figess (X, 41). The
determination of ug, ..., uy_, is therefore equivalent to finding a path in that decision
tree for which (53) holds. An implicit enumeration algorithm given below may be used.

The point of departure is the solution of the conventional (i.e. for O="all”)
multistage decision making problem: find

il L] e s
Ugs »res HN—;[:arg max  fp (HO} iy uﬂ'“i!xﬁy all )=
Hoy sy UN—1

=arg max (‘) (Jur.‘t () (®) .ruGl‘+1 (x4 1)) (54)

Ugy s Uy—1 T=0
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which may be efficiently solved by dynamic programming or branch-and-bound
(Kacprzyk [5]). -
We have now an important property.

ProposiTioN 1. For any monotomic Q and any wug, ..., ty_y:

Hp (HDJ ey HN‘-IEx()s Q);;'JD (HO! ey Uy — 1| X0, “au”) (55)

and in particular

M (g, ey tty_ X0, Q)2 tt (s ooy Uy |Xo, “all”) (56)
The proof is analogous to that in Kacprzyk [4].

The solution of the generalized problem (53) is therefore never worse than that
of the conventional one (54).

And the necessary condition for a path (its corresponding ug, ..., tiy_;) to be an

optimal solution of the generalized problem (33) is given below.
.
PROPOSITION 2. If uy, ..., ty_, is an optimal solution to (53) for some monotonic Q,
then in its corresponding path there exists at least one arc such that for «] associated
with this arc there holds
tice () (O prgron (f (%o 1)) tp (1t .oy 4] %o, “all”) (57)

The proof is analogous to that in Kacprzyk [4].

The above properties lead to the following algorithm for solving the problem
considered (54):

1. Construct the decision tree of the type mentioned before (see, e.g., Fig. 1).

2. Solve the conventional problem (53), ie. find

* * s TRl
Upy ooy Uy =T MAX  [lg (U, .. Uy—1]Xq, “all”)
Uy aaey UN'= 1

3. Find such arcs in the decision tree for which

Her () @) Hgesr (1) > ip (g, oy tiy_;|Xo, “all”) (38)

Notice that we have here only “>"", but we already have some arcs for which
“="" holds, i.e. those corresponding to a solution found in Step 2. Here we seek
a better solution.

4. Determine all the paths from x, to xy containing the arcs found in Step 3.
5. For ecach path (its corresponding uy, .... uy—¢) found in Step 4, determine

tp (U, oy Uy _1|Xo, @)=max (iig (-‘3’) @) pr (ﬂ}) (59

pEV

and take as the optimal solution(s) the sequence(s) for which (59) takes on the
maximum.
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ExampLE 7. Let the problem specifications be the same as in Example 6. Assume
that xo=s, N=3, () is “A” and Q="most™ is given by (19). We will seek

* W *
Ug, Uy, U, =ATg Max pp (Uo, Uy, Us|Sy, “most”)=

Mgy My, M2

—arg max (A [“most”) (Hor (4) A dicess (%))

ug, U1, 42 =0
The consecutive steps of the algorithm are:

1. The decision tree is as in Fig. 1.

,H.D{C.I.Cz. cal_-most"1=0.5 \\ y_’nlcz:czicz !..ul!'! - 06

tﬂ‘a E(:1 . cz-C3 ].mos}"l = 0.7

optimum (,most”) optimum(,all”})

Fig. 1. Decision tree with the opﬁmal solutions
2. The solution of the conventional problem (54) is up=c,, uy=c,, uj=c,, for
which up (- sy, “all”)=0.6, and corresponds to the path “—.
3. The arcs for which (58) holds are shown by “- - ",

4. The arcs found in Step 3 are contained in the two paths denoted by “— — —"
which correspond to

¢ ¢ ¢ c; €3 €y
5. For the paths found in Step 4 we calculate using (59):
Up (€1, €2, C4ls1, “most”)=0.5
Up (¢, €3, Ca]5,, “most”)=0.7

as given below the respective x; s.
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The optimal solution to our problem, i.e. the sequence of controls uy, uy, u;
which best satisfies the fuzzy constraints and fuzzy goals at most of the control
stages, 1s

to=0y U;=c, Uy=c,

4.3, Some remarks on importances and belief qualification and discounting

It is clear that if we introduced importances of the particular control stages
following the reasoning presented in Sections 3.1 and 3.2, the counterparts of the
problems to be solved would stand for “find an optimal sequence of controls which
best satisfies the fuzzy constraints and fuzzy goals at, e.g., most of the important
(earlier) control stages™. We obtain therefore a mechanism for introducing disccunt-
ing which is an important element of many multistage decision making models,
reflecting a natural tendency to put more emphasis on what happens in the short
term rather than in the distant future.

A different mechanism for introducing some sort of discounting is through
belief qualification. Namely, if the degree of belief is decreasing as t increases, the
consecutive pieces of evidence with implied bel=1, due to (9), have “flatter and
flatter” membership functions, i.e. more and more values of the (degree of) ful-
filment of the fuzzy constraints and goals are considered possible. Hence, they
have a diminishing influence on the fuzzy decision, and as a consequence on the
results. The above virtually reflects the fact that we know less about the later control
stages, i.e. those in the distant future.

The above two views on discounting imply some interesting properties and will
be discussed in a later paper.

5. Concluding remarks

In ther paper we discussed the introduction of fuzzy linguistic quantifiers and
belief qualification into multicriteria and multistage decision making models to
further “soften” them. The proposed problem formulations seem to be very intuiti-
vely appealing by better reflecting how the problems considered are really perceived
by humans. On the other hand, in most cases the solutions may be efficiently obtained.

The approach discussed seems to be a further step in introducing elements of
a natural language into decision making models to bring them closer to reality, and
hence to make them easier