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A fuzzy compromise programming approach is proposed to solve multiobjective optimization 
problems with fuzzy constraints. Conflicts among objectives are· resolved through derivation of 
a compromise solution on the basis of an ideal solution. Since the constraints are fuzzy, the idea 
solution is inexact. With respect to a family of distance measures, a compromise solution set is 
found by minimizing the distance from a specific element of the fuzzy ideal. Depending on the 
element we are referring to, different compromise solution sets may be obtained. Though the ideal 
and the compromise solutions are inexact, the flexibility in resolving conflicts is substantially in­
creased. A numerical example is provided to illustrate the basic ideals of fuzzy compromise pro­
gr~g. 

1. Introduction 

Except for special situations in which optimization of a single objective is suffi­
cient, decisionmaking generally involves multiple and ordinarily conflicting objec­
tives. To enable the selection of an alternative which best satisfies specified objectives, 
various methods have been proposed in recent years. Among existing techniques 
such as goal programming (see for example [1], [6], [5]), interactive methods (see 
for example [4], [2], [14]) and fuzzy sets based methods [13], the ideal solution 
methods (see for example [3], [9], [10]) appear to be versatile in resolving conflicts 
among objectives. 

Under the maximization framework, an ideal solution, usually infeasible, is 
perceived as the solution which maximizes all individual objective functions simulta­
neously. A compromise solution is a solution which is closest, with respect to a dis­
tance measure, to the ideal solution. 

Conventionally, an ideal solution is exactly defined. Specifically, it is point-valued. 
Inexact information or fuzzy cognitive and decisionmaking processes, however, 
may make it impossible to identify the ideal solution with exactitude. Zeleny [11] 
has suggested that an ideal may possibly be a region with fuzzy boundary. Employing 
concepts of a theory of possibility, Leung [8] provides a formal conceptualiz:"tion 
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of a fuzzy ideal. It is demonstrated that if the ideal solution is fuzzily designated, 
then the corresponding compromise solution set becomes imprecise. Depending 
on which element of the fuzzy ideal is selected as a reference, different compromise 
solution sets may be obtained. 

Since the ideal solution method can be formulated as a compromise programming 
problem, to shed some more light on the concept of a fuzzy ideal, the present paper 
attempts to analyze conflict tesolution through the compromise programming 
framework. Section 2 deals with the determination of a fuzzy ideal and compromis 
solutions in a multiobjective maximization problem with exact objectives and inexact 
constraints. The derivation of the most appropriate ideal and compromise solution 
set is also discussed. Section 3 employs a numerical example to illustrate the basic 
procedures of compromise programming under fuzziness. The paper then concludes 
with a discussion on the appropriateness of fuzzy compromise programming in 
resolving conflicts. 

2. Compromise programming with fuzzy information 

Let the follo,ving be a multiobjective maximization problem: 

max F (x)=(/1 (x), ... ,Jq (x)) 
s.t. az x;£b,; b;+di, for i=l, ... , m .(1) 

x)!O 

where, ai E R" is the i-th vector of the coefficients of the decision variables x ERn, 
and b, is a prescribed limit for the value of az X Which can be extended, if necessary, 
to b,+d;, i= 1, ... , m. That is, d, is the tolerance interval for the permissible violation 
of the constraint af x~ bi. The problem then is to maximize the set of q exact linear 
objective functions, fi (x),j=l, ... , q, with respect to a set of m fuzzy linear con-
straints. 

Under the compromise programming framework, if the constraints are exact, 
a point-valued ideal solution can be determined as·a reference point and the corre­
sponding compromise solution set can be derived accordingly. Since the limits of 
the constraints in the vector maximization problem in eqn. (1) may be stretched 
from b1 to b,+b1, i= 1, ... , m, then a natural consequence is that the ideal solution 
may be stretched respectively. That is, instead of a point-value, the ideal solution 
is a region with bounds derived from extending the limits of the constraints. 

If a; x is restricted to the limit b1, i = 1, ... , m, then the ideal solution 0 x* = 
= (ox;, .. . , 0x:) which gives 0 f* =(of:, .. . , ofq*), with 0 f 1* =fi (0 x*), (throughout the 
text, the lower bar and upper bar indicate solutions obtained when b1 and b1+d1, 

i= 1, ... , m, are employed, respectively), can be obtained by solving separately the 
following q linear programs (see, e.g., Zeleny [10, 11] for details): 

max jj (x) 
s.t. af x~b1 , i;:;1, ... , m 

x)!O 
(2) 
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Since 0 x* is generally infeasible, a compromise solution is then sought so that 

the objective functions can be maximized as much as possible. To determine all 

possible compromise solutions, let the following 

p=l, 2, ... ,CO (3) 

be a family of distance measures depicting the distance between any alternative x 

to the ideal solution 0 x* with respect to a weight p. A compromise solution is then 

the solution which minimizes 0dr Of course, rA, can be defined by functions other 

than that in eqn. (3). By varying p from 1 to eo, a set of compromise solutions can 

be determined. 

Specifically, for p = 1, the compromise solution 0x1 (the superscript refers to the 

value of p) is obtained by solving 

. q jj (x) 
mm 0d1 =max i.J.; ofi* 

s.t . aJx~bi, i= l, ... ,m 

x:>O 

For p=co, the compromise solution 0 x"' is found by solving 

min 0 d"' 

s.t. aJ x~bi, i = 1, ... ,m 

of~" -f~ (x) d . 

j ·* ~0 "' ' ]=1, .. . , q 
0 j 

x:>O 

(4) 

(5) 

These two compromise solutions serve as bounds of the compromise solution 
set for 1 ~p~ eo. For any p within this interval, a compromise solution can likewise 

be obtained. In particular, when p=2, the compromise solution is determined by 

minimizing 0 d2 via the quadratic programming algorithm or by interpolation. 

If the limit of aJ x is extended to bi+di, i= 1, ... ,m, then the ideal solution 
0 * - (0 -* 0 *) h" 1 . o.r* -(0+* 0+*) . h 0'.!'* - j eo ·*) b d x - xl' .. . , xn w rc1 grves J - ; 1 , ... , Jq , wrt i- i x , can e eter-

rnined by solving individually q linear programs as follows: 

max jj (x) 

s.t. aJ x~b;-1- d;, i=l, ... ,m 

x:>O 

(6) 

Replacing 0 fi* by 0f)' in the distance measures in eqn. (3), the compromise solution 

set again can be obtained by minimizing 0 dv, with l~p~co. 
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For p=l, the compromise solution °x1 is determined by solving 

• q jj (x) 
mm 0d1 =max ,2; 0f~ 

J=l J 

s.t. at x~b1 +d., i=l, ... ,m 

x~O 

For p=oo, the compromise solution °x00 is derived by solving 

min °dcc 

s.t. at x~b1+d1 , i=1, ... ,m 

ofi* -jj (x) 
oft ~odoo, j=l, ... , q 

x~O 

Y. LEUNG 

(7) 

(8) 

Therefore, by stretching the limits of the constraints from b1 to b1+d1, i= 1, ... ,m, 
the maximum values of the individual objective functions f 1 (x), j= 1, .. . , q, change 

from 0 f'.J* (by solving the programs in eqn. (2)) to ~[1* (by solving the programs 
in eqn. (6)). Consequently, the ideal solution moves from 0f* to 0f*. Considering 

all variations within the intervals [b1, b1+d;], the ideal becomes fuzzy and can . be 
identified as 

(9) 

As previously discussed, by taking 0f* instead of 0f* in (9) as the ideal solu­

tion, a different compromise solution set is obtained. Thus, the compromise 
solution set with reference to the fuzzy ideal is similarly inexact. 

So far, in determining an ideal solution, the fuzzy constraints in eqn. (1) have 
not been explicitly considered·. Only the two critical points b1 and b1+d1 have been 

employed to delimit the bounds of the fuzzy ideal. To determine the most appro­
priate ideal solution, the fuzziness of the objective functions and constraints should 

be explicitly considered in the multiobjective maximization problem. 

Based on eqn. (9), the tolerance interval for the value of each objective function 
jj (x) is [0f 1*, 

0f 1*]. Thus, its fuzzy version fj (x) may be expressed as 

(10) 

To derive the most appropriate ideal solution, we first need to solve separately q 
fuzzy linear programs as follows: 

fi (x) "?:. 0jj*; ofJ* 

at x;;ab1 ; b1+d;, for i=l, ... ,m 

x~O 

(11) 
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if jj (x)~ ~0* 

(12) 

be the membership function oft he satisfaction of the fuzzy objective jj (x),j= 1, ... , q. 
Let 

(13) 

be the membership function of the satisfaction oftbe fuzzy constraint a'{ x, i= 1, ... , m. 
Then, according to Zimmermann [12], the fuzzy linear program in eqn. (11) can be 
rewritten as 

maxmin(p(f1 (x)); p.1 (a'{x), for i=1, ... ,m]. 
X 

Its solution is equivalently obtained by solving 

max A, 

!1 (x) 0
/ 1* 

s.t. or*- f* - or*- f* ~A 
Jj 0 j Jj 0 j 

b1 a'{ x 
a;--a;-~A., for i=l, ... , m 

x~O 

(14) 

(15) 

Let x and A.* be the optimal solution of the above program, then taking the optimal 
solutions of the q fuzzy linear programs into consideration, the most appropriate 
ideal solution becomes x* =(x~, ... , x:) with f* =(f; , ... ,Jq*). 

Based on the conditions 

a'!'x-b-
1- ' ' 

d; 
(16) 

imposed on the fuzzy linear program in eqn. (14), with reference to A.*, the decision 
space on which a compromise solution is obtained should then be bounded by the 
folloV~-ing constraints 

T . * ~ ai x~b;+(1-). )d,, 10r i=I, ... ,m. 

x~O 
(17) 

Taking x* as the ideal solution, the most appropriate compromise solution set can 
be found minimizing dP, replacing oft by f 1* in eqn. (3), with l~p~oo . 
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For p= 1, the most appropriate compromise solution is obtained by solving 

. ~ fi (x) 
mm d1 =max L.,; ~ 

j= 1 . J 

s.t. azx~b,+(l - ,l.*)d,, i=1, .. . ,m 
x?;=O 

(18) 

For p= co, the most appropriate compromise solution is again determined by 
solving 

min dw 
s.t. azx~b,+(1- },*)d,, i=I, ... ,m 

jj* -f, (x) 
--.r:~dif) , j=1, ... ,q 

(19) 

x?;=O 

Since }, indicates the degree of satisfaction of the fuzzy objective funct ions and 
constraints in eqn. (I 5), 1- }, can be interpreted as the degree of dissatisfaction or 
violation. Therefore, by varying the value of A we are varying our reference point 
in the fuzzy ideal, and the compromise solution set changes accordingly. When 
1-}.=0, programs (18) and (19) become programs (4) and (5), respectively. By 
the same token, \vhen 1 - }, = 1, programs (18) (19) become programs (7) and (8), 
respectively. For 0 < 1-;, < 1, programs (18) and (19) give compromise solutions 
when the constraints are violated by 1-J.. If we treat 0= 1- ). as a parameter, we 
can generate the entire compromise solution set with respect to a distance measure p. 

Such a formulation is versatile in the sense that the fuzziness of constraints 
allows us to generate alternatives, within permitted limits of tolerance, to resolve 
conflicts which may not be resolved or dissolved otherwise. That is, decisionmakers 
do not have to restrict themselves to a single point-valued ideal in conflict resolution. 
Moreover, the process of determining varying ideal and compromise solutions in 
tractable. 

To illustrate the basic concepts discussed, a simple multiobjective maximization 
problem is provided as a numerical example. 

3. Conflict resolution of a two-objective maximizaticn problem 

Let the following be a multiobjective maximization problem 

max / 1 =2x1 +x2 
f~= - 3xl +2x2 

s.t. x1 ~5; 6 
x2~6; 8 

x1+x2~9; 10 
2x1 +3x2 ?;:8; 6 

x1 ?;:0, x 2 ?;=0 

(20) 
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in which two objectives functions are to be maximized with respect to four fuzzy 
constraints. 

By eqn. (2), the separate maximization of j~ and j~ with respect to the following 
exact constraints 

x1 :::::;5 
x 2 :::;;6 

x 1+x2 :::;;9 
2x1 +3x2;?:o8 
x1 ;?:o0, x 2 ;?:o0 

gives the ideal solution 0x*=(2.288, 9.438) with 0/* = 04, 12). 

(21) 

Employing the distllnce measure in eqn. (3), the compromise solution, 0x 1 = 
= (0, 6) with 0fl = (6, 12), for the distance measure 0d1 is found by solving 

Likewise, solving 

max -.107x1 +.238x2 

s.t. x 1 :::::;5 

min d00 

s.t. 

x 2 <6 
x1 +x2 :::;;9 

2x1 +3x2 ?:o8 

:::::;5 
x2 :::;;6 

x1 +x2 :::;;9 
2x1 +3x2~8 

.143x1 +.071x2+od00 ~ 1 
-.25x1 +.167x2 +odoo~ 1 

gives the compromise solution 0 x00 =(1.466, 6) with 0 /
00 =(0.932, 7.602). 

(22) 

(23) 

Thus, for 1 ::::;p ::::; oo, the minimization of 0 dP enables us to find a set of compro­
mise solutions with reference to the ideal solution 0x*. Figures 1 and 2 depict, re­
spectively, the problem and its solutions in the decision and objective spaces. 

By stretching the constraints in eqn. (20) to the other ends of the tolerance in­
tervals, the separate maximization of/1 and/2 , eqn. (6), with respect to the following 
set of constraints 

X1 :::::;6 
x 2 ::::;8 

x1+x2:::;;10 
2x!+3x2 ~6 
x1 ~0, x2 ~0 

gives the ideal solution °x*=(2.288, 11.44) with 0/*=(16, 16). 

7 

(24) 
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Again, the compron1ise solution, 0x1 =(0, 8) with 0j1 =(8, 16), with respect to 
the measure 0d1 is obtained by solving 

max 
s.t. 

.063x1 +.188x2 

x1 ~6 

X2~8 
x1 +x2~10 

2x1 +3x2~6 
x1 ~0, x2~0 

(25) 

And, the compromise solution, 0x"'=(1.585, 8) with 0f"' =(11.17, 11.245), for the 
distance measure 0d00 is found by solving 

s.t. ~6 

x2~8 
Xt+ X2~10 
2x1 +3x2~6 

.125x1 +.063x2+ 0d00 ~ 1 
- .188x1 +.125xz-+-

0d00 ~ 1 
Xt~O, Xz~O 

The graphical solutions of the problem are again depicted in Figures 1 and 2. 

-----'x¥' 12.288. 114t.l 

- ---X*l2. 288,·10.!.39 l 

- --X"I2.28.8.9.438l 

0 8 x, 
feasible region when b, are effective [for eqn. (21)] 

--- feasible region when b. +(1- A.*) d1 are effective [for eqn. (33)] 
---- feasible region when b.+d• are effective [for eqn. (24)] 

Fig. 1. The ideals in the fuzzy decision space for the two-objective problem 

(26) 
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Fig. 2. The ideals and the compromise solutions in the fuzzy objective space for the two-objective 
problem (keys: same as for Fig. 1) 

Therefore, the fuzzy ideal can be expressed as 

(27) 

Taking into consideration the intervals within which / 1 and / 2 may take their 
values, the most appropriate ideal solution may be obtained by incorporating the 
fuzzy specifications of the objective functions (eqn. (12)), and constraints (eqn. (13)) 
into the programming framework in eqn. (11). 
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That is, we need to maximize separately the fuzzy objective functions 

and 

with respect to the following set of constraints 

x 1 :::::;5; 6 
x 2 ::::;6; 8 

x1 +x2 ::::;9; 10 
2x1 +3x2 ;<:8; 6 

x 1 ;<:0, x 2 ;<:0 

(28) 

(29) 

(30) 

By eqns. (14) and (15), the solution, x=(5.5, 4) with /=(15, -8.5) and A.*=.5, 
for the fuzzy linear program consisting of cqns. {28) and (30) is obtained by solving 

max). 
s.t. 5-xl ;<:A. 

3 .5x2 ;<:A. 
9-x1 - x2 ;<:A. 

-4+x1 +l.5x2 ;<:A. 
-8+x1 + .5x2 ;<:). 

x 1 ;<:0, x2 ;<:0 

(31) 

By the same token, the solution, x=(O, 7) with /=(7, 14) and .A.*=.5, for the 
fuzzy linear program consisting of eqn. (29) and (30) is found by solving 

max A. 
s.t. 5- Xt 

3 
9- X1- Xz;<:). 

-4+ x1 +l.5x2 ;<:A. 
-4-.75x1 + .5x2 ;<:A. 

x1 ;<:0, x2 ;<:0 

(32) 

Thus, the most appropriate ideal solution of the program in eqn. (20) is x* = 
=(2.288, 10.439) with f* =(15, 14). 

According to eqns. (16) and (17), with reference to ).*=.5, the decision space 
on which the corresponding compromise solutions may be determined is 

X1 :::::;5.5 
x2 ::::;7 

X1 + X2 ::::;9.5 
X1 +1.5x2 ;<:3.5 
x 1 ;<:0, x 2 ;<:0 

(33) 
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With reference to the most appropriate ideal solution/*=(15, 14), the most likely 
compromise solution set can be found by minimizing dP, with l~p~oo. 

For p= 1, the most appropriate compromise solution x 1 =(0, 7) with/1 = (7, 14) 
is found by solving 

max - .08lx1 +.2lx2 

s.t. x1 ~5.5 

x2 ~7 
x 1 + x2~9. 5 

xrt1.5x2~3.5 
x1~0, Xz~O 

(34) 

The solution x"'=(l.533, 7) withf"'=(10.066, 9.401) for p=oo is likewise obtai­
ned by solving 

(see Figures 1 and 2). 

min d00 

s.t. ~5.5 

x2 ~7 
x 1 + x2 ~9.5 
x1 + l.5x2 ~3.5 

.l33xl+ .067xz+doo~l 
-.214x1 + .143x2 +d(/.) ~1 

(35) 

Thus, with A. varying from 0 to 1, we are taking different elements of the fuzzy 
ideal in eqn. (27) as the reference point for obtaining a compromise solution set. 

4. Conclusion 

Concepts and procedures of compromise programming under fuzziness have 
been examined in this paper. Due to the inexactness of the constraints in a multi­
objective optimization problem, the ideal solution becomes a region bounded by 
the tolerance intervals of the objective functions. The corresponding compromise 
solution set is again fuzzy. With reference to different elements of the fuzzy ideal, 
different compromise solution sets may be derived. 

Though each compromise solution set gives nondominating solutions over the 
respective decision and objective spaces, among the compromise solution sets them­
selves, depending on how much a violation of the constraints the decisionmakers 
are permitting themselves to make, some may be more preferable than others. 
The fuzziness of the ideal and the compromise solution may appear to be unde­
sirable, but in fact it increases the flexibility in conflict resolution. Should an ideal 
solution fail to give an acceptable compromise solution, it can always be replaced 
by another element in the fuzzy ideal. Moreover, if the information in a multiple 
objective problem is fuzzy, it is natural to expect that its solution can only be fuzzily 
identified. 
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Since conflict resolution processes are usually interactive and recursive; displa­
cement of the fuzzy ideal [7] may then be necessary. The current frawework can 
also be extended to approximate such dynamic conflict resolution processes. 
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Programowanie kompromisowe w warunkacb rozmyto§ci 

Zastosowano programowanie kompromisowe jako metod« rozwiqzywania zadan optymali­
zacji wielokryterialnej z rozmytymi ograniczeniami. Rozwiqzanie kompromisowe jest otrzymywane 
na podstawie rozwil!zania ,idealnego". Poniewai: ograniczenia Sl! rozmyte, wit<e i rozWi~nie 



Compromise programming 215 

idealne jest rozmyte. Dla pewnej klasy miar odleglosci zbi6r rozwi~zan kompromisowych moze 

bye znaleziony poprzez minimalizacj~ odleglosci od okreslonego elementu rozmytego ,idealu". 

W zaleznosci od wyboru tego elementu otrzymuje si~ r6:lne zbiory kompromisowe. Przedstawiona 

rnetoda pozwala na znaczne zwi~kszenie elastycznosci w rozwi~zaniu konflikt6w. Jest ona zilu­

strowana przykladem numerycznym. 

KoJ~-mpoMHccuoe nporpaMMHpOBauue B ycJIOBHHX He'feTKOCTH 

I1CliOJib3yeTCJI KOMIIpOMHCCHOe nporpaMMHpOBaHHe KaK MeTO,ll; peiiieHiiil 3a,D;a'! MHOTOKpHTep­

lfaJibHOH onTHMH3awru c He'!eTKHMH orpaHH'IeHHJIMH. KoMIIpoMHcRoe peiiieHHe .n;ocrHTaercJI 

Ha OCHOBe ,H,n;eaJibHOrO" peiiieHHJI. ilOCKOJibKY orpaHH'IeHHJI JIBnJIIOTCJI He'!eTKHMH, llOJTOMY 

H JI,IJ;eaJibHOe peiiieHHe JIBnJieTCJI He'!eTKHM . .lJ:JIJI HeKOTOpOrO KJiaCCa Mepbi paCCTOJIID!Jl MHO)l(ecTBO 

KOMIIpOMHCCHbiX peiiieRHH MO)l(eT 6hiTb Haii,n;eHO nocpe,D;CTBOM MHHHMH3al(ID! paCCTOJIIDIJI OT 

onpe.n;erreHHoro JJieMeHra He'!eTKoro ,H,n;earra ". B 3aBHCHMOCTH or Bbr6opa Jroro JJieMeHra 

UOJiy'!aeM pa3Hbie KOMIIpOMHCCHbie MHO)l(eCTBa. flpe,D;CTaBJieHHhiH MeTO,ll; IIOJBOJIJieT 3Ha'!HTeJibHO 

paciiiHpHTb :JJiaCTH'IHOCTb llpH peiiieiD!H KOHcPliJIKTOB. MeTO,IJ; HliJIEOCTpHpyeTCJI 'lHCJieRHbiM 

llpHMepoM. 




