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A fuzzy compromise programming approach is proposed to solve multiobjective optimization
problems with fuzzy constraints. Conflicts among objectives are resolved through derivation of
a compromise solution on the basis of an ideal solution. Since the constraints are fuzzy, the idea
solution is inexact. With respect to a family of distance measures, a compromise solution set is
found by minimizing the distance from a specific element of the fuzzy ideal. Depending on the
element we are referring to, different compromise solution sets may be obtained. Though the ideal
and the compromise solutions are inexact, the flexibility in resolving conflicts is substantially in-
creased. A numerical example is provided to illustrate the basic ideals of fuzzy compromise pro-
gramming.

1. Introduction

Except for special situations in which optimization of a single objective is suffi-
cient, decisionmaking generally involves multiple and ordinarily conflicting objec-
tives. To enable the selection of an alternative which best satisfies specified objectives,
various methods have been proposed in recent years. Among existing techniques
such as goal programming (see for example [1], [6], [5]), interactive methods (see
for example [4], [2], [14]) and fuzzy sets based methods [13], the ideal solution
methods (see for example [3], [9], [10]) appear to be versatile in resolving conflicts
among objectives.

Under the maximization framework, an ideal solution, usually infeasible, is
perceived as the solution which maximizes all individual objective functions simulta-
neously. A compromise solution is a solution which is closest, with respect to a dis-
tance measure, to the ideal solution.

Conventionally, an ideal solution is exactly defined. Specifically, it is point-valued.
Inexact information or fuzzy cognitive and decisionmaking processes, however,
may make it impossible to identify the ideal solution with exactitude. Zeleny [11]
has suggested that an ideal may possibly be a region with fuzzy boundary. Employing
concepts of a theory of possibility, Leung [8] provides a formal conceptualiz:.tion
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of a fuzzy ideal. It is demonstrated that if the ideal solution is fuzzily designated,
then the corresponding compromise sclution set becomes imprecise. Depending
on which element of the fuzzy ideal is selected as a reference, different compromise
solution sets may be obtained.

Since the ideal solution method can be formulated as a compromise programming
problem, to shed some more light on the concept of a fuzzy ideal, the present paper
attempts to analyze conflict resolution through the compromise programmiig
framework. Section 2 deals with the determination of a fuzzy ideal and compromis
solutions in a multiobjective maximization problem with exact objectives and inexact
constraints. The derivation of the most appropriate ideal and compromise solution
set is also discussed. Section 3 employs a numerical example to illustrate the basic
procedures of compromise programming under fuzziness. The paper then concludes
with a discussion on the appropriateness of fuzzy compromise programming in
resolving conflicts.

2. Compromise programming with fuzzy information

Let the following be a multiobjective maximization problem:

max F(x)=(f1 (), -..,[a (X)) .
st.al x<b;; b+d, for i=1,..,m €))
x=0 '

where, a, € R" is the i-th vector of the coeflicients of the decision variables x € R",
and b, is a prescribed limit for the value of a] x which can be extended, if necessary,
to b-+d,, i=1, ..., m. That is, d, is the tolerance interval for the permissible vielation
of the constraint a] x<b,. The problem then is to maximize the set of g exact linear
objective functions, f; (x), j=1, ..., g, with respect to a set of m fuzzy linear con-
straints. ,

Under the compromise programming framework, if the constraints are exact,
a point-valued ideal solution can be determined as a refereace point and the corre-
sponding compromise solution set can be derived accordingly. Since the limits of
the constraints in the vector maximization problem in egn. (1) may be stretched
from b, to b;+b;, i=1, ..., m, then a natural consequence is that the ideal solution
may be stretched respectively. That is, instead of a point-value, the ideal solution
is a region with bounds derived from extending the limits of the constraints.

If af x is restricted to the limit b;, i=1,...,m, then the ideal solution o =
=(oX}, .-y 0X,) Which gives of *=(of}, ..., ofy ), With of; =f) (ox*), (throughout the
text, the lower bar and upper bar indicate solutions obtained when b; and b,-+d,,
i=1, ..., m, are employed, respectively), can be obtained by solving separately the
following ¢ linear programs (see, e.g., Zeleny [10, 11] for details):

max f; (x)
s.t. af x<b, i=1,..,m 2)
x=0
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Since ox* is generally infeasible, a compromise solution is then sought so that
the objective functions can be maximized as much as possible. To determine all
possible comproniise solutions, let the following

w1 oS * e () 12y U

be a family of distance measures depicting the distance between any alternative x
to the ideal solution ¢x* with respect to a weight p. A compromise solution is then
the solution which minimizes od,. Of course, ¢d, can be defined by functions other
than that in eqn. (3). By varying p from 1 to oo, a set of compromise solutions can
be determined.
Specifically, for p=1, the compromise solution ¢x* (the superscript refers to the
value of p) is obtained by solving
. % fi(x)
min odl—maxjg of_:
4

T .
s.it.a; x<by, i=1, .., m

x=0
For p=o00, the compromise solution ¢x® is found by solving

min od,,
st. aj x<by, i=1,..,m
I =1 () 5
%"-{Dd@v j=1:"‘:q ( )
G}‘j

x=0

These two compromise solutions serve as bounds of the compromise solution
set for 1< p< co. For any p within this interval, a compromise solution can likewise
be obtained. In particular, when p=2, the compromise solution is determined by
minimizing ,d, via the quadratic programming algorithm or by interpolation.

" If the limit of af x is extended to b;+d;, i=I,...,m, then the ideal solution
Ox* =(°x}, ..., °x}) which gives %" =(°f7, ..., %), with %} =f; (°x"), can be deter-

mined by solving individually ¢ linear programs as follows:
max f;(x)
sit. a] x<bj+-d;, i=1,...,m (6)

x=0

Replacing of; by % in the distance measures in eqn. (3), the compromise solution
set again can be obtained by minimizing °d,, with 1<p<co.
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For p=1, the compromise solution °x' is determined by solving

2 x
min ,d; =max 2 f:;j&)
o 0 M
st. af x<b+d;, i=1,..,m

x=0

For p=oco0, the compromise solution °x® is derived by solving

min %,
s.t. al x<b+d, i=1,..,m
oF—f) ®

e g oo? )‘ I) eky g
ff

Therefore, by stretching the limits of the constraints from b, to b;+d,, i=1, ..., m,
the maximum values of the individual objective functions f; (x), j=1, ..., g, change
from of; (by solving the programs in eqn. (2)) to %/} (by solving the programs
in eqn. (6)). Consequently, the ideal solution moves from of™ to % ™. Considering
all variations within the intervals [b;, b;-}-d;], the ideal becomes fuzzy and can be
identified as

{(f!.’ S.f:I) | Of_:‘g-fi“gaj::s J=1s ey 9} (9)

As previously discussed, by taking %" instead of of* in (9) as the ideal solu-
tion, a different compromise solution set is obtained. Thus, the compromise
solution set with reference to the fuzzy ideal is similarly inexact.

So far, in determining an ideal solution, the fuzzy constraints in eqn. (1) have
not been explicitly considered. Only the two critical points b; and b,--d, have been
employed to delimit the bounds of the fuzzy ideal. To determine the most appro-
priate ideal solution, the fuzziness of the objective functions and constraints should
be explicitly considered in the multiobjective maximization problem.

Based on eqn. (9), the tolerance interval for the value of each objective function
fi (@) is [of;, °f ] Thus, its fuzzy version f;(x) may be expressed as

2% 5 of]- (10)
To derive the most appropriate ideal solution, we first need fo solve separately g
fuzzy linear programs as follows:
fi (x)g"f}’ ; of_?=
a; xSb;; bi+d, for i=1,..,m (11)

x=0
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Let
1 , i ;)2
0¥ _ x
1 (f5 (x)= 1——?.4)#, if sl < <Y (12)
- i —ofi
0 , if f)<of]
be the membership function of the satisfaction of the fuzzy objective f;(x), j=1, ..., 4.
Let
1 , if af x<b,
al x—b
i (@] x)=11- Ld_——‘, if by<a® x<b<+d; (13)
if af x>b;+d;

0 ,

be the membership function of the satisfaction of the fuzzy constraint a] x,i=1, ..., m
Then, according to Zimmermann [12], the fuzzy linear program in eqn. (11) can be

rewritten as
max min [u (f; (x)); w(af x), for i=1,..., m] (14)
x
Its solution is equivalently obtained by solving
max A
s.t 1 &) = Of; =4
M Of;—of; Of:r*'_of;/
(15)
b; afx}) B
a Z =4, or i=1,..,m

x=0

Let x and A* be the optimal solution of the above program, then taking the optimal
solutions of the g fuzzy linear programs into consideration, the most appropriate
ideal solution becomes x*=(xJ, ..., x3) with f*=(f7, ... f})-

Based on the conditions
al x—b; _
—, if b;<af x<bi+-4d;,

dy
imposed on the fuzzy linear program in eqn. (14), with reference to A*, the decision
space on which a compromise solution is obtained should then be bounded by the

i=1,..,m (16)

following constraints
al x<b+ 1-2%d, fori=1,..,m.

x=0
Taking x* as the ideal solution, the most appropriate compromise solution set can
be found minimizing d,, replacing of; by f; in eqn. (3), with 1<p<oo.
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For p=1, the most appropriate compromise solution is obtained by solving

q
min d;=max Z if)-
A0 (18)
st. al x<b+(1-A"d,, i=1,..m
x=0

For p=co, the most appropriate compromise solution is again determined by
solving

min d.,
st al x<b+(1-2"d,, i=1,..m
17— () (19)
7‘%“’;\3: ‘=1'.‘ axey
f;; J q
x=0

Since A indicates the degree of satisfaction of the fuzzy objective functions and
constraints in eqn. (15), 1—2 can be interpreted as the degree of dissatisfaction or
violation. Therefore, by varying the value of / we are varying our reference point
in the fuzzy ideal, and the compromise solution set changes accordingly. When
1 —2A=0, programs (18) and (19) become programs (4) and (5), respectively. By
the same token, when 1—/4A=1, programs (18) (19) become programs (7) and (8),
respectively. For 0<1—2<1, programs (18) and (19) give compromise solutions
when the constraints are violated by 1—/. If we treat §=1—/ as a parameter, we
can generate the entire compromise solution set with respect to a distance measure p.

Such a formulation is versatile in the sense that the fuzziness of constraints
allows us to generate alternatives, within permitted limits of tolerance, to resolve
conflicts which may not be resolved or dissolved otherwise. That is, decisionmakers
do not have to restrict themselves to a single point-valued ideal in conflict resolution.
Moreover, the process of determining varying ideal and compromise solutions in
tractable.

To illustrate the basic concepts discussed, a simple multiobjective maximization
problem is provided as a numerical example.

3. Conflict resolution of a twe-objective maximizaticn problem

Let the following be a multiobjective maximization problem

max fi=2x;-+x,
Jo=—=3x+2x,
s.t. Xy <5:6
x,56; 8 (20)
X +x.<9; 10
2x+3x,>8; 6
xi20; x>0
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in which two objectives functions are to be maximized with respect to four fuzzy
constraints.
By eqn. (2), the separate maximization of f; and f, with respect to the following
exact constraints
Xi e
X, <6
X;4x,<9 (21)
2x,4+3x,=8

x120, x,=0

gives the ideal solution ox*=(2.288, 9.438) with " =(14, 12).
Employing the distance measure in eqn. (3), the compromise solution, ,x'=
=(0, 6) with of"'=(6, 12), for the distance measure od, is found by sclving

max —.107x,-+.238x,
s.t. X1 <5
X, <06
x;4x,<9
2x,+43x,=>8
xl?O, xg;o

(22)

Likewise, solving

min d

s.t. Xy <5

x146

x1+x2-<..9

2x,+3x,=8
A143x,+.071x,4od =1
—.25%;+.167x,4od =1

x;20, x,=20

(23)

gives the compromise solution ¢x®=(1.466,6) with ,f*=(0.932, 7.602).

Thus, for 1<p<*®, the minimization of ,d, enables us to find a set of compro-
mise solutions with reference to the ideal solution ¢x*. Figures 1 and 2 depict, re-
spectively, the problem and its solutions in the decision and objective spaces.

By stretching the constraints in eqn. (20) to the other ends of the tolerance in-
tervals, the separate maximization of f; and f3, eqn. (6), with respect to the following
set of constraints

Xy <6
x,<8
x1+x,<10 (24)
2x,+43x,=6
Xq =0, x;;O

gives the ideal solution °x*=(2.288, 11.44) with °f*=(16, 16).

7
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Again, the compromise solution, %x!=(0, 8) with °%f1=(8, 16), with respect to
the measure °d, is obtained by solving
h max .063x;-.188x,
s.t. X <6
x,<8
X1+x,<10
2x;+3x,26
x; 20, x,=0
And, the compromise solution, °x®=(1.585, 8) with %/ ®=(11.17, 11,245), for the
distance measure %, is found by solving

(25)

min °d_,
s.t. X1 <6
x,<8
x;+ x,<10
125x,+.063x,4-°4 =1

—.188x;4-.125x,4-% ,>1
x;=20, x,=0

The graphical solutions of the problem are again depicted in Figures 1 and 2.

X, A
12

————— %"(2288,1144)

I ~-X*(2.288,10.439)
101 f,lx)
—%—-X"(2288,9.438)

I 1o

0 4 B ¥
--------- feasible region when b; are effective [for eqn. (21)]
feasible region when b;+4(1—A4*)d, are effective [for eqn. (33)]
— — — — feasible region when b;-+d; are effective [for eqn. (24)]

|
|
|
|
i
[
I
[
i
|
6

Fig, 1. The ideals in the fuzzy decision space for the two-objective problem
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20

151

10

_20-
Y

Fig. 2. The ideals and the compromise solutions in the fuzzy objective space for the two-objective
problem (keys: same as for Fig. 1)

Therefore, the fuzzy ideal can be expressed as
{(f1. £2)114< £1<16, 12< £,<16}. @7

Taking into consideration the intervals within which f; and f, may take their
values, the most appropriate ideal solution may be obtained by incorporating the
fuzzy specifications of the objective functions (eqn. (12)), and constraints (eqn. (13))
into the programming framework in eqn. (11).
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That is, we need to maximize separately the fuzzy objective functions

fi1: 2%, +x,>16; 14, (28)
and

for =3x,+2x,>16; 12 (29)

with respect to the following set of constraints

x,<6; 8
x1+x,<9; 10 (30)

2x;+3x,28; 6
x1?0, x2?0

By eqns. (14) and (15), the solution, x=(5.5, 4) with f=(15, —8.5) and 1*=.5,
for the fuzzy linear program consisting of egns. (28) and (30) is obtained by solving

max A
s.t. 5—x; =4
3 — Sx,=A
9—x1— x,24 (3D

—4tx,+1.5x,=24
—8+x1+ -ng?l
xl.;Os xz?o

By the same token, the solution, x=(0, 7) with f=(7, 14) and i*=.5, for the
fuzzy linear program consisting of eqn. (29) and (30) is found by solving

max A
s.t. 5— x4 =1
3 — Sx,=A
9— x;— x,=24 (32)

—'4+ xl-}-I.Sx;;A
—4—75x;+ 5x,=4
x1?0, x;?(}

Thus, the most appropriate ideal solution of the program in eqn. (20) is x*=
=(2.288, 10.439) with f*=(15, 14).

According to eqns. (16) and (17), with reference to A*=.5, the decision space
on which the corresponding compromise solutions may be determined is

Xy =55
x;:‘é?
Xt %,<9.5 (33)

%, +1.5x,>3.5
X1 ?0, x2;0
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With reference to the most appropriate ideal solution f*=(15, 14), the most likely
compromise solution set can be found by minimizing d,, with 1<p< 0.
For p=1, the most appropriate compromise solution x*=(0, 7) with /" =(7, 14)
is found by solving
max —.081x,-+.21x,
st. x; <55
X, <7
x1+  x<9.5
x;+1.5x,23.5
x:=20, x,=20

The solution x®=(1.533, 7) with /*=(10.066, 9.401) for p=o0 is likewise obtai-
ned by solving

(34)

min 4,
s.t. Xy <35.5
X2 s?
X+ x,<9.5
x;+1.5x, =3.5 (35)

133x,+ .067x,+d, >1
—214x,+ .143x,4-d =1
x;20, x,=0
(see Figures | and 2).
Thus, with A4 varying from 0 to 1, we are taking different elements of the fuzzy
ideal in egn. (27) as the reference point for obtaining a compromise solution set.

4. Conclusion

Concepts and procedures of compromise programming under fuzziness have
been examined in this paper. Due to the inexactness of the constraints in a multi-
objective optimization problem, the ideal solution becomes a region bounded by
the tolerance intervals of the objective functions. The corresponding compromise
solution set is again fuzzy. With reference to different elements of the fuzzy ideal,
different compromise solution sets may be derived.

Though each compromise solution set gives nondominating solutions over the
respective decision and objective spaces, among the compromise solution sets them-
selves, depending on how much a violation of the constraints the decisionmakers
are permitting themselves to make, some may be more preferable than others.
The fuzziness of the ideal and the compromise solution may appear to be unde-
sirable, but in fact it increases the flexibility in conflict resolution. Should an ideal
solution fail to give an acceptable compromise solution, it can always be replaced
by another element in the fuzzy ideal. Moreover, if the information in a multiple
objective problem is fuzzy, it is natural to expect that its solution can only be fuzzily
identified.
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Since conflict resolution processes are usually interactive and recursive, displa-
cement of the fuzzy ideal [7] may then be necessary. The current frawework can
also be extended to approximate such dynamic conflict resolution processes.
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Programowanie kompromisowe w warunkach rozmytosci

Zastosowano programowanie kompromisowe jako metode rozwigzywania zadan optymali-
zacji wielokryterialnej z rozmytymi ograniczeniami. Rozwigzanie kompromisowe jest otrzymywane
na podstawie rozwigzania ,idealnego”. Poniewaz ograniczenia sa rozmyte, wiec i rozwigzanie
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idealne jest rozmyte. Dla pewnej klasy miar odleglosci zbidr rozwigzan kompromisowych moze
byc znaleziony poprzez minimalizacje odleglodci od okre$lonego elementu rozmytego ,.ideatu™.
W zaleznosci od wyboru tego elementu otrzymuje si¢ rézne zbiory kompromisowe. Przedstawiona
metoda pozwala na znaczne zwigkszenie elastycznoséi w rozwiazaniu konfliktow. Jest ona zilu-
strowana przykladem numerycznym.

KomupoMiuccHoe HPOrpaMMHpPOBAREE B YCAOBHSX HEYETKOCTH

Vicmonb3yercs KOMIPOMECCHOS OPOTPaMMEPOBAHNE KAK METOJI PeLleHus 3a1a4 MAOrOKPUTED-
HaNBHOM OUTHAMH3ANMA C HEYeTKAMHA OTpaHWYeHWSMH. KOMIpPOMWCHOE DPEmIeHHE NOCTHTAeTCS
Ha OCHOBE ,HIeaNbHOro™ pelneHms. IIOCKONBKY OTpaHHYEHHS ABIAIOTCA HEYCTKAMH, HO3TOMY
¥ MIEANbHOE DEIISHHE ABIACTCA HeueTkuM, I HEKOTOPOTO KIIACCA MEpEI PACCTOSHEA MHOKECTEO
KOMIOPOMECCHEIX pemIeHuii MoxeT OBITE HaificHO IOCPEenCTBOM MEHUMH3ZAUAHM PACCTOSHHS OT
OTPENENEHHOr0 3JEMEHTa HeYeTKoro ,uueaia’. B 3asucumocts o1 BeIGOpa 3TOTO 3neMeHTa
TOayYaeM PasHBIe KOMIPOMHCCHBIE MHOMKeCTBA, [IpencrapieHsslii METO MO3BOIAET 3HAYUTEILHO
PACOIAPHTE 3MACTHYHOCTE TpPH pelleHdr KOHQIMKTOB. MeTonm HITIOCTPHPYETCA HHCICHHBIM
TIDHMEPOM.







