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This paper considers the use of fuzzy goal programming for the solution of multiobjective 
nonlinear programming problems by considering that the decision maker (DM) has fuzzy goals 
for each of the objective functions. The fuzzy goals of the DM are quantified by eliciting correspond­
ing membership functions through the interaction with the DM. After determining the membership 
functions, if the DM specifies his goals in terms of membership values, the corresponding fuzzy 
goal progratmning problem is solved and the DM is supplied with Pareto optimal solutions. Then, 
by considering the current vahies of the membership functions together with the current values of 
negative deviation variables, the DM responds by updating his goals in terms of membership values. 
In this way a satisficing solution for the DM can be efficiently derived from among a Pareto optimal 
solutions. On the basis of the proposed method, a time-sharing interactive computer program 
is written and an application to water quality management is demonstrated together with some 
computer outputs. 

1. Introduction 

In multiobjective nonlinear programming problems MONLP, there is no "optimal 
solution" in which all objectives are simultaneously optimized due to an inherent 
conflict between these objectives. Consequently, the aim in solving MONLP is 
to find a compromise or satisficing solution of the decision maker (DM) from 
a set of the Pareto optimal solutions. 

Three most promising methodologies for dealing with MONLP problems which 
have been proposed are: 

(1) goal programming (e.g. [2-3], [8, 9], [11]); 
(2) interactive approaches (e.g. [1], [4-5], [14], [19], [21]); 
(3) fuzzy programming (e.g. [7], [10], [15-17], [20]). 
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The term goal programming, which assumes that the DM can specify his goals 
for the objective functions appeared first in 1961 in Charnes and Cooper [2] in 
order to deal with multiobjective linear programming (MOLP) problems. Sub­
sequent works on goal programming methods have been numerous, e.g., [3], [8, 9], 
[11 ]. 

The term interactive approach, which assumes that the DM is able to give some 
preference information on a local level, was first initiated by Geoffrion et- al. [4] 
and further developed by many researchers, e.g., [1), [5], [14], [19], [21]. 

The term fuzzy programming, which assumes that the fuzzy goals of the DM 
can be quantified by eliciting membership functions, was first introduced by Zimmer­
mann [20] for solving MOLP problems and further extended by several authors, 
e.g., [7], [10], [15-17], [16]. 

Naturally, each of these approaches has its own advantages and disadvantages 
relative to the other approaches. Therefore, in this paper, assuming that the DM 
has fuzzy goals for each of the objective functions in MONLP problems, we present 
an interactive fuzzy goal programming algorithm by incorporating into goal pro­
gramming attractive features from both the interactive approaches and fuzzy pro­
gramming. 

After determining the membership functions for each of the objective functions 
through an interaction with the DM, if the DM specifies his goals in terms of mem­
bership values, the corresponding fuzzy goal programming problem is solved and 
the DM is supplied with a Pareto optimal solution. Then, by considering the current 
values of membership functions together with the current values of the negative 
deviation variables, the DM responds by updating his goals in terms of membership 
values and a satisficing solution for the DM can be derived efficiently from among 
Pareto optimal solution. On the basis of the proposed method, a time-sharing 
interactive computer program is written in FORTRAN and its application to 
water quality management is demonstrated along with some computer outputs. 

2. Interactive fuzzy goal programming 

In general, a multiobjective nonlinear programming problem (MONLP) IS 

represented as 

min f(x) 6 (/1 (x), fz (x), ... ,h (x)Y} 
subject to x E iX <;;. E" 

(1) 

where f1> ... ,h are k distinct objective functions of the decision vector x and X 
is a set of feasible constrained decisions. Here, it is assumed that all/;, i= 1, ... , n 
are convex and differentiable and the constraint set :X is convex and compact. 

Fundamental to the MONLP is the Pareto optimality concept, also known as 
noninferiority of solution. Qualitatively, a Pareto optimal solution of the MONLP 
is one in which any improvement of one objective function can be achieved only 
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at the expense of another. Mathematically, a formal definition of a Pareto optimal 
solution to the MONLP is given below: 

DEFINITION 1. A decision x':- is said to be a Pareio optimal solution to the 
MONLP, iff there does not exist another x E:X, such that it (x)~j; (x*), j= 1, ... , k, 
\Vith strict inequality holding for at least one i. 

Usually, Pm·eto optimal solutions form sets of an infinite number of points, 
and some kinds of subjective judgement should be added to the quantitative analyses 
by the DM. The DM must select his compromise or satisficing solution from among 
Pareto optimal solutions. 

In order to determine a compromise or satisficing solution of the DM, there 
are three major approaches, goal programming, interactive approaches and fuzzy 
programming. Each of these approaches has its own advantages and disadvantages 
relative to the other ones. Therefore, in this paper, we propose a new interactive 
fuzzy goal programming method by incorporating into goal programming desirable 
features of both the interactive approaches and fuzzy programming. In a mini­
mization problem, a fuzzy goal stated by the DM may be to achieve the value of 
an objective function "substantially less" than some value A. This type of statement 
can be quantified by eliciting a corresponding membership function. 

, In order to elicit a membership function flf, (x) from the DM for each of the 
objective functions it (x), we first calculate the individualminimumfimin and maximum 
fimax for each objective function it (x) under given constraints. By taking into account 
the calculated individual minimum and maximum of each objective function, the 
DM must determine l1is subjective membership function flf, (x) which is a strictly 
monotone decreasing function of it (x). Here, it is assumed that f1f, (x) = O 
if it (x) ~fi0 and flf, (x)= 1 if it (x) -£!/, where ft0 is a worst acceptable level for 
ft (x) and f/ is a totally desirable level for it (x) within ftmin and / 1max. 

After determining the membership functions for each of the objective functions, 
the DM is asked to specify his aspiration levels of goal attainment in terms of mem­
bership values, called goal membership values, for all the membership functions. 
For the DM's goal membership values fi-f,, i= 1, 2, ... , k, the corresponding Pareto 
optimal solution, which is in a sense close to his requirement is obtained by solving 
the following fuzzy goal programming problem 

• k ) 

~1~ i~a; I 
subject to f1f 1 (x)+a;- -at=llf,]· ~ 

a;-, at=o z=1,2, ... , kl 
~.~~0 J 

(2) 

where a;- and at are respectively, the negative and positive deviation variables, 
which provide us with a way to measure non-attainment of the goal membership 
values. This particular formulation is called "one-sided" fuzzy goal programming. 



220 M. SAKAWA 

The relationships between the optimal solutions ofthe fuzzy goal programming 
problem and the Pareto optimality concept of the MONLP can be characterized 
by the following theorem. 

THEOREM 1. If x':· is an optimal solution to the fuzzy goal programming problem 
with 0 < flt, (x*) < 1 and d( =0 holding for all i, then x* is a Pm·eto optimal solution 
to the MONLP. 

If x* is an optimal solution of (2), and if in Theorem I none of the sufficiency 
conditions for the Pareto optimality are satisfied i.e., 3i: flt, (x*)= {0, 1} or d( = 0, 
then we can test the Pareto optimality for x* by solving the following problem: 

maxi'' I 
subject to j; (x)+;~::!tiC~*), si ;:;;;o (i= 1, ... , k) 

(3) 

Let x be an optimal solution to (3). If all si=O, then x* is a Pareto optimal 
solution. If at least one si> 0, it can easily be shown that xis a Pareto optimal solution. 

So far we have considered a minimization problem and consequently assumed 
that the DM has a fuzzy goal such as "}; (x) should be substantially less than a;''. 

In the following, we consider a more general case where the DM has two types 
of fuzzy goals, namely those expressed as ''.[; (x) should be in the vicinity of b;'' 
(fuzzy equal) and ''f(x) should be substantially less than at'' (fuzzy min). Therefore, 
the problem to be solved is now: 

where Jui={1, 2, ... , k}. 

fuzzy min f. (x) 

fuzzy equal f. (x) 

subject to x E X 

(i E :)] 

(i E J) (4) 

In order to elicit from the DM a membership function for a fuzzy goal like 
''.[; (x) should be in the vicinity of b;'', it is obvious that we may use different func­
tions for the left and right sides of bi. After determining the membership functions 
for two types of fuzzy goals, if the DM specifies his goal membership values, the 
fuzzy goal programming problem (2) is solved. 

Now, we introduce the concept of M-Pareto optimal solutions which are defined 
in terms of membership functions instead of objective functions. 

DEFINITION 2. A decision x'' is said to be an M-Pateto optimal solution to (4), 
iff there does not exist another such x E: X that flt, (x)~ flt, (x*), i= 1, ... , k, with 
strict inequality holding for at least one i. 

Note that the set of Pareto optimal solutions is a subset of that of M-Pareto 
optimal solutions. 

Using the concept of M-Pareto optimality, the following M-Pareto version of 
Theorem 1 can be obtained under slightly different conditions. 
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THEOREM 2. If x>:· is an optimal solution to (2) with dt = 0 holding for all i, then x>:· 
is an M-Pareto optimal solution to ( 4). 

Similarly to the minimization case, a numerical test of M-Pareto optimality for 
x* can be performed by solving the following problem: 

subject to 

" max .I) s1 
:cEX i=l 

f1f
1 
(x)-s1 =f1f

1 
(x*), s1 ~0 {i~l, ...• J (5) 

Let x be an optimal solution to (5). If all s1=0, then x* is an M-Pareto optimal 
solution. If at least one s1 >0, x becomes an M-Pareto optimal solution. 

Following the above discussion, we can now present an interactive fuzzy goal 
programming algorithm in order to derive a satisficing solution for the DM from 
among the (M-) Pareto optimal solution set. The steps marked with an asterisk 
involve an interaction with the DM. 

STEP 1. Calculate the individual minimum and maximum for each objective function 
under given constraints. 

STEP 2::·. Elicit a membership function from the DM for each of the objective 
functions. 

STEP 3. Set all theinitialgoalmembershipvalues equal to 1, i.e., fJf,= 1 (i= 1, 2, ... , k) 

STEP 4. For the goal membership values specified by the DM, the corresponding 
fuzzy goal programming problem (2) is solved and the (M-) Pareto optimality 
test is performed, if necessary. 

STEP 5*. The DM is supplied with the corresponding (M-) Pareto optimal solution. 
If the DM is satisfied with the current membership values of the (M-) Pareto optimal 
solution, stop. Otherwise, the DM must update his goal membership values by 
considering the current values of the membership functions together with the current 
values of the negative deviation variables and return to Step 4. Here it should be 
stressed for the DM that any improvement of one membership function can be 
achieved only at the expense of at least one of the other membership functions. 

3. An interactive computer program 

Interactive fuzzy goal programming processes for multiobjective nonlinear 
programming problems include eliciting a membership function for each of the 
objective functions and goal membership values from the DM. Thus, an interactive 
utilization of computer facilities is highly recommended. Based on the interactive 
algorithm described above, we have developed a new interactive computer program. 
Our program includes graphical representations by which the DM can portray 
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the shapes of his membership functions, and he can promptly find incorrect asse~s~ 

ments or inconsistent evaluations revise them immediately and proceed to the 
next stage · more easily. 

Our program is composed of one main program and several subroutines. The 
main program calls in and runs the subprograms with commands indicated by the 
user (DM). Here we give a brief explanation of the commands prepared in our 
program. 

(1) MINMAX: Displays the calculated individual minimum and maximum of 
each of the objective functions under the given constraints. 

(2) MF: Elicits from the DM a membership function for each of the 
objective functions. 

(3) GRAPH: Depicts graphically the shape of membership function for each 
of the objective function. 

(4) GO: Derives a satisficing solution for the DM from among the (M-) 
Pareto optimal solutions by updating the goal membership 
values. 

(5) STOP: Exits from the program. 
In our interactive computer program, the DM can select his membership function 

in a subjective manner from among the following five types of functions; linear; 
exponential, hyperbolic, hyperbolic inverse and piecewise linear functions. Then the 
parameter values are determined through an interaction with the DM. Here, except 
for the hyperbolic functions, it is assumed that fl.r, (x)=O if .t; (x);£f1° and flf, (x)= I 
if .t; (x)~f/, where f 1° is a worst acceptable level!; (x) and f/ is a totally-desirable 
level for .fi (x). 

For the particular functions we obtain: 

(1) Linear membership function: 

flf, (x)= [.t; (x)-! 1°]/[f/-/ 1°]. (6) 

The linear membership function can be determined by asking the DM to specify 
two points /,0 and ~'1 within f.max and ·rmiu t J; i }f • 

(2) Exponential membership function: 

flf, (x)=a1 [1-exp { -b, (!t (x)-f 1°)/(f/ - f 1°)}] (7). 

The exponential membership function can be determined by asking the DM to 
specify three points / 1° ,f1°"5 and f/ within ffax and ftmin, where j

1
° represents the values 

of ft (x) such that the value of membership function flf, (x) is a. 

(3) Hyperbolic membership function: 

flf, (x)=(l/2) tanh ((!t (x)-b1) a1)+(1/2). (8) 

The hyperbolic membership function can be determined by asking the DM to specify 
two points 1'0 ·25 and /,0 "5 within rmax and rmin 

Jt I J; J1 ' 

( 4) Hyperbolic inverse membership function: 

(9) 
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The hyperbolic inverse membership function can be determined by asking the DM 
to specify three points f?J?· 25 and Jr 5 within J;max and J;min. 

(5) Piecewise linear membership function: 

NI 

fl.f
1 
(x)=}; aul/; (x)-gul+fii.t; (x)+?'i (10) 

j= 1 

Here, it is assumed that f.J.f
1 

(x)=ti,.t; (x)+sir for each segment gir-t~/; (x)~gir· 
The piecewise linear membership function can be determined by asking the DM 
to specify the grade of membership for each of several values of objective functions 
within J;max and fimin. 

4. An application to a water quality management problem 

An application of the proposed method to the Bow River Valley water quality ma­
nagement problem was considered, formulated as a six-objective optimization task 
(see for detail [6], pp. 187-209, [12, 13], [18]). It is concerned with pollution of an 
artificial river basin, Bow River Valley on a stretch or 100 miles. The Pierce-Hall 
Cannery, which is a source of industrial pollution is located near the head of the 
valley. Ten miles downstream the city of Bowville with 250 000 inhabitants, and 
seventy miles downstream from the cannery, the city of Plympton with 200 000 
inhabitants are the sources of municipal waste pollution. In between, fifty miles 
downstream from the Pierce-Hall Cannery is Robin State Park, and the state bound­
ary line is 100 miles dm.vnstream from the cannery. 

Water quality is measured with respect to dissolved oxygen concerntration (DO), 
and the industrial and municipal waste pollution is described by the number of 
pounds of biochemical oxygen demanding material (BOD), which is identified as 
the carbonaceous (BODe) and nitrogenous (BODn) material. The cannery and 
the two cities already have primary treatment facilities which reduce the BOD 
by 30% of their gross discharge. The cost of additional treatment facilities would 
increase the tax rate in Bowville and Plympton and decrease the investment return 
from the cannery. 

The problem is formulated as follows: 
The decision variables x1o x 2 , x 3 represent the treatment levels of water discharge 

at the Pierce-Hall Cannery, .at Bowville, and at Plymton, respectively. The treatment 
levels are specified in terms of the carbonaceous BOD.; by the relation: 

wt=0.39f(1.39-:Xi) 

where xi is the proportion of the gross BODe removed at location i and w1 is the 
corresponding value for BODn. 

The Bow River Valley Water Pollution Control Director (the DM in this problem) 
is concerned with the following six objective functions: 

f 1 (x)=4.75+2.27 (x1 -0.3) 
/ 2 (x)=2.0+0.524 (x1 -0.3)+2.79 (x2 -0.3)+0.882 (w1 -0.3)+2.65 (w2 -0.3) 
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1~ (x)=5.1+0.177 (x1 -0.3)+0.978 (x2 -0.3)+0.216 (w1 -·0.3)+0.768 (w2 -0.3) 
/ 4 (x)=7.5-0.0l2 (59/(1.09-xi)-59) 
/ 5 (x)=0.0018 (532/(1.09-·xD-532) 
16 (x)=0.0025 (450/(1.09--xD-450 

where / 1,/2,/3 are the DO levels in mg/1 at Bowville, Robin State Park, and Plymp­
ton, respectively, / 4 is the percentage return on equity at the Pierce-Hall Cannery, 
and1~ and/6 are the additions to the tax rate at Bowville and Plympton, respectively. 
Therefore, the objective functions ft. / 2 , 1~ and 1~ should be maximized and the 
objective functions 1~ and 16 should be minimized. 

The DM must consider the constraint that the DO level at the state line must 
be no less than 3.5 mg/1, which is represented by: 1.0+0.0332 (x1 -0.3)+0.0186 (x2 + 
-0.3)+3.34 (x3 -0.3)+0.0204 (w1 -0.3)+0.778 (w2 -0.3)+2.62 (w3 -0.3)~3.5 

In addition there are upper and lower bounds on the decision variables: 0.3 ~ x; ~ 
~ 1.0, i= 1, 2, 3. 

In the following, results obtained employing our computer program run under 
TSS on ACOS-6 digital computer in the computer center of Kobe University are 
explained using some computer outputs. 

COMMAND: 
=MINMAX 

I NDIVIDUAL MINIMUM AND MAXIMUM 

MIN MA X 
----------~+------------- ------ - ---+-----------------------

F ( 1) 0.475000000+0 1 0.633900000+01 
FC 2 > 0.20DODDOOD+01 0.679220010+01 
F( 3 ) 0.510000000+01 0.659730010+01 
F( 4) 0 . 341336190+00 0.75000DOOD+01 
F( 5 ) -0.319633470-07 0.968239600+01 
F( 6) 0.95770522D+OO 0 . 113749950+02 

Illustration 1 

Using the MINMAX command, the calculated individual mmtmum and 
maximum of each of the objective functions / 1 (x), / 2 (x), / 3 (x), / 4 (x), / 5 (x), / 6 (x) 
are displayed. 

COMMAND! 
=MF 
~NPUT THE OBJECTIVE FUNCTION NUMBER: 
=I 
INPUT FUZZY GOAL: 

(1) FUZZY MA~ 
(2) FUZZY M!N 
(3) FUZZY EQUAL 

= I 
DO YOU WANT liST OF MEMBERSHIP FUNCTION TYPE 'l 
=YES 
LIST OF MEMBERSHIP FUNCTION TYPE 

( !) LINEAR 
(2l EXPONENTIAL 
(3l HYPERBOLIC 
(4) HYPERBOLIC INVERSE. 
(5) PIECEWISE LINEAR 

INPUT MEMBERSHIP FUNCTION TYPE: 
=2 
INPUT THREE POINTS(F1oF2oF3) SUCH THAT 

M<F1l=O.O ( F1 : WORST ACCEPTABLE LEVEL ) 
M<F2J=0.5 
H<F3>=1.0 ( F3 : TOTALLY C>ESIRASLE LEVEL ) 

==4~75 6~0 6.339 
ANOTHER MSET 7 

···· ········· ··········· ··· ··· ·· ···· ·· 
I!lustration 2 
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1.00 .-----..-.----r----,.---...----, 

lC 

" 
0.50 'lC 

X 

o x "r" 
4.75 5.15 

X 

X 

X 

X 

1 r 
5.55 5.95 

( 10E 0) 

Illustration 3 

I 

6.35 6.75 

lNPUT YOUR GOALS (BETWEEN 0 AND 1) FOR EACH (If THE MEMBERSHIP 
FUNCTIONS 

=1.D LD 1.D 1.D 1.D 1.0 
C FRACTIONAL CHANGE IN OBJECTIVE ) 

--------------------- < ITERATION j > ---------------------

MCF 1l 
MCF 2J 
MCF 3l 
MCF 4l 
MCF 5) 
MCF 6) 

MINIMIZATION OF THE SUM OF THE NEGATIVE 
(IEVlATlONS FOR YOUR GOALS 

MEMBERSHIP 

0.45070464940+00 
0~38621250130+00 
0.66480702660+00 
o. 72894159860+00 
0.5872914375[1+00 
0.6452174847[1+00 

(lBJECTlVE FUNCTION 

F( 1) 
FC 2) 

! FC :D 
F< 4> 
FC 5) 

~ F( 6) 

0.59507966690+01 
0.50783053040+01 
0.60952161190+01 
0.64502313170+01 
0.22487190810+01 
0.13DD6497570+01 

NEGATIVE DEVIATION POSITIVE DEVIATION 
------------------------------+----------------------------

DC 1)- 0.54929551310+00 [I( 1)+ D. 
0( 2)- 0.61379562790+00 [I( 2)+ o. 
0( 3)- 0.33519736370+00 0( 3)+ o. 
DC 4)- 0.27105749110+00 0( 4)+ D. 
[I( 5) - 0.4126174759D+OO [I( 5)+ D. 
[I( 6)- ' 0.35478332550+00 [I( b)+ ! G. 

---------+--------------------+--------+-------------------
SUM D- ! 0 . 25367467970+01 ! SUM 0+ ~ 0. 

XC 1)= 0.82898531810+00 
X( 3)= 0.79133227950+00 

XC 2)= 0.88957281980+00 

ARE YOU SATISFIED WITH THE CURRENT VALUES OF THE MEMBERSHIP 
FUNCTIONS? 

=NO 
HIPUT YOUR GOALS CBETWEEN 0 AND 1l FOR EACH OF THE MEMBERSHIP 
FUNCTIONS 

=D.B 0.8 0.8 0.8 D.B D.8 

Illustration 4a. Iteration 1. 

225 

The MF command is utilized to subsequently determine the membership func­
tions for each of the objective functions / 1 (x), / 2 (x), f~ (x), / 4 (x), / 5 (x), / 6 (x) 
Here the interaction with a hypothetical DM establishes the following membership 
functions and corresponding assessment values. 

8 
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-------------------------------------

--------------------- < ITERATION 5 > ---------------------

MINIMIZATION OF THE SUM OF THE NEGATIVE 
DEV! Ai" !ONS FOR YOUR GOALS 

l'fEMBERSHI P OBJECTIVE FU:-.ICTION 
------------------------------+----------------------------

MC.F 1) 0 . 5668000922D+DO F( l) 0.60600732180+01 
MCF 2) 0 . 37036443080+00 ' F( 2) 0.50340574910+01. 
MCF 3) ' 0.65311201490+00 ' F( 3) 0.60777086860+01 
11C F 4) ' 0. SOOOOOOOQOD+OO FC '·) 0.60000000000+01 
M(F 5) 0 .67707146250+00 ! F ( 5) 0.19468943620+01 
M<F 6) ' 0 . 60000000000·~00 F( 6) 0.13574596910+01 

0( l)- c. 3319990784(1-01 ' 0( i)+ ' 0. 
0( 2) - ! 0 . 12965025560+00 ' 0( 2)+ ' 0. 
0( 3)- ' 0.'.6895923390-01 0( 3)+ D. 
D< 4)- o. ' 0( 4)+ ' o. 
0( 5)- ' 0 . 22828656870- 01 ' 0( 5)+ ! 0. 
0( 6) - ' 0. ' 0( 6)+ o. 

---------+---------------------+--------+-------------------
SUM 0- ~ 0 . 23257474370+00 ~ SUM 0+ ~ 0 . 

. XC 1) ~ 0 . 877 12476 740+00 
X< 3)= 0.79801031910+00 

XC 2)= 0 . 87195418070+00 

ARE YOU S.!\TISFIED WITH THE CURRENT VALUES OF THE MEMBERSHIP 
FUNCTIONS? 

=YES 

THE FOLLOl..JING VALUES ARE YOUR St.TISFICING SOLUTION: 

MEI':BERSHIP OBJECTIVE FUNCTION 

------------------------------+----------------------------
MCF 1> 0. 56680009220+00 FC 1) 0 . 60600732180+01 
MCF 2) 0.37036 4/.,3080+00 FC 2) 0.5034057491D+01 
MCF 3) 0.65311201'r9[1+00 FC 3) 0.60777086860+01 
MCF 4) 0 .50000000000+00 FC 4) 0.6000000000[1+01 
MCF 5) 0.6770714625D+OO FC 5) 0.19468943620+01 
MCF 6) 0.60000000000+00 ! FC 6) 0.13574596910+01 

XC 1)= 0. 8771247674 0+00 
XC 3)= 0.7980103191D+OO 

X C 2)= 0.87 195418070+00 

lllustration 4b. Continuation of illustration 4a. Iteration 5. 

/ 1 : exponential, (f~,j~·S,JD=(4.75, 6.0, 6.339), 
.f2 : linear, (.f~JD=(0.4, 6.792), 
/ 3 : linear, (f~JD=5.1, 6.597), 
/ 4 : hyperbolic, (!~·25 ,/~· 5)=(5.5, 6.0), 
fs: exponential, (f~,j~·5 JD=(3.5, 2.0, 0.0), 
f 6 : exponential, (f~,f~· 5 ,j~)=(7.0, 1.5, 0.958). 

M. SAKAWA 

For each type of membership functions, the corresponding -assessment values are 
input in a subjective manner by considering the calculated individual minimum 
and maximum of each of the objective functions. 

The shape of the exponential membership function for / 1 (x) is shown graphically 
with the GRAPH command. Thus the DM can visually check properties of his 
membership functions. 

Using the GO command, the fuzzy goal programming problem is solved for 
the initial goal membership values and the DM is supplied with the corresponding 
Pareto optimal solution. Since the DM is not satisfied with the current membership 
values, the DM updates his goal membership values. 

The same procedure continues in this manner, until the DM is satisfied with 
the current values of the membership functions. In this example, in the fifth iteration, 
a satisficing solution for the DM is obtained. 
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5. Conclusion 

In this paper, we have proposed an interactive fuzzy goal programming algorithm 
in order to deal with fuzzy goals of the DM in muliiobjective nonlinear programming 
problems. In our interactive scheme, after determining the membership functions 
for each of the objective functions, a satisficing solution for the DM can be derived 
by updating his goal membership values based on the current values of the mem­
bership functions together with the current values of the negative deviation variables. 
Furthermore, (M-) Pareto optimality of the generated solution in each iteration is 
guaranteed. Based on the proposed method, a time-sharing computer program 
has been written to facilitate the interaction processes. 

An application to the Bow River Valley water quality management problem 
has demonstrated the feasibility and efficiency of both the proposed algorithm 
and its corresponding interactive computer program under a hypothetical DM. 
Although the actual DM for the water quality management problem would of 
course select other values of the six objectives than the ones which were selected by 
the hypothetical DM used in this paper, the way of iterating and calculating is 
essentially the same. However, application to real-world problems must be carried 
out in cooperation with a person actually involved in decision making. Such ex­
periences may lead to revisions of the proposed algorithm and its computer 
program. 
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Interaktywne programowanie celowe w wielokryterialnych zadaniach 
nieliniowych i jego zastosowanie do sterowania jakoScil! wod 

Rozpatruje si~ zastosowanie rozmytego programowania celowego do rozwiqzania wielokry­
terialnych zadan programowania nieliniowego przy zalozeniu rozmytosci poszczeg61nych cel6w. 
Cele te sq specyfikowane interaktywnie przez podanie ich funkcji przynale±nosci. Nast~pnie roz­
wiqzywane jest odpowiednie zadanie rozmytego programowania celowego, kt6rego wynikiem jest 
rozwiqzanie optymalne w sensie Pareto. Kolejnym krokiem procedury interaktywnej jest uaktu­
alnienie funkcji przynaleznosci cel6w na podstawie otrzymanego rozwiqzania i otrzymanie nast~;p­
nego rozwiqzania. W ten spos6b mozna efektywnie wyznaczac rozwiqzania zadawalajqce ze zbioru 
optymalnego w sensie Pareto. Program komputerowy realizujl!CY przedstawionq metod\: zostal 
zastosowany do zadania sterowania jakosci~t w6d. 

lfJuepaKTHBHOe ~eJieBOe nporpaMMHpOBaHHe BO MHOrOKpHTCpllaJibHLIX 
HC,'JHHeUHbl'X 3a)J;a'laX H ero npHMeHeHHe K yJlpaBJICHHIO Ka'leCTBOM BO)J;bl 

PaccMarprmaercJI rrpHMeHeHRe He'feTKoro u;enenoro rrporpaMMnponaHRJI K pememno MHor o­
KpJnepHaJibHhiX 3a)l,a'f HeJllllieiffioro IIporpaMMI!pOBalU!JI IIpll npe,ll,IIOChiJIKe He'feTKOCTll OT)l,eJThHhJX 
u;enei! . 3TH IJ;eJill Ollpe)l,eJIJilOTCll ID!TepaKTlffiHO llOCpe)l,CTBOM liX !).>)'HKu;IDi: BHll,H)l,eHTHOCTiiJ. 3aTeM 
pemaercll coornercrnyrOJnaH 3a)l,a'fa He'ieTKoro u;enenoro rrporpaMMHponaHIDI, n pe3y,Thrar e 
'fero TionyqaeM pemeHHe, oTITHMaJibHoe n CMhiCJie Ilapero. Cne.zzy10ru;HM maroM IIHTepaKTHBHo i1: 
rrpone,ll,ypbr JIBJillercll aKryaJJH3awm !J?YHKUllli liHI.Ill)l,eHTHOCTll neneil: Ha ocHone rronyqeHRor o 
pcmelllill 11 nony'ielll!e cne.zzymmero pemelll!ll. TaKHM o6pa3oM MOIKHO l!).><jJeKTlffiHO onpe,ll,emJTh 
YAOBJieTBOpl!TeJibHhie pemelll!ll H3 MHO)!(eCTBa, OIITHMaJihHOrO B CMbiCJie IlapeTO. Bbi'iliCJIIITeJibHall 
rrporpaMMa, peaJJH3YJOmall npe,ll,cranneHHhlli Meron:, 61>ma HCIIOJib30BaHa n 3a)l,a'fe ynpanneHRll 
Ka'iOCTBOM BO)l,hl. 


