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This paper considers the use of fuzzy goal programming for the solution of multiobjective
nonlinear programming problems by considering that the decision maker (DM) has fuzzy goals
for each of the objective functions. The fuzzy goals of the DM are quantified by eliciting correspond-
ing membership functions through the interaction with the DM. After determining the membership
functions, if the DM specifies his goals in terms of membership values, the corresponding fuzzy
goal programming problem is solved and the DM is supplied with Pareto optimal solutions, Then,
by considering the current values of the membership functions together with the current values of
negative deviation variables, the DM responds by updating his goals in terms of membership values.
In this way a satisficing solution for the DM can be efficiently derived from among a Pareto optimal
solutions, On the basis of the proposed method, a time-sharing interactive computer program
is written and an application to water quality management is demonstrated together with some
computer outputs.

1. Introduction

In multiobjective nonlinear programming problems MONLP, thereis no “optimal
solution™ in which all objectives are simultaneously optimized due to an inherent
conflict between these objectives. Consequently, the aim in solving MONLP is
to find a compromise or satisficing solution of the decision maker (DM) from
a set of the Pareto optimal solutions.

Three most promising methodologies for dealing with MONLP problems which
have been proposed are:

(1) goal programming (e.g. [2—3], [8,9], [11]);
(2) interactive approaches (e.g. [1], [4—5], [14], [19], [21]);
(3) fuzzy programming (e.g. [7], [10], [15—17], [20]).
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The term goal programming, which assumes that the DM can specify his goals
for the objective functions appeared first in 1961 in Charnes and Cooper [2] in
order to deal with multiobjective linear programming (MOLP) problems. Sub-
sequent works on goal programming methods have been numerous, e.g., [3], [8, 9],
[11].

The term interactive approach, which assumes that the DM is able to give some
preference information on a local level, was first initiated by Geoffrion et-al. [4]
and further developed by many researchers, e.g., [1], [5], [14], [19], [21]. .

The term fuzzy programming, which assumes that the fuzzy goals of the DM
can be quantified by eliciting membership functions, was first introduced by Zimmer-
mann [20] for solving MOLP problems and further extended by several authors,
e.g., [71, [10], [15—17], [16].

Naturally, each of these approaches has its own advantages and disadvantages
relative to the other approaches. Therefore, in this paper, assuming that the DM
has fuzzy goals for each of the objective functions in MONLP problems, we present
an interactive fuzzy goal programming algorithm by incorporating into goal pro-
gramming attractive features from both the interactive approaches and fuzzy pro-
gramming.

After determining the membership functions for each of the objective functions
through an interaction with the DM, if the DM specifies his goals in terms of mem-
bership values, the corresponding fuzzy goal programming problem is solved and
the DM is supplied with a Pareto optimal solution. Then, by considering the current
values of membership functions together with the current values of the negative
deviation variables, the DM responds by updating his goals in terms of membership
values and a satisficing solution for the DM can be derived efficiently from among
Pareto optimal solution. On the basis of the proposed method, a time-sharing
interactive computer program is written in FORTRAN and its application to
water quality management is demonstrated along with some computer outputs.

2. Interactive fuzzy goal programming

In general, a multiobjective nonlinear programming problem (MONLP) is
represented as

min 7 (x) L (f; (%), f2 (%), s fi (x))‘"} )

subject to xe ¥ <E"

where fi, ..., fi are k distinct objective functions of the decision vector x and X
is a set of feasible constrained decisions. Here, it is assumed that all f, i=1,...,n
are convex and differentiatle and the constraint set X is convex and compact.

Fundamental to the MONLP is the Pareto optimality concept, also known as
noninferiority of solution. Qualitatively, a Pareto optimal solution of the MONLP
is one in which any improvement of one objective function can be achieved only
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at the expense of another. Mathematically, a formal definition of a Pareto optimal
solution to the MONLP is given below:

DeriniTiON 1. A decision x* is said to be a Pareto optimal solution to the
MONLP, iff there does not exist another xeX, such that f; (x)<f; (x¥), j=1,..., k,
with strict inequality holding for at least one i.

Usually, Pareto optimal solutions form sets of an infinite number of points,
and some kinds of subjective judgement should be added to the quantitative analyses
by the DM. The DM must select his compromise or satisficing solution from among
Pareto optimal solutions.

In order to determine a compromise or satisficing solution of the DM, there
are three major approaches, goal programming, interactive approaches and fuzzy
programming. Each of these approaches has its own advantages and disadvantages
relative to the other ones. Therefore, in this paper, we propose a new interactive
fuzzy goal programming method by incorporating into goal programming desirable
features of both the interactive approaches and fuzzy programming. In a mini-
mization problem, a fuzzy goal stated by the DM may be to achieve the value of
an objective function “‘substantially less’ than some value A. This type of statement
can be quantified by eliciting a corresponding membership [unction.

.In order to elicit a membership function y,, (x) from the DM for each of the
01"3_}6(!11\"6 functions f; (x), we first calculate the individual minimum f} min 4 nd maximum
S for each objective function f; (x) under given constraints. By taking into account
the calculated individua!l minimum and maximum of each objective function, the
DM must determine his subjective membership function s, (x) which is a strictly
monotone decreasing function of f;(x). Here, it is assumed that u (x)=0
if fi(x)2f and g, (x)=1 if f; (x)< /], where f? is a worst acceptable level for
fi(x) and f;! is a totally desirable level for f; (x) within /™ and f™**.

After determining the membership functions for each of the objective functions,
the DM is asked to specify his aspiration levels of goal attainment in terms of mem-
bership values, called goal membership values, for all the membership functions.
For the DM’s goal membership values fi,, i=1, 2, ..., k, the corresponding Pareto
optimal solution, which is in a sense close to his requirement is obtained by solving
the following fuzzy goal programming problem

; I

min d;

xEX ;2

subject to Uy, (x)—{—-d;"-—-d:’:ﬁn ! 2
d-, d¥ =0 1=1,2,... k
d-,dr 20

where d;” and d;' are respectively, the negative and positive deviation variables,
which provide us with a way to measure non-attainment of the goal membership
values. This particular formulation is called “one-sided™ fuzzy goal programming.
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The relationships between the optimal solutions of the fuzzy goal programming
problem and the Pareto optimality concept of the MONLP can be characterized
by the following theorem.

THEOREM 1. If x* is an optimal solution to the fuzzy goal programming probiem
with 0< p, (x*)<1 and d =0 holding for all i, then x* is a Pareto optimal solution
to the MONLP.

If x* is an optimal solution of (2), and if in Theorem 1 none of the sufficiency
conditions for the Pareto optimality are satisfied i.e., 3i: ,, (x*)={0, 1} or d;f =0,
then we can test the Pareto optimality for x* by solving the following problem:

k
max 5
1

xeX 3

subject to f; (x)-+s;=/; (x*), 5;=0 (i=1, ..., k)

Let * be an optimal solution to (3). If all s;=0, then x* is a Pareto optimal
solution. If at least one s; >0, it can easily be shown that X is a Pareto optimal solution.

So far we have considered a minimization problem and consequently assumed
that the DM has a fuzzy goal such as “f; (x) should be substantially less than a;”".

In the following, we consider a more general case where the DM has two types
of fuzzy goals, namely those expressed as ““f; (x) should be in the vicinity of 5,
(fuzzy equal) and ““f;(x) should be substantially less than &,” (fuzzy min). Therefore,
the problem to be solved is now:

fuzzy min f;(x) (iel)
fuzzy equal f;(x) (iel) @)
subject to xeX

where TUI={1,2, ..., k).

In order to elicit from the DM a membership function for a fuzzy goal like
“f; (x) should be in the vicinity of b,”, it is obvious that we may use different func-
tions for the left and right sides of b;. After determining the membership functions
for two types of fuzzy goals, if the DM specifies his goal membership values, the
fuzzy goal programming problem (2) is solved.

Now, we introduce the concept of M-Pareto optimal solutions which are defined
in terms of membership functions instead of objective functions.

DEerINITION 2. A decision x™* is said to be an M-Pareto optimal solution to (4),
iff there does not exist another such x e X that u;, ()= py, (x¥), i=1, ..., k, with
strict inequality holding for at least one i.

Note that the set of Pareto optimal solutions is a subset of that of M-Pareto
optimal solutions.

Using the concept of M-Pareto optimality, the following M-Pareto version of
Theorem 1 can be obtained under slightly different conditions.
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THEOREM 2. If x* is an optimal solution to (2) with d;" =0 holding for all i, then x*
is an M-Pareto optimal solution to (4).

Similarly to the minimization case, a numerical test of M-Pareto optimality for
x* can be performed by solving the following problem:

k
max 2 5
xeX i=1 ¥ (5)
subject to
t, ) =si=p1y, (%), 20 (i=1,.., k)

Let & be an optimal solution to (5). If all 5;,=0, then x* is an M-Pareto optimal
solution, If at least one 5;,>0, X becomes an M-Pareto optimal solution.

Following the above discussion, we can now present an interactive fuzzy goal
programming algorithm in order to derive a satisficing solution for the DM from
among the (M-) Pareto optimal solution set. The steps marked with an asterisk
involve an interaction with the DM. '

Step 1. Calculate the individual minimum and maximum for each objective function
under given constraints.

Step 2*. Elicit a membership function from the DM for each of the objective
functions.

Step 3. Setall the initial goal membership values equalto 1,i.e., f,=1(i=1,2, ..., k)

SteP 4. For the goal membership values specified by the DM, the corresponding
fuzzy goal programming problem (2) is solved and the (M-) Pareto optimality
test is performed, if necessary.

SteP 5% The DM is supplied with the corresponding (M-) Pareto optimal solution.
If the DM is satisfied with the current membership values of the (M-) Pareto optimal
solution, stop. Otherwise, the DM must update his goal membership values by
considering the current values of the membership functions together with the current
values of the negative deviation variables and return to Step 4. Here it should be
stressed for the DM that any improvement of one membership function can be
achieved only at the expense of at least one of the other membership functions.

3. An interactive computer program

Interactive fuzzy goal programming processes for multiobjective nonlinear
programming problems irclude eliciting a membership function for each of the
objective functions and goal membership values from the DM. Thus, an interactive
utilization of cemputer facilities is highly recommended. Based on the interactive
algorithm described above, we have developed a new interactive computer program.
Our progrem includes graphical representations by which the DM can portray
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the shapes of his membership functions, and he can promptly find incorrect assess-
ments or inconsistent evaluations revise them immediately and proceed to the
next stage more easily.

Our program is composed of one main program and several subroutines. The
main program calls in and runs the subprograms with commands indicated by the
user (DM). Here we give a brief explanation of the commands prepared in our
program.

(1) MINMAX: Displays the calculated individual minimum and maximum of

each of the objective functions under the given constraints.

(2) MF: Elicits from the DM a membership function for each of the

objective functions.

(3) GRAPH: Depicts graphically the shape of membership function for each

of the objective function.

(4) GO: Derives a satisficing solution for the DM from among the (M-)
Pareto optimal solutions by updating the goal membership
values.

(5) STOP: Exits from the program.

In our interactive computer program, the DM can select his membership function
in a subjective manner from among the following five types of functions; linear,
exponential, hyperbolic, hyperbolic inverse and piecewise linear functions. Then the
parameter values are determined through an interaction with the DM. Here, except
for the hyperbolic functions, it is assumed that u,, (x)=0if f; (x)<f? and Hy, (x)=1
if f; (®)=f}, where f? is a worst acceptable level f; (x) and f}' is a totally desirable
level for f; (x).

For the particular functions we obtain:

(1) Linear membership function:

tr, =11 &)=LV =11 (©)

The linear membership function can be determined by asking the DM to specit‘y
two points £ and f} within f™* and f™=.
(2) Exponential membership function:

s, G)=au [1=exp {=b (/i ) =St =} N

The exponential membership function can be determined by asking the DM to
specify three points /7, f-* and £} within f** and ™", where f represents the values
of f; (x) such that the value of membership function u,, (x) is a.

(3) Hyperbolic membership function:
s, (x)=(1/2) tanh ((f; (*)—b;) a))+(1/2). ()

The hyperbolic membership function can be determined by asking the DM to specify
two points f?° and £ within £ and ™",
(4) Hyperbolic inverse membership function:

#g, (¥)=a; tanh=* ((f; (x)—b,) @,)+(1/2) ®
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The hyperbolic inverse membership function can be determined by asking the DM
to specify three points /7, f?2° and f2-° within /™ and /™"
(5) Piecewise linear membership function:

tr, (D= D) ) fi G)=gul B f; )+ (10)

Here, it is assumed that g, (x)=t; f; (x)-+s, for each segment g, _; =</, (x) g
The piecewise linear membership function can be determined by asking the DM
to specify the grade of membership for each of several values of objective functions
within f™* and fmin,

4. An application to a water quality management problem

An application of the proposed method to the Bow River Valley water quality ma-
nagement problem was considered, formulated as a six-objective optimization task
(see for detail [6], pp. 187—209, [12, 13], [18]). It is concerned with pollution of an
artificial river basin, Bow River Valley on a stretch or 100 miles. The Pierce-Hall
Cannery, which is a source of industrial pollution is located near the head of the
valley. Ten miles downstream the city of Bowville with 250 000 inhabitants, and
seventy miles downstream from the cannery, the city of Plympton with 200 000
inhabitants are the sources of municipal waste pollution. In between, fifty miles
downstream from the Pierce-Hall Cannery is Robin State Park, and the state bound-
ary line is 100 miles downstream from the cannery.

Water quality is measured with respect to dissolved oxygen concerntration (DO),
and the industrial and municipal waste pollution is described by the number of
pounds of biochemical oxygen demanding material (BOD), which is identified as
the carbonaceous (BOD,) and nitrogenous (BOD,) material. The cannery and
the two cities already have primary treatment facilities which reduce the BOD
by 309 of their gross discharge. The cost of additional treatment facilities would
increase the tax rate in Bowville and Plympton and decrease the investment return
from the cannery.

The problem is formulated as follows:

The decision variables x;, x,, x5 represent the treatment levels of water discharge
at the Pierce-Hall Cannery, at Bowville, and at Plymton, respectively. The treatment
levels are specified in terms of the carbonaceous BOD, by the relation:

w;=0.39/(1.39 — x?

where Xx; is the proportion of the gross BOD, removed at location i and w, is the
corresponding value for BOD,.

The Bow River Valley Water Pollution Control Director (the DM in this problem)
is concerned with the following six objective functions:

fi (x)=4.75+2.27 (x; —0.3)

f2 (x)=2.0+0.524 (x4 —0.3)+42.79 (x, —0.3)0.882 (w; —0.3)+2.65 (w,—0.3)
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S5 (x)=5.14-0.177 (x, —0.3)+0.978 (x, —0.3)-+0.216 (w; — 0.3)4-0.768 (w.—0.3)

fa (x)=7.5—0.012 (59/(1.09 — x2)— 59)

J5(x)=0.0018 (532/(1.09 — x3)—532)

Je (x)=0.0025 (450/(1.09 ~ x2) —450
where f1, /2, /3 are the DO levels in mg// at Bowville, Robin State Park, and Plymp-
ton, respectively, f, is the percentage return on equity at the Pierce-Hall Cannery,
and f5 and f; are the additions to the tax rate at Bowville and Plympton, respectively.
Therefore, the objective functions fi, f5, f5 and f, should be maximized and the
objective functions f5 and fg should be minimized.

The DM must consider the constraint that the DO level at the state line must
be no less than 3.5 mg/l, which is represented by: 1.0--0.0332 (x; —0.3)--0.0186 (x,+
—0.3)+3.34 (x3—0.3)+0.0204 (w, —0.3)+0.778 (w, —0.3)+2.62 (w3 —0.3)=3.5
In addition there are upper and lower bounds on the decision variables: 0.3<x,;<
<1.0; i=1,2,3.

In the following, results obtained employing our computer program run under
TSS on ACOS-6 digital computer in the computer center of Kobe University are
explained using some computer outputs.

CoOrMAND 2
=MIRNMAK
INDIVIDUAL MINIMUM AND MAXIMUM
MIN z MAX

FC 11 ¥ 0.473000000+01 L 0. 633700000+01
FC 23 4 0.200000000+01 . 0.67%220010+01
F{ 32 L 0.510000000+01 5 0.4659730010+01
F{ 43 3 0.3413361%0+00 ? G.750000000+01
F£ 53 . —0.319433470-07 ' 0.9682394600+01
F( &2 £ 0.957705220+00 0. 113749950+02

Iustration 1

Using the MINMAX command, the calculated individual minimum and
maximum of each of the objective functions f; (%), f3 (%), f3 (x), fa (x), f5 (%), fs (x)
are displayed.

COMMAND &

=MF

INPUT THE OBJECTIVE FUMCTION NUMBER:

=1

INPUT FUZZY GOAL®

(1) FUZZY MAX
(2) FUZZY MIN
(3} FUZIY EQUAL

=g

DgE;OU WANT LIST OF MEMBERSHIP FUNCTION TYPE 7

LIST OF MEMBERSHIP FUNCTION TYPE

€1) LINEAR

€2) EXPONENTIAL

€3) HYPERBOLIC ;
€4) HYPERBOLIC INVERSE
(5) PIECEWISE LINEAR

Igpur MEMBERSHIP FUNCTIOM TYPE:

INPUT THREE POINTS(F1:F2:F3) SUCH THAT
MIF1)=0.0 ¢ F1 : WORST ACCEPTABLE LEVEL )
M(F21=0.5%

M(F3)=1.0 ¢ F3 & TOTALLY DESIRABLE LEVEL )

=4.75 6.0 6.33%

ANOTHER MSET 7

Ilustration 2
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1.00 ; . ; ”
k3
x
050 * -
x
x
x
x
x
x
(3 Ol £ I { {
475 515 555 595 635 675
-[10E 0]

Hlustration 3

COMMANDS
=G0

INPUT YOUR GOALS (BETHEEN O aND 1) FOR EACH OF THE MEMBERSHIP
FUNCTIONS

=1.0 1.0 1.0 1.0 1.0 1.0
¢ FRACTIONAL CHANGE IN OBJECTIVE 2 .

< ITERATION 1 >

MINIMIZATION OF THE SUM OF THE NEGATIVE
DEVIATIONS FOR YOUR GOALS

MEMBERSHIP | OBJECTIVE FUNCTION
M(F 1) ! 0.45070464940+00 ! FC 1) ! 0.5950795464870+01
M(F 2) ! 0.38421250130+00 ! FC 2) ! 0.5078305304D+D1
M(F 3) ! 0.64480702&40+00 ! FC 3) ! D.40952161190+01
MCF 43 ' D.728941598404+00 ! F( 4) ' 0.484502313170+01
M(F 5) ! 0.58729143750+00 ! F( 5) ! D.2248719081D+01
MF &) ! 0.&64521748470400 ! FC &) ' D.13006497570+01
NEGATIVE DEVIATION : POSITIVE DEVIATION
D¢ 1)= ! 0.54929551310+00 ! OC 1)+ ! D
DL 2)= ! 0.61379562790+00 ! D¢ 2)+ ' O.
D¢ 3y~ ! D0.33519734637D0400 ! DC B+ ! O.
DE 4)= 1 D.27105749110400 ! D 4)+ ¢ O,
D¢ 5)= ! D.412617475%0+00 ! DC S)+ ' O.
DC &)= ! D.3547833255D0+00 ! D¢ &)+ ' 0.
SUM D- ! 0.253474&7970+01 ! SUM D+ ! O.
X¢ 1)= D.82898531810+00 ¥¢ 2)= 0.8B8957281980+00

X¢ 3)= 0.79133227950+00

ARE YOU SATISFIED WITH THE CURRENT VALUES OF THE MEMBERSHIP
FUNCTIONS?

=NQ
INPUT YOUR GOALS (BETWEEN O AND 1) FOR EACH OF THE MEMBERSHIP
FUNCTIONS

=0.8 0.8 0.8 0.8 0.8 0.8

Hlustration 4a. lteration 1.

The MF command is utilized to subsequently determine the membership func-

tions for each of the objective functions f (x), f5 (%), f5(x), fa (%), [f5(x), fo(x)
Here the interaction with a hypothetical DM establishes the following membership
functions and corresponding assessment values.

8
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< ITERATION 5 >

MINIMIZATION OF THE SUM OF THE NEGATIVE
DEVIATIONS FOR YOUR GOALS

MEMBERSHIP . OBJECTIVE FUNCTION
MIF 12 ! 0.5448000922D+00 t Bf %% ! 0.40&600732180401
MOF 2y ¢ 0.37036442080+00 ' FC 20 ! D.50340574910+01
MCF 32 0.&65311201490+00 ! FC 3) ! 0.&60777086860+01
M(F 4) ! 0.50000000000+00 ! FC &) ! 0.60000000000+01
MOF 5) ! 0.6770714425D+00 ! FC 533 ! D0.19468943620401
MCF &) ! 0.460000000000+00 ! FC &) ! DO, 13574575910+01
NEGATIVE DEVIATION : POSITIVE DEVIATION
D¢ 12— ! 0.3319970784D-01 LI A 5SS R«
D¢ 2¥= 1 0.1295502554D400 ! DC 2)+ | O,
D¢ 3)— ' D.4689592337D0-01 ! D¢ 3)+ ! O,
D¢ 4=+ 0. LA v S B S Y
0O¢ 53—~ ' D.22828£54870-01 L G- S S &
bt 3= 1 O. P oC &)+ ! 0.
5UM D~ ! D.23257474370+00 ! SuM D+ ! 0.
TXC 1)m 0,87T124T674D+00 Xe 2= 0,.87193418070+00

¥{ 3d= 0.79801031910+00

ARE YOU SATISFIED WITH THE CURRENT VALUES OF THE MEMBERSHIP
FUNCTIONS?

=YES

THE FOLLOWING VALUES ARE YOUR SATISFICING SQOLUTION:

MEMBERSHIP g OBJECTIVE FUNCTION
MIF 1) = Q0.54480009220+400 ! FC 1) = 0.6060073218D+01
MIF 2) = 0.37034£44308D+00 ! F¢ 23 = 0.50340574910+01
MCF 33 = (0.465311204450+00 ! F¢ 3) = 0.60777D856856D+01
MIF &) = 0.50000000000+00 ! FC{ 4) = 0.40000000000+01
MIF 5 = D.8770714&6230+00 ! Fi 5) = 0,19468943620+01
MiF &) = 0.46000000000D+00 ! FC &) = 0.13574394710+01
Xt 1)= D.B771247674D+00 ¥{ )= 0.87195418070+00

X{ 3)= D.77801031910+00

Illustration 4b. Continuation of illustration 4a. Iteration 5.

f1: exponential, (9,193, f1)=(4.75, 6.0, 6.339),

fa: linear, (f3, f3)=(0.4, 6.792),

fi: linear, (f3,f3)=5.1,6.597),

Jfa: hyperbolic, (f22°, f4°)=(5.5, 6.0),

fs: exponential, (3, 32, f3)=(.5, 2.0, 0.0),

fe: exponential, (f2, 22, £1)=(7.0, 1.5, 0.958).

For each type of membership functions, the corresponding assessment values are
input in a subjective manner by considering the calculated individual minimum
and maximum of each of the objective functions.

The shape of the exponential membership function for f; (x) is shown graphically
with the GRAPH command. Thus the DM can visually check properties of his
membership functions.

Using the GO command, the fuzzy goal programming problem is solved for
the initial goal membership values and the DM is supplied with the corresponding
Pareto optimal solution. Since the DM is not satisfied with the current membership
values, the DM updates his goal membership values.

The same procedure continues in this manner, until the DM is satisfied with
the current values of the membership functions. In this example, in the fifth iteration,
a satisficing solution for the DM is obtained.
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5. Conclusion

In this paper, we have proposed an interactive fuzzy goal programming algorithm
in order to deal with fuzzy goals of the DM in multiobjective nonlinear programming
problems. In our interactive scheme, after determining the membership functions
for each of the objective functions, a satisficing solution for the DM can be derived
by updating his goal membership values based on the current values of the mem-
bership functions together with the current values of the negative deviation variables.
Furthermore, (M-) Pareto optimality of the generated solution in each iteration is
guaranteed. Based on the proposed method, a time-sharing computer program
has been written to facilitate the interaction processes. _

An application to the Bow River Valley water quality management problem
has demonstrated the feasibility and efficiency of both the proposed algorithm
and its corresponding interactive computer program under a hypothetical DM.
Although the actual DM for the water quality management problem would of
course select other values of the six objectives than the ones which were selected by
the hypothetical DM used in this paper, the way of iterating and calculating is
essentially the same. However, application to real-world problems must be carried
out in cooperation with a person actually involved in decision making. Such ex-
periences may lead to revisions of the proposed algorithm and its computer
program.
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Interaktywne programowanie celowe w wielokryterialnych zadaniach
nieliniowych i jego zastosowanie do sterowania jakoscia wod

Rozpatruje sig zastosowanie rozmytego programowania celowego do rozwiazania wielokry-
terialnych zadan programowania nieliniowego przy zalozeniu rozmytosci poszczegoblnych celow.
Cele te sg specyfikowane interaktywnie przez podanie ich funkcji przynaleznosci. Nastepnie roz-
wigzywane jest odpowiednie zadanie rozmytego programowania celowego, ktorego wynikiem jest
rozwiazanie optymalne w sensie Pareto. Kolejnym krokiem procedury interaktywnej jest uaktu-
alnienie funkcji przynaleznosci celdéw na podstawie otrzymanego rozwiazania i otrzymanie nastep-
nego rozwiazania. W ten sposob mozna efektywnie wyznaczac¢ rozwiagzania zadawalajace ze zbioru
optymalnego w sensie Pareto. Program komputerowy realizujacy przedstawiona metode zostal
zastosowany do zadania sterowania jakoscia wod.

HHTepﬂKTIIBHOe HejieBoe nporpaMMHpoBanye BO MHOIORPHTEepHAIBHBIX
HeJHHeilHBIX 3a/1a4aX H ero nNpHMEHEHHE K yIPABJCHHIO Ka4eCTEOM BOJLI

PaccmatpuBaeTcsl MPHMEHEHHE HEYETKOIO LENASBOr0 MPOrpaMMHPOBAHEA K PEMEHHIO MHOTO-
KPHTEP MaNBHEIX 33144 HETMHEHHOTO MPOrpaMMHPOBAHMSA IPH NPEANOCEUIKE HEYETKOCTH OTAETEHBIX
nesieii. DTH LIETH ONPEAeNsOTCS HATEPAKTHEHO MOCPEACTEOM HX (DYHKIMIE MHUMIEHTHOCTH. 3aTem
pelaeTcs COOTBETCTBYIOINASA 3ajava HedYeTKOro UeJIeBOr0o MporpaMMHEpPOBAHHA, B pe3y/IbTaTe
Hero mojy4aeM pelleHHe, ONTUMAaNbHOe B cMbicie Tlapeto. ClenyroimEM IIaroM HWHTEPAKTHBHOI
NpOLEeAYPBl SBIACTCA AKTYATM3ALMH GYHKUMH WHUWISHTHOCTH LieNieil Ha OCHOBE TMOJYYEHHOTO
PCINEHH S H NOJy4eHHe creayiounero penienns. TakuM obpazoM MOXHO 3QPEKTHBHO ONpelesisnTs
YIIOBJIE TBOPHTENLHEBIE PEIieHHs W3 MHOXKeCTBa, OIITHMANBHOTO B cMBIcHe [lapero. BerucnuTensnas
NpOTpaMMa, PeaM3yIoNias NPEeACTABICHHBIH MeToxd, Oblia MCIOML3OBAHA B 3a0a4¢ YNPABIEHHS
Ka4eCIBOM BO/IBIL.




