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This paper deals with fuzzy optimization problems. A fuzzy mathematical programming
problem is introduced and, as a particular case, a fuzzy linear mathematical programming problem
is studied. Its basic formulations, as well as fuzzy versions of the transportation problem, vector-
maximum problem and duality theory are discussed.

1. Introduction

In this paper we introduce basic concepts of Fuzzy Mathematical Programming
(FMP) problems, and describe fundamental results of Fuzzy Linear Mathematical
Programming (FLP). The main aim of this paper is to bring out applications related
to the FLP problem. We consider applications to the Fuzzy Vectormaximum (FV)
problem, Fuzzy Transportation (FT) problem and Fuzzy Duality Theory (FDT).
Finally, references in these topics are given.

Fuzzy mathematical programming problems

Suppose there is a classical mathematical programming problem,

Max: f(x)
s.t.: g (X)<b;, iel={l,.., m} (1)
x=0

where
2, fe€R(R)={h|h: R">R}, iel
and xe R", be R™.
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Three possible fuzzy versions can be adopted to the problem (1)
Max: f(x)

st g (x)<b,, iel (2)
xz0
or
Max: f(x)
st g (X)shy, iel (3)
x=0 '
or, finally,
Max: f(x)

st.: g ()b, iel 4)
x=0

3

where the symbol “~° indicates the fuzziness in either the objective, or in the
constraints or, both in the objective and in the constraint set.

Any of these three problems is called FMP problem and they can be interpreted
in the following way.
a) Problem (2) is a FMP problem with a fuzzy objective, i.e., the decision-maker
has a fuzzy set of objective functions such that

po: RIRTS[0,11

is a membership function (which be determines) giving the accomplishment degree
of the decision-maker’s aspirations for any fe % [R"].
b) Problem (3) is a FMP problem with a fuzzy constraint set. Thus, the existence
of membership functions

. gt R-[0,1], iel
is assumed, which is interpreted as if the decision-maker were prepared to tolerate
certain violations in the accomplishment of the constraints, i.e., he permits g, (x)>b,
with a degree u; (g; (x), b)) € [0, 1].
¢) Finally, problem (4) is a mixture of (2) and (3) with fuzzification of both objective
and constraint sets, Due to this fact, only FMP problems (2) and (3) shall be con-
sidered in further text.

Solving FMP problems

To show the solution method for FMP problems, the linear case is considered,
In this case (2) becomes
i Max: cx

—~

s.t.: Ax<b ©)
x=0

where c, b and 4 are (1 Xn), (mx 1) and (m X n) matrices, respectively, ard

Ho: Rn_'[0$ l]
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is the membership function of the fuzzy objective. (Notice that in the linear case
A [R"]=R") It can be shown, [31], that the existence of y,(-) is equivalent to
the existence of n membership functions,

Hoj: R—[0,1], jeJ={l,..,n}

defined for each component c;, j€J, of ¢ € R", respectively.

Thus by considering the (1 — a)-cuts, a € [0, 1], of the fuzzy objective, and assum-
ing the existence of inverse functions ¢g; (), j €J, for each u,;, respectively, it can
be proved, [31], that a fuzzy solution to (5) can be found from the optimal solution
of the parametric linear programming problem,

Max: p(l—a)x
s.t.: Ax<b (6)
x=0, ae[0, 1]

where ¢ (*)=[@o1 (*); s Poa (*)]-
On the other hand, for the linear case the problem (3) becomes

Max: cx
s.t.: Ax<b (7
x=0

Now,
Mi: R—=[0,1], ierl

are membership functions of the fuzzy constraints.
Taking into account that the a-cuts of the fuzzy constraint set are

{xER"[ﬂ‘ (Alxx bl)?a! EEI}

a fuzzy solution to (7) can be found from the optimal solution of the parametric
linear programming problem,

Max: ex
st.: Ax<y (a) (8)
x>0, a€0,1]

where ¢ (*)=[¥s (*), .-, ¥» (*)] is an n-vector defined by the inverse (-) ’s.
Let us notice that both problems (6) and (8) are linear for any form of ¥, i.e., x;.
In the following, the presented parametric approach will be applied to solution
of some “classical” fuzzy problems in O.R.
Fuzzy vectormaximum problem
In the first approach, a Fuzzy Vectormaximum (FV) problem can be defined as
Max: z (x)=[z; (x), -.., 2, (x)]

s.t.: Ax<b )
x=0

where “~" means “fuzzy optimizztion’ in the sense that all the p objective linear
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functions are characterized by corresponding membership (or performance) func-
tions g [z; (¥)], ie P={1, .., p}.

FV problem was first mentioned by Zimmermann in [36], other important con-
tributions to this topic are [3] and [11].

In [29] a parametric approach was shown. This approach is valid for linear
as well as non-linear functions u, (-), i € P. Moreover, it permits to find a fuzzy
solution that produces, as a particular value, the solution to (9) proposed in [11].

Thus, with notation

lo (—’f)=[ﬂ1 21 X)), <o 11, [2, (x)]]

(9) becomes
Max: a
st i lz; (X)]= @, ieP
i
x=0

Notice that if the constraints
i [z ()], ieP

are considered as the a-cuts of the objective functions, a fuzzy solution to (9) can be
found from
Max: g [z (X)]
st i [z ())=a, i€ P—{k}
Ax<b
x=0, ae[0,1]

an

It can be proved that if u; (- )’s, i € P, are continuous and strictly increasing func-
tions, then (11) can be solved by means of

Max: z (x)
st.: z; (¥)2f; (a), ie P—{k}
Ax<b 12

x=0, a0, 1]

where, as usual, f; (-) are inverse functions of g, (-), ieP.

A fuzzy solution to (9) is obtained from the optimal solution of the parametric
linear programming problem (12). Moreover, [29], if x (a), a € [0, 1], is an optimal
soluticn to (12), Leberling’s solution of (9) is x (&), where & = [0, 1] is the value
that solves

U [z (x (a)]=a (13)
For instance, consider the same example as in [11],

Max: z (x)=(—x;42x,, 2x;+x,)"

14
xeX (14




Applications of fuzzy optimization 233

where,
X={x€ R?*|—x;+3x,<21, x;+3x,<27, 4x,+3x,<45, 3x,+x,<30, x,>0}
and,
Hy (x)=(1/2) tanh [(—x;+2x,—5.5) (6/17)]+(1/2)
Hz (x)=(1/2) tanh [(2x;-}x,—14) (6/14)]-+(1/2)

are the membership functions of the fuzzy objectives.
Due to (12), we obtain

Max: —x;4+2x,
s.t.: 2xy+x,=144+(7/6) In [¢/(1 — a)]
xekX, ac[0,1]

whose solution is

x; (a)=34(7/10) In [a/(l —a)] 2 (0.5, 0.986] (15)
x; (@)=8—(7/30) In [¢/(1—a)]
with

4=0.95
Thus, by substituting & into (15), the solution proposed in [I1] is obtained, i.e.

£,=5.03, £,=17.32 (16)

2. Fuzzy transportation problem

The classical transportation problem occurs if a homogeneous product is to be
shipped from m origins with supplies ay, ..., a, to n—1 destinations with demands
by, ..., b,_ 4, so that the total transportation costs be minimized. It is assumed that
the total supply is greater than or equal to the sum of the demands and that the
costs ¢;; of shipping one unit from the ith origin to the jth destination is independent
of the amount of goods shipped from origin 7 to destination j, i.e., the transporta-
tion problem can be formulated as follows,

Min: cx
st.: > xy=2by, jeJ'={l,..,n—1}
ier
]
> xy<a, iel={l,..,m} (17
e

xlj; 05 (fj) € IXJ,:

with
Naz Db (18)
iel jed’

as a feasibility condition.
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A possible fuzzy version of (17), the one proposed in [20], is

Min: ecx
st Y x;2b, jelt
iel
2 xu{,aﬁ, iel (19)

jeJt’
x;;?o (U}EIXJ’

where u, (), jeJ’, and y; (), i€l, are the respective membership functions of
the constraints.

If (18) holds and the membership functions are continuous and strictly mono-
tonic (decreasing for i € I and increasing for jeJ') it can be proved, [30], that

__>_,_; P1 (ﬂ)? JZ.:’ #IJ (a)! aE [0, 1] (20)

where ¢, (+), i€, and ; (), jeJ’, are the respective inverse functions of g, (-),
iel, and y; (), jeJ'

Therefore, in accordance with (7) and (8), the fuzzy transportation problem (19)
can be solved by means of the classical parametric transportation problem,

Min: ex
st Y xy<ei(a), iel
JeJ _ @1)

> x>y (a), jel

iel

x(jaos (g)EIxJ‘: a€ [0! 1]

If, in order to get Zg, (a)=Z, (a), an n-th dummy destination is introduced, (21)
~ becomes,

Min: cx
st.: 3 xy=g¢;(a), il
i (22)

Z; xy=y;(a), jeJ={l,..,n}
i€
x;20, () eIxJ, ael0,1]

Now (22) can be solved as a classical parametric transportation problem giving
a fuzzy solution to (19). This is illustrated with the following example,

4 5 2 1 A (8, o0, 5)
6 2 4 3 A (6, , 3) -
3 1 1 1 A(5, 0, 1) @3)

A4,1,00) A(52,0) A(6,3,0) A4,3, )

where A (x, x,0) and A (x, o0, X} are triangular shaped membership function as
it is shown in Figure 1.
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% X+X X=X

*

Fig, 1. Shapes of membership functions of the example

¥ 'By introducing the 5-th dummy destination with its membership function
A (0, co, 18) and applying (22), one obtains

| 4 5 2 1 0 13—5a
6 2 4 3 0 9—3a
3 1 1 1 0 6—a
34+a 342a 343e¢ 143e¢ 18—-18a

where

Z‘,‘ @i (a)=;’ ¥;(a), a€l0,1]

The optimal solution that provides a fuzzy solution to (23) is,

34-a 6a 14-3a 9—15a
9—3a
3+2a 3—3a
ae [0, 3/5]
34a 9—90q 14-3a
—9+15a 18—18a
12—13a¢ | —642a
a€[3/5,12/13]
3+a —3+4a 13—10a
34-2a — 12413 | 18—18«
6—a

By solving (13) with the performance function used in [20]:

Ho (ex)=(45—cx)/10

35<ex<45

ae[12/13, 1]

the point-wise solution to (23) obtained in [20] can be found.

Notice that from these results potential applications to other problems can
‘be -attempted, as, for instance to the assignment problem. Moreover. a fuzzy
transportation problem with a fuzzy objective can be studied, toco.

(24)
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3. Duality in fuzzy linear programming

It is well known that a fuzzy mathematical programming problem is a particular
case of the general fuzzy decision problem. Taking this into account it becomaes
clear that the objectives and constraints caun be treated identically in the formula-
tion of a decision, i.e., in the resolution of a FMP problem. This point of view
can be understood in the sense that the fuzzy objective and fuzzy constraint are
dual concepts.

More precisely, it can be shown, [31], that the dual of a FMP problem with fuzzy
constraints is a FMP problem with fuzzy objective, both having the same fuzzy
solution, and conversely.

To clarify these considerations about fuzzy duality, the following easy example
is developed.

Consider the following FLP problem,

Max: le +6x:
s.t.: 5x;+3x,<30

x1+3X2$’.8 (25)
.1"';0
with the membership functions,
1y (5x;1+3x5, 30)=(36—5x, —3x,)%/36  if 30<5x,+3x,<36 26)
1 (g -3x5, 18)=(23 —x; —3x,)?/25 if 18<x;4-3x,<23
taking on the values 0 and 1 outside the above intervals, as usually.
Due to (7) and (8), one obtains,
Max: 8x,+6x,
s.t.r 5x+3x,<36—6 Yo
1 2 [/_ @7
X1+3x%,<23-5ya
x;=0, a0, 1]
that is, a classical parametric linear programming problem whose dual is
Min: (36—6y/a) u;+(23=5y/a) u,
R i3
S 5331_]"“2?8 (28}

3“1‘!‘3“2;6
ael0, 1], 4,30

Introducing notation
¥; (B)=(36—61/1—5)
¥2 (B)=(23-5y1=§). B=1~q, a0, 1]

one can interprete these functions as the inverses of the membership functions
of a fuzzy objective in (28). Thus, this problem can be rewritten as
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Min: cu
s.t.: Suy+u,=8
3u,+3u,>6 (29)

f (c)=1=p, i=1,2
ael0,1], x,20, ¢c;e R, i=1,2
or, equivalently,
Min: cu

s.t.: Suy+u;=8 (30)
3“1 "5'3!‘2 = 6
;=0

with (26) being membership functions of the objective.

Notice that (25) is an FLP with fuzzy constraints while (30) is an FLP with
a fuzzy objective characterized by the membership functions of (25), and vice versa.

On the other hand, if (27) is solved,
xy (a)=(65—5y/a)[20, x, (@)=(79—19 y/a)/12, ac [0, 1]

is obtained, and therefore,

z [x (a)]=(131-23)/a)/2, a€[0,1]
Henee, the fuzzy solution to (27) is,

Q={x; (131 -2x)*/529: x € [54, 131/2]} (30
If (30) is solved by means of (28), one obtains

uy=3/2, u;=1/2, w(W)=(131-23 y/«)/2, a€[0, 1]

which produces, exactly, the fuzzy solution (31).
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Zastosowania optymalizacji rozmytej w badaniach operacyjnych

Artykul dotyczy zadan optymalizacji rozmytej. Sformulowano w nim zadanie rozmytego
programowania matematycznego, przy czym analizowany jest jego szczegblny przvpadek, tj. roz-
myte programowanie liniowe. Rozwaza sig zaréwno ogdlne sformutowanie zadania rozmytego,
programowania liniowego, jak i w wersji rozmytej, takie jego przypadki jak: zadanie transportowe,
zadanie maksymalizacji wektorowej, a takze teorig dualnosci.

Hcnomms3oBanie HeweTKOH ONTHMHIAWHN B ONEPAHOHMBIX
HCC/IeA0BARHIX

CraTes KacaeTcsa 3agaq HEYeTKOH ONTHMHA3AIHA. (DOPMYII'E{DYETCH 330443 HeYSTKOro Marema-
THYECKOTO NPOTPaMMHEDPOBAHHAS, UPHIEM aHATH3APYyeTCca ocoObI chmydaii, T.e. HeUYeTKoe NHEHEHHOe
nporpaMMEpoBaHAe. PaccMaTpreaercs kak obmas dopMymMpopra 3aJa¥d HEYeTKOro JHHeiHOro
OporpaMMHpOBAHHS, TAK M B HEYETKOM BapHAHTE CIyYall TPaHCIIOPTHOH 3afavd H 3a7a¥d Bek-
TOPHOH MaKCHAMH3AIMH, @ TAKKE TEODHH IyalbHOCTH.







