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This paper deals with fuzzy optimization problems. A fuzzy mathematical programming 
problem is introduced and, as a particular case, a fuzzy linear mathematical programming problem 
is studied. Its basic formulations, as well as fuzzy versions of the transportation problem, vector­
maximum problem and duality theory are discussed. 

1. Introduction 

In this paper we introduce basic concepts of Fuzzy Mathematical Programming 
(FMP) problems, and describe fundamental results of Fuzzy Linear Mathematical 
Programming (FLP). The main aim of this paper is to bring out applications related 
to the FLP problem. We consider applications to the Fuzzy Vectormaximum (FV) 
problem, Fuzzy Transportation {FT) problem and Fuzzy Duality Theory (FDT). 
Finally, references in these topics are . given. 

Fuizy mathematical programming problems 

Suppose there is a classical mathematical programming problem, 

where 

Max: f(x) 
s.t.: gi(x)~b1 , iEJ={l, ... ,m} 

x~O 

(1) 
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or 

Three possible fuzzy versions can be adopted to the problem (1) 

Max: f(x) 

s.t.: g1 (x)~b" i e I 
x~O 

Max: f(x) 
s.t.: g• (x)~b" i e I 

x~O 

or, :finally, 
Max: f(x) 

s.t.: g1 (x)~b" iei 
x~O 

12) 

. (3) 

(4) 

where the symbol ",...," indicates the fuzziness in either the objective, or in the 
constraints or, both in the objective and in the constraint set. 

Any of these three problems is called FMP problem and they can be interpreted 
in the following way. 
a) Problem (2) is a FMP problem with a fuzzy objective, i.e., the decision-maker 
has a fuzzy set of objective functions such that 

f.lo: [JJt [R·]~[o, 1] 

is a membership function (which be determines) giving the accomplishment degree 
of the decision-maker's aspirations for any f e fA [R•]. 
b) Problem (3) is a FMP problem with a fuzzy constraint set. Thus, the existence 
of membership functions 

p1 : R~[o, 1], iei 

is assumed, which is interpreted as if the decision-maker were prepared to tolerate 
certain violations in the accomplishment of the constraints, i.e., he permits g1 (x)>b1 

with a degree u1 (g1 (x), b1) e [0, 1]. 
c) Finally, problem (4) is a mixture of(2) and (3) with fuzzification of both objective 
and constraint sets. Due to this fact, only FMP problems (2) and (3) shall be con­
sidered in further text. 

Solving FMP problems 

To show the solution method for FMP problems, the linear case is considered. 
In this case {2) becomes 

Max: ex 

s.t.: Ax~b 
x~O 

where c, band A are 0 xn), (m X 1) and (m X n) matrices, respectively, ar.d 

llo: R"-+ [0, 1] 

(5) 
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is the membership function of the fuzzy objective. (Notice that in the linear case 
~ [Rn]=R") It can be shown, [31], that the existence of llo ( ·) is equivalent to 
the existence of n membership functions, 

llo1 : R---+[0, 1], j E J={l, ... , n} 

defined for each component e1, j E J, of e ERn, respectively. 
Thus by considering the (1- a)-cuts, a E [0, 1], of the fuzzy objective, and assum­

ing the existence of inverse functions rp01 ( • ), j E J, for each lloi> respectively, it can 
be proved, [31], that a fuzzy solution to (5) can be found from the optimal solution 
of the parametric linear programming problem, 

Max: tp (l-a) x 
s.t.: Ax~b 

x~O, a E: [0, 1] 

where tp ( • )= [tpol ( · ), ... , t'f'on ( • )]. 

On the other hand, for the linear case the problem (3) becomes 

Max: ex 
s.t.: Ax;:5b 

x~O 

Now, 
Ill: R--.[0, 1], i E I 

are membership functions of the fuzzy constraints. 
Taking into account that the a-cuts of the fuzzy constraint set are 

{x ERn lilt (A1 X, b1)~ a, i E /} 

(6) 

(7) 

a fuzzy solution to (7) can be found from the opti~al solution of the parametric 
linear programming problem, 

Max: ex 
s.t.: Ax~lft(a) 

x~O, a e [0, 1] 

where 1ft ( • )=[1/td · ), ... , Vtn ( • )] is an n-vector defined by the inverse ( ·) 's. 

(8) 

Let us notice that both problems (6) and (8) are linear for any form of lft1, i.e., Ill• 
In the following, the presented parametric approach will be applied to solution 

of some "classical" fuzzy problems in O.R. 

Fuzzy vectormaximum problem 

In the first approach, a Fuzzy Vectormaximum (FV) problem can be defined as 

Max: z (x)=[z 1 (x), ... , z, (x)] 

s.t.: Ax~b 
x~O 

(9) 

where ""'" means "fuzzy optimiztt tion" in the s~nse that all the p objective linear 
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functions are characterized by corresponding membership (or performance) ·func­
tions fl; [z; (x)], i E P={l, ... ,p}. 

FV problem was first mentioned by Zimmermann in [36], other important con­
tributions to this topic are [3] and [11]. 

In [29] a parametric approach was shown. This approach is valid for linear 
as well as non-linear functions u; ( · ), i E P. Moreover, it permits to find a fuzzy 
solution that produces, as a particular value, the solution to (9) proposed in [1 1 ]. 

Thus, with notation 

(9) becomes 

flo (x)=[fll [zl (x)], ... , /ip [zp (x)l] 

Max: a 
s.t.: t/; [z; (x)];;;, a, i E P 

Ax~b 

x;)oO 

Notice that if the constraints 

fl; [z; (x)];;;, a, i E P 

(10) 

are considered as the a-cuts of the objective functions, a fuzzy solution to (9) can be 
found from 

Max: fik [zk (x)] 
s.t.: J.1; [z; (x)];;;,a, iEP-{k} 

Ax~b 

x;)oO, a E [0, 1] 

(11) 

It can be proved that if u; ( • )'s, i E P, are continuous and strictly increasing func­
tions, then (11) can be solved by means of 

Max: zk (x) 
s.t.: z; (x);;;,j; (a), iEP - {k} 

Ax~b 

x;)oO, a E [0, I] 

where, as usual, /;. ( · ) are inverse functions of t/; ( · ), i E P. 

(12) 

A fuzzy solution to (9) is obtained from the optimal solution of the parametric 
linear programming problem (12). Moreover, [29], if x (a), a E [0, 1], is an optimal 
solution to (12), Leberling's solution of (9) is x (a), where a E [0, 1] is the value 
that solves 

flk [zk (x (a)]=a 

For instance, consider the same example as in [11], 

Max: z (x)=( -x1+2x2 , 2x1+x2)' 

XEX 

(13) 

(14) 
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where, 

and, 

fh (x)=(1/2) tanh [( -x1 +2x2 - 5.5) (6/17)]+(1/2) 

f-l 2 (x)=(1 /2) tanh [(2x1 + x 2 -14) (6/14)]+()/2) 

are the membership functions of the fuzzy objectives. 
Due to (12), we obtain 

Max: -x1 + 2x2 

s.t. : 2x1 +x2 ?= 14+ (7/6) In [a/(1 - a)] 
X EX, a E [0, ] ] 

whose solution is 

with 

x 1 ( a)=3+(7/10) In [a/(1- a)] 

x 2 (a)=8 -(7/30) In [a/(1 - a)] 

&=0.95 

a E [0.5, 0.986] 
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(15) 

Thus, by substituting & into (15), the solution proposed in [11] is obtained, i.e. 

x1 =5.03, x2=7.32 (16) 

2. Fuzzy transportation problem 

The classical transportation problem occurs if a homogeneous product is to be 
shipped from m origins with supplies a1 , ... ,am to n -1 destinations with demands 
ht. ... , b,_ ~> so that the total transportation costs be minimized. It is assumed that 
the total supply is greater than or equal to the sum of the demands and that the 
costs cu of shipping one unit from the ith origin to the jth destination is independent 
of the amount of goods shipped from origin i to destination j, i.e., the transporta­
tion problem can be formulated as follows, 

Min: ex 
s.t.: .2; xu?=bi, jEJ'={I, ... , n-1} 

iE[ 

.2; xu~a;, i E 1={1, ... ,m} 
(17) 

jEJ 

Xu;;il=O, (ij) E l XJ', 

with 

{18) 

as a feasibility condition. 
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A possible fuzzy version of (17), the one proposed in [20], is 

Min: ex 
s.t.: }; Xtj';:;:,bi> jeJ' 

iEl 

2 X1J~a1, i E I 
jEJ' 

xt}~o (ij) e IxJ' 

:S. L. VERDEGAY 

(19) 

where p,1 ( • ), j E J', and f..lc ( • ), i E I, are the respective membership functions of 
the constraints. 

If (18) holds and the membership functions are continuous and strictly mono­
tonic (decreasing for i E I and increasing for j E J') it can be proved, [30], that 

}.; (/}1 (a)~ 2 t/11 (a), a E [0, 1] (20) 
iEl }EJ' 

where qJ1 ( · ), i E I, and t/11 ( • ), j E J', are the respective inverse functions of p1 ( • ), 

iEI, and p1 (·),jeJ'. 

Therefore, in accordance with (7) and (8), the fuzzy transportation problem (19) 
can be solved by means of the classical parametric transportation problem, 

Min: ex 
s.t.: .2:: x,1~ rp1 (a), i E I 

j EJ' 

.2:: xu~t/11 (a), j E J' 
(21) 

iEI 

Xo~O, (ij) E IXJ', a E [0, 1] 

If, in order to get l:rp1 (a)=l:t/11 (a), an n-th dummy destination is introduced, (21) 
becomes, 

Min: ex 
s.t.: ,1: XiJ = rp1 (a), iEI 

jEJ 

2 xti=t/11 (a), j EJ={l, ... , n} 
iei 

X;J~O, (ij) E IXJ, a E [0, 1] 

(22) 

Now (22) can be solved as a classical parametric transportation problem giving 
a fuzzy solution to (19). This is illustrated with the following example, 

4 5 
I 

2 1 
----

6 2 

I 
4 3 

3 I 1 1 1 

!J. (4, 1, oo) !J. (5, 2, oo) !J. (6, 3, oo) !J. (4, 3, oo) 

/). (8, oo, 5) 

/). (6, oo, 3) 

/). (5, oo, 1) 
(23) 

where !J. (x, ~. oo) and !J. (x, oo, x) are triangular shaped membership function as 
it is shown in Figure 1. 
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LJ (x.=.xl Ll (x.~.ooJ 

X X 

Fig. 1. Shapes of membership functions of the example 

By introducing the 5-th dummy destination with its membership function 
1l (0, oo, 18) and applying (22), one obtains 

I 

I 
where 

4 I 5 2 1 0 

6 I-+- 4 3 0 

3 1 1 0 

3+a 3+2a 3+3a 1+3a 18--18a 

};rpi(a)=};l/IJ(a), ae[0,1] 
i j 

13-Sa 

9-3a 

6-a 

The optimal solution that provides a fuzzy solution to (23) is, 

3+a 

I ~ 
1+3a 9-15a 

9-3a 

3+2a 

a E [0, 3/5] 

3+a 

~ 
1+3a 

-9+15a 18-18a 

12-13a a 

a E [3f5, 12/13] 

3+a 

I 

-3+4a 13-10a 

3+2oc -12+13oc 18-18oc 

6-a 
: .··. 

a E [12/13, 1] 

By solving (13) with the performance function used in [20]: 

p0 (cx)=(45-cx)/10 35~cx~45 

the point-wise solution to (23) obtained in [20] can be found. 

(24) 

Notice that from these results potential applications to other problems can 
··be ·attempted, as, for instance to the assignment problem. Moreover. a fuzzy 
transportation problem with a fuzzy objective can be studied, too . 
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3. Duality in fuzzy linear programliling 

It is well known that a fuzzy mathematical programming problem is a particular 
case of the general fuzzy decision problem. Taking this into account it becomes 
clear that the objectives and c<?nstraints eau be treated identically in the formula­
tion of a decision, i.e., in the resolution of a FMP problem. This point of view 
can be understood in the sense that the fuzzy objective and fuzzy constraint are 
dual concepts. 

More precisely, it can be shown, [31], that the dual of a FMP problem with fuzzy 
constraints is a FMP problem with fuzzy objective, both having the same fuzzy 
sobtion, and conversely. 

To clarify these considerations about fuzzy duality, the following easy example 
is developed. 

Consider the following FLP problem, 

Max: 8x1 +6x2 
s.t.: 5x1 +3x2 ;$30 

x1 +3x2 ;$18 
xi;:::o 

with the membership functions, 

JL1 (5x1 + 3x2 , 30)=(36-5x1 -3x2)2/36 if 30~5x1 +3x2 ~36 

1/2 (x1 + 3x2 , 18)= (23 -x1 ·-3x2)2/25 if 18~xd- 3x2 ~23 

taking on the values 0 and I outside the above intervals, as usually. 

Due to (7) and (8), one obtains, 

Max: 8x1 + 6xz 
s.t.: 5x1 +3x2~36 - 6 V~ 

xd- 3xz~23 - 5 yoc 
xi;:::O, a E [0, 1] 

that is, a classical parametric linear programming problem whose dual is 

Min: (36-6 voc) ul +(23 - 5 yOC) Uz 

s.t.: 5ud·-u2~8 
3u1 +3u2 ;:::6 
a E [0, 1], ui;:::O 

Introducing notation 

t/11 CP)=(36-6yi-P) 

"'2 CP)={23- 5 vi-p), P= 1- a, a E [0, 1] 

(25) 

(26) 

(27) 

(28) 

one can interprete these functions . as the inverses of the membership functions; 
of a fuzzy objective in (28). Thus, this problem can be rewritten as 
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or, equivalently, 

Min: cu 
s.t.: 5u1 +uz;?l: H 

3u1 + 3u2 )=6 
Jli(ci);?l:1-fJ, i=1,2 
a E [0, 1], xi):O, ci ER, i=1, 2 

Min: cu 

s.t.: 5u1 + u2 ): 8 
3u1 + 3u2 )=6 
U;)=O 

with (26) being membership functions of the objective. 
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(29) 

(30) 

Notice that (25) is an FLP with fuzzy constraints while (30) is an FLP with 
a fuzzy objective characterized by the membership functions of (25), and vice versa. 

On the other hand, if (27) is solved, 

x1 ( a)=(65 - 5 yri)/20, x 2 (a)=(79 -19 yei)/12, a E [0, 1] 

is obtained, and therefore, 

z [x(a)]=(131 - 23yei)/2, aE [0, 1] 

Hence, tbe fuzzy solution to (27) is, 

.Q={x; (131- 2x)2/529: x E [54, 131 /2]} 

If (30) is solved by means of (28), one obtains 

u1 =3/2, u2 =1/2, w (u)=(131-23 yei}/2, a E [0, 1] 

which produces, exactly, the fuzzy solution (31). 
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Zastosowania optymalizacji rozmytej w badaniach operacyjnych 

Artykul dotyczy zadaii optymalizacji rozmytej. Sformulowano w nim zadanie rozmytego 
programowania matematycznego, przy czym analizowany jest jego szczeg6lny przypadek, tj. roz­
myte programowanie liniowe. Rozwaza si~ zar6wno og61ne sformu!owanie zadania rozmytego, 
programowania liniowego, jak i w wersji rozmytej, takie jego przypadki jak: zadanie transportowe, 
zadanie maksymalizacji wektorowej, a takze teori~ dualnosci. 

llCDOJIL30BaHHe HC'ICTKOM OilTllMH3al(IHl B OIIepal(HOHHhiX 

HCCJIC,!J;OBamiHX 

CraTbll KacaeTCll 3a)J;a'l He'leTKOll OITTiiMJI3aiWlf. <f>OpMymipyeTCll 3aJJ;a'la He'leTKOIO MaTeMa­
Tll'IecKOIO nporpaMMHpoBamm, npl'!'IeM aHami3MpyercH oco5&rll: crryqail:, T.e. He'IeTKoe mmeiiHoe 
nporpaMMHpoBaHHe. PaccMarpnBaercll KaK o5mall <J.>opMYmiPOBKa 3aJJ;a'IM He'leTKoro JIHHeiiHoro 
nporpaMMHpOBaHHll, raK M B He'leTKOM BapManre crryqa:ll: rpancrroprHoif 3a;n;aqn M 3a;n;aqn BeK­
ropHoii MaKCiiMII3an;mr, a raKJKe reopMM ;n;yaJibnocm. 




