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A mathematical model and a new development of a systematic synthesis technique for a fuzzy
dynamic system with a fuzzy controller will be presented. In a fuzzy dynamic system, a fuzzy re-
lational matrix will be introduced as a counterpart of a differential equation in conventional control
theory. Then, as an application of the concepts of fuzzy inverse problems, a new approach to the
design of a fuzzy controller for a given dynamic system will also be discussed.

A mathematical description of a fuzzy dynamic system will be developed: a systematic method
to derive a fuzzy controller strategy from an underlying fuzzy system model will also be established.
The theoretical development presented here enables the suboptimal control of the fuzzy system.
The analysis proposed here may not be exhaustive but it does provide some insight info the basic
operations and properties of fuzzy dynamic systems.

As an illustrative example, a fuzzy controller problem with a unit delay will be discussed in
detail and simulation results will be presented.
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1. Introduction

The fuzzy methodology is most effective in decision-making processes where
available sources of information are inaccurate, subjectively interpreted, or un-
certain. In this paper, as an application of the concepts of fuzzy inverse problems,
a novel approach leading to the design of a fuzzy controller will be discussed.

A mathematical description of a fuzzy dvnamic system will be developed; a sys-
tematic method to derive a fuzzy controller strategy from an underlying fuzzy
system model will also be established. The theoretical development presented here
enables the automatic control of a fuzzy system.

*) Currently with: AT & T Bell Laboratories, 4E-630, Crawford Corner Road, Holmdel,
New Jersey 07737, USA.
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As an illustrative example, a fuzzy controller problem with a unit delay will
be discussed in detail and the simulation results will be presented.

The concept of “fuzzy controller” as a viable control system component has
been successfully and convincingly demostrated to be effective in solving practical
problems (Mamdani 1976, Kickert and Van Nauta Lemke 1976, Mamdani, Oster-
gaard, and Lembessis 1983). In the past, the heuristic controller strategies were
obtained through the observation of the human controller’s responses to the process.

In this paper, however, we propose a systematic method as a way to synthesize
the controller strategies based upon the underlying fuzzy dynamic system beha-
vior. First, the mathematical model for a fuzzy dynamic system with a fuzzy
controller is discussed. In a fuzzy system, a fuzzy relational matrix will be intro-
duced to model the system in lieu of a differential equation as in the conventional
control theory. Then, a fuzzy controller, also modeled by a fuzzy relational matrix,
will be synthesized from the underlying theory. This would be a novel approach
in handling the fuzzy control problem for such a system.

A unit-delay model, first introduced by Tong (1980) and consecutively refined
by Sugeno and Takagi (1983), makes it possible for fuzzy set theory to exercise
a far reaching impact in solving dynamic system problems. We will develop a mathe-
matical model for this dynamic system, then apply the techniques capable of solving
fuzzy inverse problems as a vehicle to achieve the controller strategy synthesis
from the system response descriptions.

The analysis presented in this paper may not be exhaustwe but it is certainly
capable of providing some insights so far as the basic operations and properties
of fuzzy dynamic systems are concerned. As an illustrative example, a fuzzy controller
problem shall be discussed in detail and the simulation results shall be shown.

2. Fuzzy Dynamic System Model

Consider a classical feedback control system as shown in Fig. 1. The command,
error and output signals are all functions of non-fuzzy variables. If any of these
values becomes fuzzy, then we have a fuzzy control system and the question of
how to describe it properly becomes critical.

COMMAND ERROR
PROCESS S =
(INPUT) +y= (OUTPUT)

Fig. 1.

To deal with the fuzzy concept in the system, we have to adapt a conventional
algebraic approach suitable for using the fuzzy set theory. In doing this, it is ne-
cessary to replace the comparison of command input and current state with a more
general error functior which maps two fuzzy variables to a fuzzy error variable.
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Assuming that U is the universe of discourse of fuzzy state values and V' is the
universe of discourse of fuzzy command for the process and fuzzy error values,
the error function f, is then defined as

[ UXV->V
The process itself, on the other hand, is described by the function f,:
foi UxXV=U.

These two functions give a complete description of the process.

" Assuming that the command and the state space are made finite and discrete,
then the functions f, and f, are defined by the finite ternary functional matrices
on ‘the Cartesian product space Ux VXV and UX VXU, respectively. Further
assume that the state ¥ is a fuzzy subset of U and that the command (input) X
and the error E are fuzzy subsets of V; then, along with ternary relational matrices
R,cUxVxV and R,cUxVxU, the behavior of the system is governed by the
following discrete time equations:

" E=(Y,nX)oR, : 0]
Y,H=(_}’,ﬂE,)oR, 2

where o denotes the compositional rule of inference, N denotes minimum, and ¢
is an integer time index so that ¥, denotes the current state of the process and Y,
denotes the next state of the process. Both (¥;NX,) and (Y;NE,) denote binary
fuzzy subsets on the Cartesian product space Ux V. The block diagram of this
system is shown in Fig. 2. Note that this diagram represents a drastic departure
from a dynamic system represented by the conventional block diagram.

Y
¥ v
' (B Y,
)F_'_._ﬂ..__,... Re 53 Rp el
Fig. 2.

For the further investigation of the behavior of a fuzzy dynamic system, the
following relational equation is required.

ProposiTiON. If X and Y are fuzzy subsets on U and V, respectively, and if R is
a ternary relation on VX UXYV, then )

(YNX)oR=Yo(XoR)=Xo(YoR) 3)

where o denotes the max-min. operation (i.e., the Zadehian fuzzy inference). The
proposition given above is essentially the same as that of Tong (1980).
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Combining the error relation (1) and the process relation (2), we have

Yop1=[¥, 0 (Y, " X)o R)]oR, (42)
=(¥,NnX)o(R.oR,)
=(¥,nX;)oR (4b)

where R=R.oR,.

In the above equation (¥, N X,) denotes the binary fuzzy subset over the Cartesian
product space Ux V; the finite ternary discrete relation R is defined over the Car-
tesian product space UX V' x U. The overall fuzzy relation R is thus the transition
relation for the closed loop system with a first order delay unit. In other words,
in conjunction with Zadehian fuzzy inference, R gives the next state of the system
in terms of the current state and current command input. Equation (4b) may also
be expressed in block diagram form as shown in Fig. 3.

Xy
¥ \PROCESS Vit
Y » R
D it
Fig. 3.

Based upon (4b) and Proposition, we have
Yie1=(Y;NnX;)oR (%)
=X,0(Y;0oR).

Then it is possible to express the input X;, which drives the state from ¥; to Y41,
in terms of the inverse fuzzy relation as:

X:=Yt+1*(Y:°R)H1 (6)

where % denotes an inverse operator and the superscript —1 represents the inverse
relation of Y,oR. The essential characteristics and properties of the = operator
as well as the inverse relation can be found in the next section.

3. A Fuzzy Inverse Relation and some Inverse Compositions

A fuzzy inverse problem was first recognized and studied by Sanchez (1976).
Tsukamoto (1977) and Togai (1982) extended Sanchez’s work and proposed various
new operators in order to provide a solution for the problem. The statement of the
problem may be summarized as “given a fuzzy relation R over UX V and a fuzzy
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subset B of V, find a fuzzy subset A of U such that 4 o R=B". An inverse operator #
may be used to find such a fuzzy subset 4 through the composition

A=Bx R™%. (7
Definition of the fuzzy relation R~ and the inverse operators proposed by the
various researchers will now be presented.

DerniTioN 1. (Inverse relation)

Let RcUx V be a fuzzy relation and u and # be generic elements of U and ¥, re-
spectively. The inverse of a fuzzy relation R, denoted by R™, is the relation on
Fx U defined by

HR=Y (0, )=y (4, ©) . 3)

For the definitions to be presented, we will use p and g to present the real values
over [0, 1].

DEermNiTION 2. (0 -composition)
This composition is denoted 4=Bo R~ and defined by

#a@= N\lup @) A R~ (@, w)]. ©)

Note that this composition is the so-called “max-min’* composition.

DermiTion 3. (z-composition)
The a-composition is denoted A=Ba R~' and defined as follows

ta @)= N [1p (@) euR~ (v, 1)] (10)
where
g for p>gq
pag=11 for p=gq (1D
¢ for p<q,

and @ stands for an empty set.
Note that a-operator gives the maximum value of x &[0, 1] such that p Ax=q.
(Sanchez, 1976).

DEFINITION 4. (7-composition)
The m-composition is denoted by A=BaR~' and defined by

sa @)= \Tps @) 7 pR (v, 0)] (12)
where
q for p>gq
prg=1 [g, 1] for p=q (13)
0 for p<gq.

Note that m-composition gives all possible x € [0, 1] such that p Ax=g. It can be
interpreted as a a generalized form of a-composition (Tsukamoto, 1979).
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DEFINITION 5. (w-composition)
The w-composition is denoted by A=B(w)R~' and defined by

ta @)= (") [t (@) 0uR™* (2, u)] (14)
where
_ | [g, 1] for p=>¢
pwg—{ [0, p] for p<g. (3)

The symbol () denotes the operation of finding the common interval (or intersec-

tion) among [g, 1]’s and [0, pI’s (Togai, 1982).

4. An Ilustrative Example

Assume that a process performance of a given fuzzy controlled system shown
in Fig. 4 is characterized by a set of rules obtained through learning or experimental
procedure suc:h that

Ey PROCESS Y. :
R, *
A
FUzZY Y
CONTROLLER [ D =
Fig. 4.

Rule 1: (Y, is PM, E, is PM)—~Y,,, is PB
Rule 2: (Y, is PM, E, is NM)-Y,., is PS
Rule 3: (Y, is PS, E, is NS)—>Y,,, is ZO
Rule 4: (Y, is NS, E, is PS)—=Y,,.y is Z0
Rule 5: (Y, is NM, E, is PM)—Y,,, is NS
Rule 6: (Y, is NM, E, is NM)-Y,,, is NB

Here P and N are fuzzy variables implying “positive” and “negative” respectively,
and B, M, and S are fuzzy variables implying “Big”, “Medium” and *“Small”,
respectively. Thus we have seven possible quantized levels described by linguistic
labels for X’s and ¥’s as listed below:

(1) PB =Positive Big,

(2) PM =Positive Medium,

(3) PS =Positive Small,

(4) ZO =Zero,

(5) NS =Negative Small,

(6) NM=Negative Medium,

(7) NB =Negative Big.
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The grade of membership values are assigned subjectively to define the meaning
of the labels of the fuzzy sets. Take ‘“‘Positive Big’ as an example, “Positive Big”
is defined explicitly by the membership function as shown in the following (cf. Fig. 5):

«Fositive Big"”

Fig. 5.

Positive Big=[0,0,0,0,0,0,0,0.1,04, 0.8, 1.0]
with the universe of discourse being
U={-5,—-4,-3,-2,1,0,1,2,3,4,5,}.

All values of membership functions used for the linguistic labels are shown in
Table 1

Table 1. Table for linguistic values,

-5 —4 -3 —2 -1 0 41 +2 +3 +4 +5

PB 0 0 0 0 0 0 0 01 04 08 1.0
PM 0 0 0 0 0 01 03 07 1.0 07 03
PS 0 0 0 01 04 08 10 08 04 01 O
Z0 0 0 01 03 07 10 07 03 01 O 0
NS 0 01 04 08 10 08 04 01 O 0 0
NM 03 07 1.0 07 03 01 O 0 0 0 0
NB 1.0 08 04 01 O 0 0 0 0 0 0

The ternary process relation R, is defined by the given rules. The relational
matrix R; defined by rule i is

Ri=(Y,NE, )=Yii1,:

where — denotes implication function. There are a number of ways that the impli-
cation function can be defined (Togai, 1982). In our simulation we chose min opera-
tion ie.,

Ri=(Y,:NE )N Y, 1;-
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The transition relation R, will then be defined by using a proper choice of connective
Jeise 1e.,

R,=feLse (R).

The choice of connective fi; ¢ depends upon the type of implication function
being used (Togai, 1982). In our simulation OR (or union) connective is used, i.e.

J’ip=_u1 R,.

Now suppose that our objective is to design a suboptimal controller to maintain
the output ¥,,, at “Zero” in the steady state. The problem is to find a control
strategy for the error E, from the given state ¥, and Y,.,.

For example, suppose that Y, is observed as “Positive Big" at time ¢, then the
design problem is to find the proper input E, capable of decreasing the output at
time 741 to, say, “Positive Medium”. Evaluating (6) and using o-composition,
for instance, a set of control strategy will be uniquely obtained as follows:

Rule 1: (Y, is PB, (Y;.y is PM))—E, is PS

Rule 2: (Y, is PM, (Y;4, is PS))—E, is ZO

Rule 3: (Y, is PS, (Y,,1 is ZO))—E, is NM

Rule 4: (Y, is NS, (Y4, is ZO))—E, is PM

Rule 5: (Y, is NM, (Y, is NS))—E, is ZO

Rule 6: (Y, is NB, (Y,,, is NM))—E, is NS
These rules define the characteristics of the fuzzy controller shown in Fig. 4. Note
that in the controller rule 1, for example, either “Y,,, is PM™ or “Y,,, is PS”
gives the same result, i.e., “°E, is PS”. This shows that the fuzzy process is relatively

Fig. 6.

insensitive to its inputs. Let us apply this controller to the process. The simulated
results for ¥; and E, are illustrated in Fig. 6. The output response for a given fuzzy
system turned to be analogous to that of a well-damped system.
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5. Concluding Remarks

A mathematical description of a fuzzy dynamic system has been developed in
this paper. A systematic method to derive a fuzzy control strategy from an under-
lying fuzzy system model has also been established. The theoretical development
presented here enables the fuzzy system to be automatically controlled. Since both
nonlinear and linear systems may be reasonably and accurately described by a set
of fuzzy rules (or description of system’s behavior), it is advantageous that the
same method can be applied to solve the control problem of these systems.

The approach taken here for a fazzy control problem is different from that
of the conventional control theory. But it is not different so far as the control objec-
tives is concerned. The difference, however, stems from the fact that conventional
control theory uses differential equations to model a dynamic system, while the
fuzzy control theory uses fuzzy relations to model a dynamic system. From a ma-
thematical point of view, the fuzzy relation describes a much looser structure of
the system, while the differential equation describes precise behavior of the system.
This is the reason why fuzzy set theory can solve some difficult problems of a very
complex system.

Thus we have obtained a novel tool to handle the automatic control problem
of some dynamic systems even though their precise mathematical models are not
available.

In the illustrative example we investigated the system behavior based on the
fuzzy process defined by (2). A further study of the whole system response in-
cluding the error function will be necessary. The performance criteria for a fuzzy
dynamic system would also be a future object of study. It is especially urgent for
us to establish a definition of stability for a fuzzy dynamic system.
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Analiza rozmytego ukladu dynamicznego i synteza jego
optymalnego regulatora

Przedstawiono model matematyczny i nowa metode syntezy rozmytego regulatora dla roz-
mytego ukladu dynamicznego. Do opisu rozmytego ukladu dynamicznego wprowadzono macierz
relacji rozmytej. W nowej metodzie regulatora rozmytego wykorzystano ideg rozmytej macierzy
odwrotnej. Otrzymana metoda pozwala na realizacje regulacji suboptymalnej ukladu rozmytego.
Jako przyklad ilustrujacy proponowany opis i metode rozwazono synteze regulatora rozmytego
w zadaniu z jednostkowym opOinieniem, a takze przedstawiono odpowiednie wyniki symulacji.

AHanH3 HevYeTKOH IHHAMHYECKOH cHCTEeMbI M CHHTE3 ee
ONTHMANBHOIO Peryiasiropa

IlpencraBnena mMaTeMaTHYeCKas MOMENL W HOBBIH METOM CHHTE3a HEYETKOTO PErYJIATOpA
ZI7I HeMeTKOM THHAMAYECKOi cacTeMer. [ onucaHns HeYeTKOH IHHAMHYECKOM CHCTEMEl BBOIHTCS
MATPHIA HEYETKMX OTHOLUEHW. B HOBOM MeTOle TPOCKTHPOBAHMA HEYETKOTO PEryIATOPA HCIONE-
3yeTcs nies HedeTKol obpaTHOM MaTpuikl. [ToayueHHRNT METO IORBOIIAET PEANH30BATEL CYOOMTH-
MAaJEHOE PEryIHpOBaHHE HEUeTKOl cucTeMbl. B kKadecTBe mpumMepa, WLIIOCTPHPYIOIIEro npeaiara-
eMEle ONHCAHHE M METOJX, PACCMATPHBASTCH CHHTE3 HEYETKOrO PeryJaTOpa B 3anave ¢ eIHHHYHBIM
3ana3gblBaHHeM, a4 TaKKe IPeNCTaB/IEHbl COOTBETCTBYIOLUIME DPE3YIbTATHI MOIEIHDPOBAHHS.




