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The theory of the convective-diffusion mass transfer through deformable semipermeable mem-
branes not resisting deformations, as it is presented in author’s paper [9], [10], needs studying its
mathematical aspects. The paper deals with a model problem of this theory formulated for its one-
-dimensional version. Fields of concentrations, velocities of the solution motion along compartments
divided by the membrane, and the shape of the latter are subjects of the solution of a boundary value
problem formulated for a system of two non-linear parabolic equations of the second order, one
non-linear hyperbolic equation of the first order and two ordinary differential equations of the
first order with relevant boundary and initial conditions. The local existence and uniqueness theorem
is proved by means of reducing the problem to a system of Volterra integral equations with the use
of certain contraction mapping arguments.

1. Introduction

In what follows we consider a plane cell
D={x,y:0<x<1;0<y<A4} (1.1)
divided by the line y=y (x, {) into two regions
Di={x,y:0<x<l1;y(x,t)<y<4}; D,=D\D, (1.2)

where A=const>0 is assumed to be much smaller than 1.

Boundaries (x=0; 0<y<4) and (x=1;0<y<1) are called below the basal
and the apical membranes; the line y=y (x, r) — the lateral one. We assume that
the cell D is filled with water solution of a certain non-electrolyte which cannot
penetrate through all aforementioned membranes as well as through the boundaries
(0<x<1; y=0) and (0<x<1; y=A). These boundaries, as well as parts (x=0;
O<y<y(x 1)) and (x=0; y (x, f)<y<A) of the basal and apical membranes are
impermeable for water too. Hence the lateral membrane is a main passway for the
water transfer, originated by the immersion of the cell D into water solution of the
same impermeant, hypertonic/hypotonic on the basal and hypotonic/hypertonic
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on the apical side of the cell. The deformability of the Iateral membrane leads to
the appearance of the convective motion of water, accompanying the diffusion mass
redistribution. Author’s earlier numerical computations [2], [12] were based on the
use of the pure diffusion approximation of the one-dimensional formalism of the
theory, consisting in neglect of the convective mass transfer compared with that
by diffusion. As it is emphasized in [10] such a neglect appreciably violates the mass
conservation law, although the quantitative impact of this violation on the calculated
membrane’s shape remains unestimated. At the same time the very formulation
of the problem when taking into account the convective mass redistribution requires
a careful reconsideration. As it is emphasized in [10] the system of conditions derived
there appears to be overdetermined. This is a result of applying an approach, named
“The membrane approximation’ [9]. This approach ccnsists in the following. From
the very beginning the deformable membrane is considered as a thick shell which
separates two regions, filled with the same solutions of the same components, one
of which cannot penetrate through this shell. The shell itself is a solution of all com-
ponents, mentioned above, including water (except for their impermeant) in the
shell’s constituent. Ceonditions of the dynamical compatibility and of a local thermo-
dynamic equilibrium are valid on the shell boundaries. The latter ones are taken
in the approximate form of the Nerst distribution theorem with a constant coeflicient
of distribution. Conditions of the dynamical compatibility express laws of mass
and momentum conservation on surfaces of a strong discontinuity. The important
peculiarity of the theory consists in the use of so called “system of the average volume
velocity™ [5], [10] for describing the convective-diffusion mass transfer, and of the
“system of the center of mass” [5], [10] for describing the momentum conservation.
It is important that in the system of average volume velocity all solutions behave
as incompressible liquids.

The aforementioned “membrane approximation” of the theory consists in the
contraction of both the boundaries of the shell to the two-sided surface which
becomes the representative of the membrane. Consideration of the membrane as
a thick shell permits, in principle, taking into account its shrinking and swelling
as well as separately evolving motion of two membrane interfaces. In contrast to
this the membrane approximation does not allow such a freedom. As a result the
system of equations of the membrane approximation becomes overdetermined.
In particular this relates to the conditions of adhesion of solutions, bathing the
lateral membrane to its interfaces. One has to omit one of them, or replace both
of them by their linear combination. Using unidimensional formalism of the theory®)
one may choose such a combination of adhesion conditions which gives the express-
ion of the total volume flux (that is in the system of average volume velocity) in
terms of the total diffusion flux of the impermeant. As a result one obtains a condition,
replacing two adhesion ones, the use of both of which makes the problem over-
determined. In what follows we deal with namely this approach.

*) This formalism consists in replacing concentrations and velocities of motion in apartments
D, and D, by their average, the averaging being performed over crossections x= const.
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One has to distinguish cases of thin and of thick membranes. In the first case
the membrane’s thickness is much smaller than sizes of both the compartments
Dy and D, (i.emin (y (x,1), A— vy (x,1))» 24 Vxe[0, 1], ¥¢=0, where 24 is the membra-
ne’s thickness). In the second case one of the values y (x, f) or A —y (x, 1) is of order,
or even smaller, than 24. In such a case the problem appzars to be a free boundary
problem, formulated for a system of parabolic equations, including one with reversed
time. Using pure diffusion approximation we deal with such a problem in another pa-
per [11]. Here we consider the case of a thin membrane,

Omitting some inessential non-linearities*) wz may describe the problem we deal
with as the following one: Find T>0,u,(x, 1), 9 (x,2), i=1,2; w(x, 1),y (x, 1)
and f(¢) such that Vv (x,t)e Dy

D (1 =y) uy)s— (1 =p) w2y )x=(A=») ), , {1.3,)

(Vi) — (ruav2) = i)y (1.33)

Yetpy (0 —uy)=w, (1.35)

0*wye =2 (1 =) Duyxtyuz)+f()=0, (1.3.)

(1=3) 0,)s—w=0, (135)

(yes)e+-w=0, (1.35)

SO=(I-y)v+yea, (1.37)

Duyy=ugw;o,=p, (t;—1); v3=0; u,,=0 at x=0, (1.35)

. =0; 9,=0; uy=u,v,; v;=p, (W*—u,) at x=1, (£33

u (x, 0)=uf (x), i=1,2; y(x,0)=»°(x); O<x<lI. (1.3,4)
Here

Dp={x1:0<x<1;0<1<T} (1.9)

In what follows we take, for simplification of writing,
D=1; é=1 (1.5)

Functions to be determined have the following sense:
uy and u, are molar concentrations of the impermeant in compartments D,
and D,.
@, and v, are velocities of the solution motion in D, and D,, averaged in y-di-
rection and taken in the system of the averge volume velaocity.
w — is the velocity of the solution transfer from D, into D, in the sams system.

(1) is a total flux of solutions in the cell D in the system of the average volume
velocity.

y=y(x,1) is the equation of the lateral membrane.

*) For compajison of the rigorous and simplified systems of equations see [10]
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Boundary conditions (1.3g) and (1.35) express the mass conservation law for
water transfer through the basal and the apical membranes, expressed in terms of
impermeant concentration and its gradient as well as those of velocities »; and v, -
. u' (¢) and u? (1) are prescribed concentrations of the impermeant in solutions bathing
the basal and the apical sides of the cell. p,, p; and p, are water permeabilities of
the basal, lateral and apical membranes. We assume that these permeabilities are
constants.

Usirg (1.35), (1.3,) and (1.3;) we may replace equations (1.37) and (1.3}) by the
following ones:

ulr.r+Fl (x’rh“ls Uypx, Uz, Uy, y’y;c)=!£1t (131)

uZx.tJF‘FIZ (I, IE”J.) Uy, Usx, U, ¥, J'.x)=u2r (132)

where

1

Fi=—((1=y)"" yt9)) Uyxt-Pgity (g —u;) (1=y)~1
(1.6)

Fyo=(y~ yo—3) ttyxtpputs (uy —uy) y=*

Equaticns (1.3,) and (1.3,) will be used in the algorithm described below (see
section 3) rather than equations (1.3]) and (1.3}). The equivalency of problems
(1.3)), (1.33), (1.3), i=3, ..., 10 and (1.3;) — (1.3,,) is obvious.

As it is seen from (1.3,) — (1.6) w(x, t) may be excluded from the consideration,
so that (1.3,) will be replaced by the equation

PHH (x, Uy, 41, uy, Uz, Uiz, Uzx)=0 (1.7)

where
H=—plq+py (us—u2); p=—~F ()42 ((1 =) urstyuzy)
P=V:; =Y«

(1.8)

The method of the solution of the problem is as follows. Concentrations uy
and u, are determined by their integral representations obtained with the use of
the relevant Green functions. Further, considering H as a known function of ¢, x, y
and g, we associate with (1.7) the system of characteristic equations. Let

Lo=dfx, £ x=XTt 2y D<EET; 02 1) (1.9)
be characteristic lines outgoing from points x=z of the x-axis. We assume that
X,(0,2)>0 V¥ze[0,1] (1.10)

Hence we may assume 7>0 to be so small that L, divides the strip Dy into two
subregions

Disprm={x, £:0<x< X, 0); 0<t<T}; Dyip=D\ D (1.11)

whereas L; does not belong to Dy. Correspondingly we consider for the aforementio-
ned system of characteristical equations two Cauchy problems. The first one — in
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Dy, with Cauchy data prescribed on the segment 0<x<1 of the x-axis (these data
are determined by the initial conditions of the problem), and the second one in Dgyp
with Cauchy data

t=1; y=y,(7); 9=qo (r); p=po (7) at x=0; 0<t<T (1.12)

Here yy, g5 and pg are unknown functions which have to be determined in the course
of the problem solution. Values of x, y, ¢ and p are determined in Dy, and Dgxr
along characteristic lines from integral equations, equivalent to the respective cha-
racteristic differential equations. These characteristics depend on two parameters
z and, respectively -points of the carriers of Cauchy data. Being the implicit funct-
ions of x and ¢ these parameters may be determined in functions of x ard ¢ as so-
lutions of respective integral equations.

Thus we deal with a systzm of non-linear Volterra integral equations, the local
solution of which is constructed by the use of the suitable contraction mapping
arguments. The respective operator is constructed so tlhat ifs action is an equivalert
to a “diagonal’ iterative procedurc. The use of such a procedure allows to avoid any
references to results of a general modern theory of parabolic and hyperbolic non-
-linear equations, but to be restricted with the use of absolutely elementary esti-
mates. This, in its turn, permits us to restrict ourselves with no more than formula-
tion of the main theorem and with a very conspective sketch of its proof.

It is suitable to discuss here the following question. The algorithm of the problem”
solution includes determining velceities », and v, as functions, each of them satisfies
the ordinary differential equation (1.35) or (1.3¢) of the first order and two boundary
conditions (1.3g) and (1.3,). Integration of these equations in Dgyr and in Dy,
taking these conditions into account, gives

x

v (5 )=(1=y (5 0) " O+ [ w (s, 1) ds}

0

2 in Dox"r' (1]3)
v, (x, 1)=—y (x.1)~* f w (s, 1) ds
and
vy (x, )=—(1-» (x, x))-ijw(s, 1) ds
"l in Pyir (1.14)
v (6, )=y (x, )7 { S0+ [ w (s, 1) ds]
Assuming that
O<y(x, 1)<l V¥xel0, 1], Vte[0, T] (1.15)

and that y, fand w are continuous functions everywhere in regions of their definition,
we sec that »; and », are continuous if ard only if

1
f(x)+J' w(s, ) ds=0 Ve[0, T] (1.16)
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Naturally the question arises whether one has to consider this equality as an inde-
pendent, additional condition or as a corollary of all other ones. It is easy to see
that the latter option is the case. Indeed, assume that there exists the solution to
our problem such that u;, ., @;, w, ¥ and y, are bounded and satisfy (1.15). Then
F, and F, are also bounded. But this implies the continuity of ; and w;,, i=1, 2 [4].
On the other hand equations (! .3:) and (1 .3;) may be rewritten in the form

Ut F=U,, i=12 (1.17)
where
U=(1-»)u,; Us=yu, (1.18)
and
Fy=uyve—((1=3) u0,)s—t; (w—p, (u, —1,)) (1.19)

F ; = = eV — (VUUa¥2)x T 1ty (W ~ Py 1y — Hz})
so that F; and F, are also bounded. This means, in turn, that Uy, U,, U,, and U,
are continuous too. Since u; and w;, are continuous the continuity of U; and U,
imply the continuity of y ard y,.

Take now an arbitrary small e>0, 1, and 7, and denote
D={x,1: X(t,0)—e<x<X(t,0)+¢; 0<t<T}; L,=04D,. (1.20)

Equalitics (1.35), (1.3¢) and (1.3;) imply

[. [((1=3)z)e— ] dxdt= ; Py Qi — 1) dds

D, B

‘ (1.21)
| [on)sty ] dxdi=— fpy (et — 1o dxdt
b, 5
so that
f (i—») 'dldf—i—yflx:__r Py (g — ;) dxdt
i o (1.22)
J‘ yo,dt —ydx= ] Py (g — ) dxdt
L, b,

Denoting [A] the jump of any function & on the line of discontinuity and using the
continuity of y, boundress of v, and u,, and arbitrariness of &, t; >0 and 7,>0 we
conclude that

[@ils=x (1,0y=0 V2€[0, T]; i=12. (1.23)

so that the continuity of y implies that of v, and v,. Hence the continuity of y-implies
the validity of the condition (1.16) Q.E.D.*)

*) Note that the continuity of Auxes J, = (1—p) (v, — 1) and J;=y (v, —u.) in compartments
D, and D, is the necessary and sufficient condition for conservation of masses M, and M; of the
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The problem (1.3;) — (1.3,,) is formulated as a model one, not containing
non-essential complications. However, from the point of view of biological appli-
cations, and first of all modelling the process of swelling and shrinking of fast muscle
fibres immersed into hypotonic or hypertonic solutions [6], [2], [9] or modelling
the process of water transfer through plane epithelial tissues [6], [2], this model
is far from being an adequate one. Much more realistic problem must be formulated
in the region

Dy={x,1:0<x<s(t); O<y<Ad} (1.24)

Besides, the basal and apical membranes bounding compartiments D, and respectively
D, have to be considered as permeable for water, but having water permeabilities
different from those of the basal and apical membranes, bounding D, and respecti-
vely D,. Moreover, boundaries x=0 and x=s (¢) may be, in one of regions D, or D,,
sayin Ds, permeable not only for water but for that co mponent of solutions which
cannot penatrate trough other membranes. All these alterations are essential for
mathematical modelling of the aforementioned biological processes, i.e. for that
purpose which has motivated the very appzarance of papers [9], [10]. However
these alterations do not affect the principal feature of the problem under consi-
deration, consisting in the inseparable interaction of parabolic and hyperbolic
aspects of the problem. One only have to refer to estimates obtained in [8] and to
apply the method of the simultancous uss of two coordinate systems: the labora-
tory one and the second-linked to the free boundary x=s (¢)*). Therefore we leave
such a generalized problem without any further consideration, but restrict ours-
elves with this hint.

The following nctations are used below. Given functions /' (x, ¢, &, 7), R(x, &, 1 —1),
X (t,z), T° (¢, ) and the number 7>0 we denote Dyyr and Dy, regions defined
by (1.11) and define

Dyr=Doxs+V Dyir
D, ={x,t:0<t<T, (2); 0<z<1};
T, (2)=T if X(t,2)<1 VI<T; (1.25)
T (D)=t (2) if X({1,2)<] Vi<t (2); X(t; (2), 7)=1

D, .={1,7:0<z<1<T}

impermeant in these compartments. Indeed, assume that J; have jumps along a line L. Then equations
(1.3}) and (1.37), and boundary conditions (1.35) and (1.35) imply
1
Mi=(0/30) [ (1—y) wdx=1J,]
0

and analogously for M,.

*) The use of this method allows to avoid all difficulties connected with differentiating the thermal
potential of the double layer distributed along the free boundary and having unknown density [8].
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I°(x, 1If |Rla, B)= [ f(x,1,&,0) R(x, & 1) d& (1.26,)

Ty (%, tJfEalR)=ff(x, t, a,7) (87" 68* 0v™) R (x, @, t—7)dv  (1.26,)
0

T

I3, (x 11/ [RIa, B)= [ dv [ f(x,1,&7) (84+m|0&" 6r™) R (x, &, t—7)dE  (1.26,)

[+ a
Further Y/ (x,1)
S (6, ) =085+ £k 6™ ¥ k, m=>0 (1.27)
and VN=const>0, ¥i,j,..,n
Cij.oon) and Cp 4, . 2 (N[1) (1.28)

denote non-negative continuous increasing functions of their arguments such that
C (N|0)=0 (1.31)

Subscripts i, j, ..., # may be omitted,
The following spaces are involved:

flx,0)eC*"(Dy); g (x,0)eC; 1 (De); h(x,1)eCY (D) (1.32)

if there exist and are continuous in Dy fi; (x, 1), g;; (x, 1) and hy; (x, t) Vi<k, Vj<m
and if there exist and are continuous in Dt} Zk+1,m and tt My, ma1. Norms in
Ckm(D,), C1°(Dy) and in €L (D4) are defined as

Ky, m Ky I

[1f||=max max {|f;; (x, 1)|}; i<k; j<m
i (x,t)eDy

|lgll=max max {|gi; (x, )5 2* g4 1, m (X, D]} (1.33)

ivd (v 1)eDr
[[Al|=max max {lh;; (x, )15 ¥ |y, mer (r, 01}
i, (xteDr
The space C;; ([a, b]) of functions f(x) defined in a<x<b is analogous to C;?2 (D).
(m, n) means referring to the n-th formula of the m-th scction.

Section 2 is devoted to the formulation of integral equations, serving for deter-
mining y and its derivatives, v;, u;, i=1, 2, and their derivatives. Section 3 contains
definition of the operator, whose fix point is a solution of the problem (1.3;) — (1.3,,),
formulation of the main existence theorem and a sketch of its proof. Section 4 conta-
ins some conclusive remarks.

2. Integral equations determining y, v, w; and their
derivatives,

Below we write
o= (x, Y[, tio); i=1,2; k=0. @.1
H=H (x,tly, q/f, uo); 1=1,2; k=0,1.
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Let us point out that (2.1) imply
H,=H, (x, 1]y, If, tixo); Hy=H, (x, 19|/, uno); i=1,2; k=0,1
Hy=H; (x, 1]y, 4| f, tino); i=1,2; k=0, 1,2 (2.2)
H=H, (x, 11y, 4|, f, tem); 1=1,2; k=0, 1; m=1
and
dH|dx=H. (x, t])+H, (x, 1]) gro+H,y (x, 7] ) y10=
=H"'® (x, t|Yxo» Grolfs timo); i=1,2; k=0,1; m=0,1,2
dH|dt=H® (x, !Yor> qoulf; [, thim1); 1=1,2; k=0, 1; m=0, 1
dH,Jdx=H," (x, t|Yko, Geol > himo); i=1,2; k=0: m=0,1,2
qug’df=Hf' (%, t Yok, Gorl f3 fr thim1); i=1,2; k=0,1; m=0, 1
dH,/dx=H!° (x, tiguol f, Uimo); i=1,2; k=0,1; m=0,1,2
dH,|dt=H$* (x, tigoul £, [, thimn)s i=1,2; k=0, 1; m=0, 1; n=0, 1 (2.3)
dH,Jdx=H'° (x, | Yk, Giolf; #imo); i=1,2; k=0; m=0,1,2,3
dH, [dt=H* (x, t|yox, Qo f™, ) i=1,2; k=0, 1,2; 1=0, 1;
m=0,1,2; n=0,1,2
dH Jdt=dH [dx=H° (x, t|Yim Quml /> [, )3 1=1,2; k=0, 1;
m=0,1;1=0,1,2; n=0, 1
Assume that the input data of the problem satisty the following conditions:
w (e C* ([0, 1]); u) (x) e C* ([0, 1]); »° (x) e C3 ([0, 1]); i=1,2 (2.4)
£O©=p, (1=3° (0) (& O)—u' ) =p,»° (1) (@ O -l (1))  (2.5)
1¢° (X)|=]p° (x)| =n>0; 0<p<y® (x)<1—p; 0<x<1; (2.6)
H, (x, 0/5°, ¢°lf (0), ui, i7)=¢ (x, 0/ )/q°* (x)=n; 0<x<1 2.7)
i3 (0)=pa (0) ( (0)—u* (0)); 1, (N=p,u3 (1) (u* (0)~u3 (1)) (2.8)
In what follows we define '
PP (x)=—H(x,0] | ); w® ()=p° (x)+p, (u (x)—u3 (x)) (2.9)

and assume that
1
SO+ [ w° (x) dx=0 (2.10)
(4]

Finally, assuming that
Yo )=y 0,8); 9o ()= (0,1} ); u; (0, 1); i=1,2 (2-11)
are known, define

Po (D)=J0 () qo (=10 (t)/{Po () +py [y (0, 1)—uz (0, 1} (2.12)
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Let us now formulate all integral equations of the interest. Assume that ; (x, t)
are known. Then the system of characteristic equations, corresponding to the equat-
ion (1.7) is

dx/dt=H, (x, 1| | ); dyldt=p+qH, (x,t] | ); (2.13)
dgldi=—(Hy (x, 1| | )+qH, (x, | | ))

The last equation dp/dt=—(H,+pH,) may be replaced by the equation
p=—H(xt |) (2.14)

since p-+-H=const is the int:gral of the system of characteristic equations.
Let us associate with (2.13), {2.14) the Cauchy data

x=z; y=y°(2); ¢=4¢°(2); p=p° (2) (2.15)
Denots
x=X(1,2); y=Y(1,2); q=Q (1, 2); p=P(1,2) (2.16)
the solution of the Cauchy problem (2.13) — (2.15). By virtue of assumptions
(2.5) — (2.8) the characteristic lincs x=X (1, z) are directed inside the region Dr.
Let
Dyr={x,: X(1,0)<x<1; 0<t<T} (2.17)
For T>0 small enough this region is covered by those characteristic lines, whereas
the region Dyyr=D;\Dy 7 Temains not covered by them.
Consider now the Cauchy problem for the system (2.12) — (2.14) with Cauchy
data
x=0; t=1; y=y, (2); =40 (r); p=Po (1)=Jo (7) (2.18)
where g, (¥) is defined by (2.12). Here y, (1) is not prescribed .and has to be found
in the course of the problem solution.

Denote
x=Xo (t,7); y=Yo (1,7); g=00 (t,7); p=Po (1, 7) (2.19)
the solution of this Cauchy problem. Assume that
Y0 (0)=¥° (0); go (0)=¢°(0); po (0)=p° (0) (2.20)
and that
H, (0,7 | )>0; v<t<T; po (0)+p, (uf (0)—u (0))#0 (2.21)

Then the characteristic lines x=Xj, (¢, 7) are directed inside Dgyy and cover it.
Moreover, (2.20) imply

Yo (1,00=Y(1,0); Qo (1,0)=0 (1, 0); Py (£,0)=P (1, 0) (2.22)

if f(#), u,(x,t) and their derivatives, entering H and its relevant derivatives are
continucus in Dj.
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X, Y, 0, Pand X,, Yo, Qo, P, are solutions of the system of integral equations
equivalent to the Cauchy problem (2.13) — (2.15) and respectively (2.13), (2.14),
(2.19), ie.

X(t,2)=z+ [ Hy (X (s,2),5] | )ds=X*(t,2] ),

Y(t, 2)=)° ()+ f [P (X (s, 2)+q (X (5,2),5) Hy (X (5,2), 8] | ] ds=

0 =Y*(t,z] ) (2.23)
06 A= () [ [ (X (5,951 | )+

0 +q (X (5,2),5) Hy (X (5,2),5] | )] ds=0* (1, 2] )

P(t,2)=—H(X(t,2),1] D=P*(1,2] )

and respectively

Xo (t,0)= [ H, (X, (s5,7), 5| ) ds=X; (1,7 )

Yo (t, T)=yo (0)+ f [2 (Xo (5, 1), 5)+9 (Xo (5, 1) H, (X (5,7) 5] |)] ds=
=Y, (1,7 ) (229
Qﬂ (f, ")::Q’U (1.')-— J- [Hx (XO {'Ss T), S| |)+

q (Xo (5,7) Hy (Xo (5, 7) 5| | )] ds=05 (1, 7] )
Py (t,D)=—H (Xo (1, 7), 1| | )=Py(t,7| )
Assertion (2.22) may be replaced by a stronger one. Assume that u; (x, ¢) and

their derivatives, entering the right hand sides of (2.24), as well as y (x, 1), g (x, 1),
entering there, are continuous in Dy. Then

X, (1,01 )=X* (1,0 ); Y5 (1,0 )=Y*(1,0] ); (2.25)
0, (1,0] )=0% (1,0 ); Py (2,0] )=P*(,0] ).

even when (X*, Y*, ..., P¥) and (X, Y;, ..., ;) are not solutions of the Cauchy
problems under consideration. This remark will be essentially used in the proof
of the existence theorem.

Dealing with »; (x, ¢) and u, (x, 1), i=1, 2, we need to take (x, t) as independent
variables. Let

z=Z{x 0 1=T"(x. t) i (2.26)
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Then (Z, T°, y, g, p) may be considered as a solution of the system of integral
equations

Zx0=x— [ H(X (s, Z(x,1),5] | )ds=2* (x,1])
1]
Y, )=Y*(t, Z(x, 1) ); ¢(x, )=0* (1, Z(x,1)] ) (227
p(x,t)=P* (1, Z(x,t)| ); (x,1) €Dy,
and respectively

x= f H, (X, (s, T° (x, 1)), 8| | ) ds;

T0(x, t)
Y, )=Yo (, T°(s, 0| ); (6, D=04 (& T° (s, )| ) ; (2.28)
P (x,8)=P5 (1, T°(5,1)| ); (x,7) €Doxr

It is desirable to deal with an integral representation of 7° (x, ¢) having the form
solved with respect to it. Differentiation of (2.28) gives

T{o (x,)=B~* (T°(x, 1), 1| }; Tgy (x, )=H, (x,2| | )B~*(T° (x,2),1] )
B(T° (x, 1), {)=—H, (0, T° (x, )| | )+ (2.29)

- f (dldXx,) H, (Xo (3: T (x, 1), 5] | ) Xo. (-5',- Ty (x, f)) ds

T9(x,1)

from where it follows that

T°(x, 1)= f B~ (T°(s,1),1)| ) ds; 0<x<X(1,0). (2.30)

X(r, 0)

Simultaneously with (2.29) we have
Zio (6, )=1—Zy (, t)f(d;dx) H, (X (5, Z (x, 1), 51 | ) X (5, Z (x, 1)) ds;
Zoy (x, 0)=—H,(x,1] | 3_ (2.31)
i et f (d/dx) Hy (X (5, Z (x, 2), 51 | ) X (5, Z (x, 1)) dis

We also need integral representations of derivatives Vi, Gim> Pim fOT k-+m<2.
Equalities (2.27) and (2.31) imply

V1o (%, 0)=2Z1q (x, 1) {}"0 (Z(x,0)+
+ [ Xor (5, Z (x, 1) (dldx) [p (X (5, Z (x, 1), 5)+

+g (X(Sa Z(x; f)s S) H}’ (X(S, Z(x! I): S] | )df}=210 (xa t} YOI (I! Z{x’ 'f) i) 5
Yor (x, =p (x, )+q (x, ) Hy (x, 1] | )+ Zoy (x,7) Yoy (1, Z (%, l‘)) :
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g0 (x, )=Z10 (x, 1) {‘jo (Z (x, f))— (2.32)
= [ Xo1 (5, Z (x, 1)) (dldx) [Ha (X (5 Z (x, 1), 8] | )+

+q (X (s, Z(x, 0),5) Hy (X (s, Z (x, 1), 8] | )] ds}=
=Z0(x,1) Qo1 (1, Z (x, 1))
Go1 (X, )=Zo1 (x, 1) Qo1 (1, Z (x, 1))
and
Por (x, )=—(d|dt) H (x, t| | }; pro=—(d[dx) H(x,t] | ) (2.33)
Equalities (2.32) and (2.33) are valid in Dy,r. At the same time equalities (2.24)

imply quite analogous relations in Dgyy.
Comparing (2.31) — (2.33) with (2.3) we see that
Y105 Yo1s D5 qll f, tios k=0,1,2
9o15 9105 Proll f; iro; k=0,1,2,3 (2.34)

Pm“f;f, U o, m=0, 1,

Analogous calculations show that
Yoz Yaos Viill i f thms 5=0,1,2,3 if m=0; k=0, 1 if m=1 _
G115 Gozs G20l fo /o tams k=0, 1,2, 3,4 if m=0; k=0,1,2 if m=1; (2.35)
k=0 if m=2
Here flla;, ..., a; means that f depends on ay, ..., @,
Let us point out that in contrast to the continuity of ¥*, 0%, P* in D; (so that

Y., O, and Py are the continuous prolongations of ¥Y*, 0% and P* from Dy,
into Doxr) Yens O, and P, have, for k-+m>1, jumps on the characteristic line

m?

x=2X (£, 0). This is a consequence of the existence of the angle point on the line
L={x=0 for 120; t=0 for x>0} (2.36)

Integral representations of ; (x, 1), i=1, 2, in Dyyr and Dy, 1 are given by (1.13)
and (1.14). Let us recall that the continuity of y implies the continuity of »; in Dy
(see introduction, page 10).

The straightforward computations, taking into account (2.34) and (2.35) show
that

t"'u«'m (I, r)”f;n ycb) Yiabs Pab ) (2‘37)
where

0<b<m; 0<a<k—1; 0<e<k; i=1,2 (2.38)

Finally let us present integral representations of wuy,, Denote by g (x, &, t—1)
and G (x, &, t—7) Green functions of the first and of the second boundary value
problems of heat conduction in Dy. Assume that #, (x, f) and wu, (x,¢) are solu-
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tions of equations (1.3;) and (1.3,), satisfying boundary and initial conditions
(1.35) — (1.3,,). One may exclude v, and », from these condmons Thus, con-
ditions of regularity (2.5) and indentities

&:=—G; &=—G.; 8u=G:; =Gy (2.39)
imply ;
e (X, =g (x, 1] ); k=0,1,2,3,4 if m=0; k=0,1,2 if m=1;

k=0 if m=2 (2.40)
where _
Usoo=1I50 (X, t| =Patt10 (7) (10 (7} —u* (@)I0|G)+-1° (x, t]uf (HIGIO 1)+
+15, (x t1Fy (& 7)1 )IGIO, 1), (2.41,)
Uiio=I{o (%, t|Patiso (7) (10 (D) —u* (2))I0l@)+1° (x, 1]if (&)Igl0, 1)+
175 (%, ]~ Fro0 (&, 7)I810, D=1, (x, t|patt10 (7) (u10 ()~ (2.415)
—u' (T)I0Ig)+15, (x, t|F110 (&, 7| )Igl0, 1) -
Usor=Ino (%, t| =P, (d]dv) (uy0 (7) (10 (7) —u* ())|0/G)+
+1° (x, t[ii (£)+Fyo0 (£, 0] )IGIO, 1)+13, (x, tIF104 (&, 7] )IGI0,1) (2.415)
Ui20=Uso1—Fioo (x, 1] ) (241.)
Usii=Io (x, t|p, (d]dr) (uy0 (v) (10 (1) —u" (1)))0lg)+
A+I° Cx, {ud® (E)+Fy10 (&, 0] )Ig10, 1)+1F, (x, t|Fy01 (£, 7[g]0, 1) (2.415)
Uiso0=U11—Fii0(x, 1] ) (2.414)
Uso2=[1 (04 F110(0,0)) — p (d]dr) (10 0) (us0 (0) —u* (0)))] G (x, 01)—
=[u® (D)+Fi10 (1,01 )] G (x, 1, )+Frox (x, 2] )+
+15o (x, t—p (d%[dt?) (uyo (7) (1o (x) —u* ()))[0]G)+ (2.417)
+1° (x, 1|ul® () +Fiz0 (€, 0] )IGI0, D+1}, (x, t| = Fi01 (0, 7] ) 0]G)+
+1io (%, t1Fyo0x (1, 7| G+, (v, t1F 144 (€, 7] )IGIO, 1)
U1 =Ujo2—Fio1 (x, 1] ) (2.415)
Usso=Usg2—Fi20 (x, 1] )=Fio1 (x, ¢] ) (2.41,)

3. Algorithm of the problem solution. Theorem of
existence and uniqueness.

Consider the space M, of vector functions

r= {ul (x’ I), u2 (x, t)) }' (x’ r), q (x’ :)’ P (x’ IJ’ ;X(t’ z)l XO (I) ‘r)‘!
Z(x, 0, T°(x,1)} (G0
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such that
u; (x,1)€ C*° (Dq); y,4,p€ C (Dy), X(t,2)e C(D,.), X, (1, 7)€ C (D) 32)
- - 2,
Z(x,1)eC(Dyy1); T°(x,1) e C(Doyr)
and also ;
Zx, 0=x,T°({,0)=t; X(0,2)=z; X (1, D=0
(x,0)=x, T°(1, 0) (0, 2)=z; X, (1, 1) (33)

0<X(1,2)<1; 0<X, (1, )< X (1, 0); X(2,0=X,(1,0).

Let the norm |[r|lg; be defined as the maximum of the respective norms of all com-
ponents of r, as they are defined in introduction.

Let now MMy (N) be the subset of M, defined as follows. Let re My (V).
Then

u; (x, 1) € C3:5 (Dxr) N C** (Dxr) N Cgry (D) N C*° (Dy), i=1,2;
¥ (%, 1), 4 (x, 1), p (x, 1) € C1° (Dyr) (N €™ (Dxr) 5 (.4)
X(t,2)eClo D )N CYL (Do) X, (1, 1) e Cls (DN Coy (D)
Z (x,1) € CY° (Dxy1) N C¥* (Dyx11); T° (x, 1) € C*° (Doxr) N € (Doxr)
Further r €My (N) implies
\Irl| eN B3

u; (x, 0= (x); ¥ (x,0)=y° (x); q(x,0)=¢°(x); p (x,0)=y, (x, 0) (3-6)

and also p (x, t) is connected with u,, y and g by the equality (2.14), and »; (x, 1),
i=1, 2, satisfy boundary conditions (1.3g), (1.3,) from where v; and v, are excluded.
The norm ||#|| in Pt (V) is defined as a maximum maximorum of norms of all com-
ponents of r in relevant spaces, entering (3.4) (see (1.33)).

Define now an operator

F={u}, u}y ..y T} =R (r); reMz (V) (X))
by the following set of conditions. Let

F@®)=p,y (1, 1) (2 ()=upy (1)) (3.8)

and H(x,t| | ), w(x,1),2;(x,t) and F,(x,¢t| ) be defincd by the equalities (1.8),
(1.33), (1.13), (1.14) and (1.6) where y, and y, are replaced by p and g respectively.
Define further

H;u ()=Uio0 (0, t|u; i1, Fig0): 11:1 =U,p0 (1, g i1, Fio0); i=1,2 (3.9)

and X' (¢,2), Y(t,2), O(t, z), P(t, z) equal to the right hand sides of (2.23) where
Y (z,2), O (t,z) and P (¢, z) are replaced by y (X (¢, 2), 1), ¢ (X (7, z), t) and respecti-
vely by p (X (¢, z), t). Let further Z7 (x,¢), ¥’ (x,t) g’ (x t) and p’ (x, ) be defined
in Dy. ;7 by the equalities _

Z'=Z* (x, 1| X, Z, upas [ ); Y'=Y*(t Z'] ); ¢'=0*(t Z'| ) ;

3.10
P'=P* (I, 211 ); (x, I)EDI;]_T ( )
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where Z*, ..., P* are defined by (2.27). After this define
F@=py (1,1) (@ ()—uy, 1) 5
Y ©,0=1=f"(0) p;* (110 (O—u* ())~*.

The definition of Z’ (x, £) admits computation od Z, (x, #) and Z}, (x, ) for t>0
on the strength of conditions (3.4) and (2.6). In particular there exists y,, (1, ),
and, by virtue of (3.11), y;, (0, ¢). This allows to determine

(3.11)

Po ()=(d]dt) y* (0, 1) (3.12)
Let now g} be defined by the equality
9o (=0 (0, 2) [p6 (V+py (u10 (D —1tt5 ()] 2 (.13)
where
" (0, )=/"(2) (1 —uyq (1)) (3.14)

Thus we now have got the initial data for evaluation of X, (¢, 7), ¥ (1, 7), Q (t, 7)
and P (1, 7) by the equalities (2.24), into the right hand sides of which g;, X, (¢, 7),
u; (x,t), ¥ (x,t) and g (x, 1) are inserted. After this we determine T°’ (x, t) as equal
to the right hand side of (2.30).

Let us point out that
T (X' (2,0),1)=0 (3.15)
Indeed

X' (1, 0)=f Hy (X (s,0), 517 (s,0), @ (5, 0)Lf (5), u (X (5,0),5)) ds (3.16)

so that
X’ (0,0)=0 (3.17)
At the same time

X, (1, 0}=f H, (X, (s, 0), 51X (s, 0), Qo (5, 0L S (5), 1t (Xo (5, 0), 8)) ds  (3.18)

and, by virtue of (3.3) and definitions (2.23) and (2.24)

Xo (5,0)=X(5,0); Yo(s5,0=Y(s5,0); Qo (5,0)=2(s,0) (3.19)
Hence
X, (£, 0)=X" (1, 0) (3.20)
Further, by virtue of (2.30),
X} (1. 0)
7% (X, (2, 0), )= j B-1(T° (s, 1), t| ) ds (3.21)
X (£,0)

so that (3.15) is indeed true.
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Define now »’ (x, 1), ¢’ (x, ) and p’ (x, ¢) in D,y as equal to the right hand
sides of (2.28), where T° is replaced by T, v, as functions of f”, y’, p” and u, (x, f)
by the equalities (1.13) and (1.14). Define finally

F;=F1 (X, tlutio, Ujnos '31’ y,q); i=1,2; k=0,1; j#i (3.22)
where F, are defined by (1.6). After this we may determine u; (x, ¢) by the equality
”; (x, )=U,g0 (x, ff“‘f. =13 F;)Q i=1,2 (3.23)

This accomplishes the definition of the operator R (r).
The following theorem is valid:

Theorem 1. Assume that conditions (2.4) — (2.8) are valid. Then IN>0 so large
and T>0 so small that the operator R (r) realizes the into mapping of My (IV),
contraction in the norm of M. The fixed point

r=R(r) (3.24)
of this mapping possesses the following properties:
q (x, )=yx (x, 1); p(x, )= (x, 1) (3.25)
so that )
y(x,)e C"° (Dg) (N C** (D) (3.26)
Let further v, (x, 1), i=1,2 be defined as above. Then
2, (x, ) e CY® (D) i=1,2. (3.27)
Simultaneously with (3.26) and (3.27)
u; (x, 1) C*° (D) N C¥ (Dy); i=1,2 (3.26)

Equalities (3.25) — (3.28) mean that w; (x, 1), #; (x, 1), ¥ (x, 1), f(f) and w (x, 1),
defined by (1.3;) and respectively by (3.8), satisfy all the conditions of the original
boundary value problem (1.3,) — (1.3,,), so that its local solution exists and unique.

The proof of this theorem is quite trivial. Indeed, let M be equal to the maximum
maximorum of modules of all derivatives of all input data, entering the definition of
the operator R (r). Let us first subordinate 7>0 to the conditions

min ¥° (x)—NT=a>0; max y° (x)+-NT<1—a; 0<x<1;

min [7° (x)| —NT=a>0; (3.29)
ul (0)—u? (0)—2NT>0; uf (1)—u? (0)—2NT>0
This is possible by virtue of conditions (2.4) — (2.8).
Since u, (x, 1) €CQ (Dxr) we see from (3.11) and (2.35) that 3 p (r) such that
12256 (D) <C (N]1)

This means that 7>0 may also be subordinated to the requirement

1Po ()42 10 () —ttao (D112 p>0; &[0, 7] (3.30)



300 L. RUBINSTEIN

where p depends only on initial data. After this it becomes clear that whatever the
component S’ of r’=R(r), reM; (N), is, all its derivatives S, , entering the definition
of the space to which S’ belongs*) exist and satisfy the inequalities

Sl < Ciom (N)+Ciom (V1) (3.11)
This means that indeed 3N>0 so large and 7>0 so small that reMi, (¥) implies
lIrl<N (3.32)

m

so that the operator R (r) realizes the into mapping of M, (V).
Let
r’'=R(r); r*'=R ("), re My (N); r*eMs (N) (3.33)
Then, it is emphasized in section 2 ¥/, ¢/, p* and y*’, ¢*’ and p*’ are functions con-
tinuous in Dy.
Note that if F'is a differentiable function of a vector argument  (x, ¢), and X (¢, z),
Z (x, t) are differentiable functions of their arguments, then
IF (r (X (5, Z (x,1)), $)=F (r* (X* (s, Z* (x, 1), 5)| < C (N) {max | Z (x, 1) —
—Z* (x, t)|+max |X (s, Z* (x, 1)) —X* (s, Z* (x, D]+ (3.34)
+max |r (s, X* (5, Z* (x, 1)) —r* (s, X* (5, Z* (x, D)) I}
where N is the maximum maximorum of modules of derivatives of F(r), X (¢, z)
and r(x, t).
Using this remark, continuity of y’, ..., p*’ in Dy, definition of the operator R (r)

and well known properties of heat potentials and their derivarives [4]¥) we easily
conclude that

I =l <C (NI0) lIr=r*lly,  (C(NI)<1 Vi<T) 3:23)

Inequality (3.35) means that there exists the fixed point of the mapping. It is

a limit of a uniformly convergent sequence of vector functions r belonging to
M (N):

u; (x, t)=Lim uyy, (x, t); ¥ (x, )=Lim y, (x, 1);
q (x, ©)=Lim g, (x, 1); p (x, 1)=Lim p, (x, 1)

X (1, 2)=Lim X, (t, 2); X, (£, t)=Lim Xox (t, 7)
Z(x,t)=Lim Z,(x,1); T° (x,)=Lim T? (x, 1)

nswo  (3.36)

It follows from the definition of M, (V) that sequences
{a¥ ™y fdk 875 k=0,1,2,3 if m=0; k=0,1 if m=1 (3.37)
- {e*rmS,joxkerm}; S=y, q or p; k=0,1 if m=0; k=0 if m=1

*) Let E(x—¢&, t—1) be the fundamental solution of the heat conduction equation: E (x, f)=

=exp (—x%2 l/r_r.r- Then Vk=0, Ym=03C,, such that [°F" R (x, £, 1—7)/ax*" | < Cyn|d* ™ E (x—
—&, 1—1)/dx*ar™ | where R(x, &, =g (x, & t) or G (x, &, 1), :
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are uniformly bounded and equicontinuous in Dy. This means that not only sequen-
ces {um}s {¥a}s {a} and {p,} converge uniformly, but the same is valid for all sequen-
ces (3.37). Hence

u; (x, ) € C*° (Dyq) (Y CHE (Dyr); i=1,2; (3.38)
y (x! f): q'(x) I))p (x! r)EC"I‘O (EXT} ﬂ COJ (BXT)
Together with this

2, (x, £)=Lim vy, (x, ) e C**° (ﬁxr) N Ca;l (5“‘) N C(Dy) (3.39)

f()=Lim £, ()eC*(0,T) i=1,2

It is now obvious that
g (x,0)=y: (%, 1); p(x, )=y, (x, 1) (3.40)

Indeed, let us insert u; (x, ¢) and f(¢) into the right hand side of equations (2.23).
The solution of this system exists and is unique. The general theory of the Cauchy
problem for the non-linear partial differential equations of the first order [1] shows
that the solution of this system is the solution of the cquation (1.7) satisfying the
initial conditions

¥ (%, 0)=y°(x); ¢ (x,0)=4°(x); p(x,0)=p° (x) (3.41)

so that (3.40) is indeed valid in Dy, Quite analogously inserting w; (x, t) into the
right hand side of (2.24) together with values of y, (v) and g, (), determined by
u; (x, t) and their derivatives as in section 2, we conclude that (3.40) is true not only
in Dy, but in Dgy either.

Finally it is obvious that

u (x,0)€ C*° (D) N C* (Dy)
since it follows from the boundedness of Fy 4 in Dyq if F; are determined by equali-

ties (1.6). This means that u; (x, 1), ¥ (x, 1), £ (1), v, (x, t) and w(x, ) indecd satisfy
all the conditions of the original boundary value problem.

4. Conclusive remarks

The existence and uniqueness theorem, proved above, is essentially local. In fact,
one might apply the method of prolongation. However the very possibility of pro-
longation is strongly restricted by the requircmant

q(x,)#0 (x,t)eD; (5.1)

This requirement is not natural from the applied point of view. As it is demonstrated
in [2], [6] the non-monotonicity of the change of the shape of the lateral membrane
is a characteristic peculiarity of the behaviour of such biological objects as tubulus
of a T-system (tubular system) or fast muscle fibres or a planc epithelial tissue im-
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mersed into a not isotonic solutions. Therefore it is desirable to reject the restriction
(5.1). At the same time this restriction is essential for the theory above being far
not an artificial one. It becomes obvious if we replace the non-linear equation (1.7)
by the quasilinear hyperbolic equation of the second order, which may be obtained
by means of differentiating (1.7). The characteristic equation will be

Ye=pp (uy—u5) (dt{dx)* -y, (dt/dx)=0 (52)

so that lines f=const. are characteristic ones, and the line y,=0 is the line of the
parabolic degeneration. This means that the non-monotonicity of y leads to the
necessity to deal with the problem of an essentially different nature than that studied
above. At the same time the most natural initizl condition y° (x)=const. is excluded
from our censideration.

We also recall that the problem under censideration was formulated in [9],
[10] under the assumption that the lateral membrane does not resist deformations.
Only this assumption led to the very possibility of separating the kinematic and
diffusicn parts of the problem from the dynamical one. Therefore the use of the
system of the average volume velocity, lying in the basis of the consideration above,
loses, perhaps, its advants ge in more genercl cases. As far as we know a general
consideration of the problem remains untackled.
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Zagadnienie modelowe teorii transportu niecelektrolitéw
przez deformowalne blony pélprzepuszezalne

Teoria konwekcyjno-dyfuzyjnego transportu masy przez deformowalne blony pélprzepuszezal-
ne nie pirzeciwdzialajace znieksztalceniom, bedaca przedmiotem prac autora [9], [10], wymaga
analizy jej aspektéw matematyczaych.

W artykule rozpatruje si¢ zagadnienia modelowe, jednowymiarowej wersji tej teorii. Okresla
si¢ pola stezeti, predkodci ruchu wzdluz komorek rozdzielonych przez blone oraz ksztalt tej ostatniej
jako rozwiazanie zagadnienia brzegowego, sformutowanego dla uktadu dwoch nieliniowych réwnan
parabolicznych drugiego rzedu, rownania hiperbolicznego pierwszego rzedu i dwoch réwnan roz-
niczkowych zwyczajnych pierwszego rzedu z odpowiednimi warunkami brzegowymi i poczatkowymi.
Poprzez sprowadzenie zagadnienia do ukladu réownan catkowych dowodzi sig lokalnego istnienia
i jednoznacznofci rozwiazania, wykorzystujac twierdzenie o punkcie stalym.

Monenhﬂaﬁ 3ajaya TeOpHH OEperoca HENIEKTPC/AHTOB
yepe3 JediopMIpyeMbie NMOJIYNpoHimaeMbie MevGpPabl

Teopust KOHBEKTHBHO-THGDYIMOHHOIO Macco-TlepeHoca 4eped medopmupyembie TOMYIpo-
HULIAeMBIE MeMOpAaHEl HE CONPOTHMBAAtOINHECs medopMaudM, NMpelIcTaBleHHas B CIaTbex asTopa
[9], [10], Hy:knaeTcs B H3yYeHHH ee MATEMATHYECKHX ACIEKTOSB,

B craTee paccMaTpHBaeTCs MOHENbHAs 3adata ONHOMEDHON BepcHH 3T0# Teopuw. ITons
KOHLEHTPAIHH, CKOPOCTEll IBHKeHHA BIOJb H4eeK, pasieeHuslx MemOpanoit u dopma nocnensei
MOUIEKAT OIPENENSHHID KAK PelleHHe Kpacpoil 3anauu, cGopMyIHpOBAHHON IUt CHCTEMBI JBYX
HelHHelHBEIX TapabomHYeckHX ypaBHEHHI BTODOTO NMOPSIKA, THOepOONHYECKOTO YpABHEHHA Lep-
BOTO TMOPANKA H NBYX 0ObIKHOBEHHBIX mHbdEpPEeHIMATbPHEIX YPaBHEHHIT TEPBOTO TIOPSAIKA C COOT-
BETCTBYIOITHMH KPaeBBIMM W HAYaIbHBIMH ycnoeusmi. JlokaneHas Teopema CyIIECTBOBAHHS
M eNUHCTBEHHOCTH OKA3aHA C MOMOIIBIO CBEOEHMS 3a[1a4d K CHCTEME HHTErpPaNbHEIX YpABHEHHI
C NpHMEHEHHEM IPHHIAIE CkaThIX 0ToOpasmewil,







