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In the note the following formula
inf {F(x): Cx=y}=sup inf {F(x): @ (Cx)=¢ ()}
pED®

is proved for a general ®-convex case. Known results for convex cases are obtained as its consequen-
ces.

A great number of extremal problems with constraints can be formulated as
follows. Given a functional F on a set X, a mapping C from X into a set ¥ and
a point ye CX; a problem is looking for

inf {F (x): Cx=7}.

Let & be a family of functionals on ¥. A good situation is when the above problem
can be reduced to another problem with a scalar constraint by the formula
inf {F(x): Cx=F}=sup inf {F(x): ¢ (Cx)=¢ (7} . (1)
pED
Such reduction has been studied in [8] for the case when X and ¥ are Banach spaces,
C is a linear continuous operator and @=Y*. It is known also that formulae of
type (1) have a close connection with PONTRYAGIN Maximum Principle in an
abstract (nonHAMILTONian) form and with LAGRANGE multiplier methods.
This gives us a trustful motivation for investigating formulae of type (1). The proofs
of known such formulae base on the HAHN-BANACH theorem in a separation
form. Theseparation tcchnique has had a very big progress (for a survey of results on
separation in linear spaces see [3]), but examining the proofs of previous considerat-
ions of formulae of type (1) one can see that only separations of points from sets
are needed. These separations, of course, demand weaker conditions than for sepa-
rations of sets and then can be extended to more general cases,
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In the present note we prove (1) for a @-convex case and derive, as consequences,
known results about convex cases, including, in particular, some theorems of S.
ROLEWICZ [7], [8].

@-convexity was introduced by KY FAN [5]. After that numerous investigations
were devoted to this subject. Let X be an arbitrary sct and @ be a family of functio-
nals from X into exterd:d real line R=RuU{—w}uU{+w}. A subset K of X is
said to be @-convex if either K=X or K is ar intersection of subsets each of the form
{xeX: f(x)=7}, where fe® and yeR. These level sets of functionals in @ are named,
as customary, semispaces. Setting, for KC X and fe @,

h(K, f)=inf f(x),

xEK
we have

LemMA. A subset K of X is ®-convex if and only if it has the form
K=N{xeX:f(x)=h(K )} . (2)

Jed

Proof. The sufficiency is evidert by the definition of @-convex scts. We show the
necessity. Since K C{x:f(x)=h(K,f)} the right-hand side of (2) includes K. On
the other hand, if K is @-convex, then K is of the form K=" {x:f; (x)=y.}, where

T
[P, y.eR. We have h (K, f)>y,, then {x:f, (x)=h (K, f)}C {x:f. (x)=7.}. The-
rcfore K includes the right-hand side of (2). .5 |
The couple {X, @} is called a @-convexity space. A mapping C from {X, &}
into {¥, ¥} is called a cyrtomorphism if images and preimages of convex sets are
convex.

ProrosiTion. For a mapping C from {X, #} into {¥, ¥} be a cyrtomorph1sm it
is necessery and sufficient that:
(i) for every subfamily {g)C @, {y.} CR and y,e ¥ such that C~1 y,CJ {x: g, (x)<

<y.} there be pe ¥, fe R, satisfying
o (o) <P,
p (Cx)=f if g, (x)=7y, for all 7; that

(i1) . CX be Y-convex; and that
(i) for every {p,} C¥, {fs} CR and x,eX such that p, (Cxg)<pf, for some g, ,
fy from ment'oned fam’lies, there exist jed, deR, satisfying

flxo)<4d,
f(x)=0 if g, (Cx)=p, for all 0.

Proof. Necessity, (i) The sct 4: —Cﬂ{YEX g (x)=7p.} is ¥-convex and docs not

contain y,. Then there is pei?, feR, such that the semispace {ye¥: ¢ (y)=f} con-
tains 4 and not y,. Thus ¢ is a required functional;
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(ii) clear by definition;
(it} the set B: ={xeX: g, (Cx)=f, for all §} is B-convex and does not contain x,.

Thus a functional fe® such that the semispace {xeX: f(x)>4} contains B and not
Xy is a required one.

SurrFiciENCY. If K is a @-convex set, then K is of the form K="{x: g (x)=7.}.
If yo¢CK, then C~'y, CN\{x: g.(x)<y.}. The semispace {yeY: ¢ (»)=p}, where

@ is the mentioned in condition (i) functional, contains CK and not y,. Thus CK
is P-convex. Using (iii) we show in the same way that preimages of ¥-convex sets
are @-convex. B

We define a family @,,, associated with the family @ of functionals on X by
setting

Bepi={f& ROH: f (3, ry=r+7 (x), fe B} .

A functional F: X— R is said to be @-convex if its epigraph is @,,,~convex. A functio-
nal F: X—R is ®-convex if and only if

F(x)=sup [—g. (x)+a],

for some subfamily {g.} C @ and for all xeX, where a, are from R (sec [4]).

TueoreM. Let C: X—{Y, @) be a mapping and Fe R* (a functional from X into R)
such that for each r the set CK,: =C {x: F(x)<r} is ®-convex. Then, for je CX,

inf {F (x): Cx=F}= sup inf {F (x): p (Cx)=¢p (7)}. &)

@pED

Proof. Let a stand for the l>ft-hand side of (3) and b for the right-hand one. Ob-
viously a=b. Arguing by coniradiction, suppose a>b. Taking se(b, a) we see that
¥¢G,: =CK,. The hypothesis on @-convexity of G, and the above lemma entails
the existence of pye® such that g, (¥)<h (G, po). Henceforth

CK,C {yeY: po ()=h (Gs, 90)} C {¥: 90 ()>00 (P} -
Consequently
inf {F (x): 9o (Cx)=po (N} =5>b,

which contradicts the definition of number b. ]

ReMARK. (1) The hypothesis of the theorem is clearly fulfilled if C is a cyrtomorphism
for some ¥-convexity on X and Fis a W-convex functional.

(2) The idea of the atove proof is the same as in the known ones but a noteworthy
advantage here is that the separation is pzarformed without linear and topological
structures and basing only on a general @-convexity.
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CoroLLARY 1 [8). Let X be a linear space and Y be a linear topological space and
let C: X—Y be a linear operator, and let F: X— R be a convex functional such that,
Jor each r, CK,=C {x: F(x)<r} is closed. Then, for jeCX,

inf {F(x): Cx=F}=sup inf {F(x): <{p, Cx)={p, 7)}.
15 &d
Proof. Setting ®=7Y* one sees, by the assumption on closeness of CK,, the Y*-
-convexity of these scts, which, because of the theorcm, completes the proof. B

Cororrary 2 [7]. Let X be a linear normed space and Y be a linear topological
space and let C: X— Y be a linear operator possessing the property that C {xe X: ||x|| <
<1} is closed. Then, for y € CX,
inf {|ix]]: Cx=7}=sup inf {||x]|: <@, Cx)={p, 7>} .
pEY®

This statement about a probl m of moments is a particular case of Corollary 1
and was proved by M.G. KREIN [1] for the case when Y is finite-dimensional and
by A.G. BUTKOVSKI [2] for the case X=L, and ¥Y=1, and by S. ROLEWICZ [7]
for the case when X and ¥ are BANACH spaces.

COROLLARY 3 [8]. Let X=X, Y=Y,, C=C,, where X, is a linear normed space,
Yy is a linear topological space and Cy: ¥o— Xy is a linear continuous operator. Then,
for yeCX,
inf {Jxll: Cx=7}= sup inf {Ildl: <, Coyod=CF, ¥ob} -
YoEYo

Proof. Set @=7Y,. By compactness of the unit ball and the continuity of C in the
weak™® topology, the sets G,: =C {x:|x]| <r} are weak* compact. Since ¥ with
weak* topology is a HAUSDORFF space G, are closed and then are Y,-convex.

The three corollaries above are other versions of S. ROLEWICZ's results. They
can be proved also by HAHN-BANACH theorem.

To state other corollaries we consider the set X% for fixed «e(0, 1], of all function-
als on a linear normed space X, satisfying the HOLDER condition

S ) =f ()< Kfx— x|,

and f(0)=0. X* is clearly a linear space with ordinary operations of functionals.
It turns into a normed space by defining the following norm (see [6]):

I/ lla= sup (f09) (2),

=l =1
where f0* is the recession functional of degree « of functional /, that is a functional
on X with the epigraph
epi (f0%)={(x,r) e X x R: epif+(/x, %) Cepif, V1>0}.

Let X and Y be linear normed spaces and C: X— Y be a linear continuous operator.
For xeX, pe¥* we set (C%p) (x)=p (Cx). Then C* is « linear operator of Y* into
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&= (since [|C%0ll, < |IC|I* llell.). For xeX, fe X*, we set x (f)=f (x), then x is a linear
functional on X* We use ¢, (X) to designate the topology on X* defined by the
class X of linear functionals on X® that is the coarsest topology in which all xeX
are continuous. The basis of neighborhoods of the origin in X* consists of all sets
of the form

U={feX® |x,(f)| <&, i=1,..,n x,eX, e, €R}. @
C=is a linear continuous operator from ¥* with topology o, (¥) into X* with topo-
logy o, (X). Indeed,
(C)~'U={pe Y*: [x,(C*p)| <&, xeX}={pe ¥*: |Cx, (p)| <&, Cx;€ Y}

is a neighborhood of the origin of ¥*in topology o, (¥) for each U of the form (4).
We have an analogy of ALAOGLU theorem: the unit ball S: = {feX*: | f|,<1}
is compact in topology o, (X) (for the proof see [6]).

Let us define on the encountered set X of linear functionals on X* the following
addition and multiplication with scalars (different from the linear operations in
given linear rormed space X):

(1@ x3) (N)=x, (f)+x2 (f), for x;, x,€X, fe X",
(yox) (f)=yx(f), for xeX, yeR.

We denote the linear hull with respect to @ and o by Lin X. Next we extend C to
the whole Lin X by the formula

(Cx) (p)=x (C*p), for xeLin X, pe Y=
Then we still have x (f)=f(x) for xeLin X, feX*. In fact, x (f)=(Zy,0x) (f)=
@
=2y, x, (f)=2Zp.f(x)=f (Zy;0x)=f(x). (Because Lin X is a linear dual space

®

of X%). Note that the topology on X* defined by Lin X also admits the basis (4),
i.e. it coincides with o, (X). Indeed, for a neighborhood in the basis of the topology
a, (Lin X)

V=[fE'X“:

,i' Yo x,(f)|< e ¥ eX, aieR},
@
=1

one finds a neighborhood in the basis (4)

U={rexi1x () <pi]
LY

contained in V. Thus o, (Lin X)=o0, (X).

COROLLARY 4 [6]. Let X and Y be linear normed spaces and let C: X— Y be a linear
continuous operator. Then, for feC*Y®, O<a<l,

inf {lloll.: g€ Y%, Cop=f}= sup inf {lgl.: p€ Y*, ¢ (Cx)=/(x)}-

x€Llin X
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Proof. Set @=Lin X. By the compactness of the unit ball of ¥*in o, (Y) and the
continuity of C? it is easy to see the Lin X-convexity of the sets G,: =C* {peY*:
Hlplla <} - |

Let us consider now convex functionals on a linear normed space X. Inasmuch
as convex functionals different from constants may be HOLDER continuous with
exponent « only if =1, expecting a similar assertion as in Corollary 4 we need to
investigate the set X° C X* of all LIPSCHITZ convex functionals on X. We see that
the operator C!; ¥1—=X* defined by (Clp) (x)=¢ (Cx) is also an operator of ¥°
into X°. In fact, for pe Y9, x;, x,€X and y€[0, 1] we have

Clyp (yxﬁ(l —9) x3)=p (yCx;+(1—y) Cx)<
<ypp (Cx1)+(1—9) p (Cxz)=7 (C*p) (x:1)+(1—7) (C'o) (x2),
that is C'peX°.

CoROLLARY [6]. Let X, ¥ and C be as in Corollary 4. If fe C* ¥°, then
inf {lgll;: pe ¥°, C* p=f}= sup inf {llgll;: pe¥°, ¢ (Cx)=f (%)} .

xelin X
Proof. Consider the mapping C': {Y° Lin Y}—{X° LinX}. We show at first
the closedness in o, (¥) of SN Y° (S is the unit ball of ¥*). Assume ¢,e5N Y%, p,—o
in o, (¥). By compactness of S we have g&S. ¢ is also convex since, for y, y,€Y,
and ye[0, 1],

@ (=) y2)= lim g, (prs+(1 =) y2) <
< lim [yg, (0)+1—p) ea )1=7p (P)+T—1) 0 (33) .

A=pE

Hence SN Y is compact in o, (¥) and then, because of the continuity of C" the set

C' {pe Y |p|,<r} is Lin X-convex. BB

In [6] there were applications of Corollaries 4 and 5 in the obscrvation th_éory.

But it should be pointed out that some notations in the corresponding assert ans
in [6] are incorrect.
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Wzér na ekstremum w przypadku &-wypuklosci

W ogolnym przypadku @-wypuklym dowodzi sie nastepujacego wzoru

inf {F(x): Cx=y}=sup inf {F(x): 9 (Cx)=p (3}
wE®
z ktérego wynikaja rezultaty znane dla zadan wypuklych.

@opmyna SKCTpeMYMA ng (-BRIIYKAOro CIy4as

B sToll paboTe MOKA3LIBAETC Clenyolias dhopMyna

inf {F(x): Cx=y}= sup inf {F(x): ¢ (Cx)=0 ()}

pED

nna ofuero §-puimyrnoro cnydad. HexoTophle M3BECTHBIE PE3YIBTATHI INA BEIMYKAEIX CIOYYAEB
CUBTAIOTCA €€ CNeNCTBHAMH.






