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inf {F(x): Cx= y}= sup inf {F(x): 'fl (Cx)=f/1 cY)} 

is proved for a general <P-convex case. Known results for convex cases are obtained as its consequen
ces. 

A great number of extremal problt ms with constraints can be formulated as 
follows. Given a functional F on a set X, a mapping C from X into a set Y and 
a point yE CX; a problem is looking for 

inf {F(x): Cx=ji}. 

Let lP be a family offunctionals on Y. A good situation is when the above problem 
can be reduced to another probkm with a scalar constraint by the formula 

inf {F(x): Cx=ji}= sup inf {F(x): q; (Cx)=q; (Y)}. (1) 
q>E<P 

Such reduction has been studied in [8] for the case when X and Y are Banach spaces, 
C is a linear continuous operator and rfJ= Y*. It is known also that formulae of 
type (I) have a close connection with PONTRYAGIN Maximum Principl·~ in an 
abstract (nonHAMILTONian) form and with LAGRANGE multiplier methods. 
This gives us a trustful motivation for investigating formulae of type (1). The proofs 
of known such formulae base on the HAHN-BANACH theorem in a separation 
form. The separation technique has had a very big progress (for a survey of results on 
separation in linear spaces see [3 ]), but examining the proofs of previous considerat
ions of formulae of type (1) one can see that only separations of points from sets 
are needed. These separations, of course, demand weaker conditions than for sepa
rations of sets and then can be extended to more general cases. 
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In the present note we prove (1) for a ci5-convex case and derive, as consequences, 
known results about convex caEes, including, in particular, some theorems of S. 
ROLEWICZ [7], [8]. 

ci5-convexity was introduced by KY FAN [5] . After that numerous investigations 
were devoted to this subject. Let X be an arbitrary set and IJ> be a family of functio
nals from X into exterd:d real line R=R u {- oo} u { +oo }. A subset K of X is 
said to be ci5-convex if either K=X or K is an intersection of subsets each of the form 
{xEX:f(x);;:: y }, where jEeP and yE.R. These kvd sets of functionals in ci5 are named, 
as customary, semispaces. Setting, for KC X and jE IJ>, 

h (K,f)= inf f(x), 
xEK 

we have 

LEMMA. A subset K of X is ci5-convex if and only if it has the form 

K= n {xEX:f(x);;::h(K,f)} . (2) 
fE'!J 

Proof. The sufficiency is evider.t by the definition of ci5-convcx ~-ets. We show the 
necessity. Since KC{x:f(x);;::h (K,f)} the right-hand side of (2) includes K. On 
the other hand, if K is $ -convex, then K is of the form K=n {x:/, (x)~y.}, where 

• 
f,EcP, )\ER. We have h (K,j,);;::y., then {x :/, (x);;::h (K,/,)} C {x:/, (x);;::y,}. The-
refore K includes the right-hand side of (2). 11 

The couple {X, lP} is called a ci5-convexity space. A mapping C from {X, ci5} 
into { Y, P'} is called a cyrtomorphism if images. and preimages of cor.vex sets are 
convex. 

PROPOSITION. For a mapping C from {X, lP} into {Y, P'} be a cyrtomorphism it 
is necessery and sufficient that: 
(i) for every subfamily {g,) C q,, {y,} C Rand y 0 E Y such that e-r y 0 C U {x: g, (x)< 

< y,} there be cp E P', fJ ER, satisfying 

rp (yo) <fJ' 
rp ( Cx);;:: fJ if g, (x);;:: y, for all r; that 

(ii) ex be P'-convex; and that 
(iii) for every {cp~} CP', {/]0 } CR. and x 0 EX such that cp~ (Cx0)<fJ~ for some cp~, 
fJ~ from ment'oned fam'lies, there exist ji=<P, oER, satisfying 

f(xo)<o, 

f(x) '); o if cp0 (Cx);;::fJ0 for all(). 

Proof. Necessity. (i) The set A: =Cn{xEX: g, (x) ;;:: y,} is P'-convex and does not 
' 

contain y 0 • Then there is q;E~u, /leR, such that the semispace {yEY: rp (y);;::fJ} con-
tains A and not y 0 • Thus rp is a required functional; 

-------------------------------------------------------------------------------
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(ii) clear by definition; 

(iii) the set B: = {xEX: rp9 (Cx)~ /39 for all 8} is (/5-convex and does not contain x0 • 

Thus a functionaljE(/5 such that the semispace {xEX:j(x)~<'l} contains Band not 
x 0 is a required one. 

SuFFICIENCY. If K is a (/5-convex set, then K is of the form K=n{x: g, (x)~y,}. 
t 

If y 0 tf:CK, then c- 1y 0 Cn{x:g,(x)<y,} . The semispace {yEY:rp(y)~/3}, where 

rp is the mentioned in condition (i) functional, contains CK and not y0 • Thus CK 
is P"-convex. Using (iii) we show in the san-.e ·way that preimages of P"-convex sets 
are (/5-convex. 1111 

We define a family q>ep£ associated with the family q5 of functionals on X by 
setting 

A functional F: X-> R is said to be (/5-convex if its epigraph is cJ> ep 1-convcx. A functio
nal F: X-> R is (/5-convex if and only if 

F(x)=sup [ - g, (x)+a, ] , 

for some subfamily {g,} C q5 and for all xEX, where a, are from R (sec [4]). 

THEOREM. Let C: X->{Y, q>} be a mapping and FERx (a functional from X into R) 
such that .for each r the set CKr: = c {X: F (x):::; r} is ql-convex. Then' .for yE ex, 

inf {F(x): Cx=y}= sup inf {F(x): rp (Cx)=rp (ji)}. (3) 
cpE<!> 

Proof. Let a stand for the l•~ft-hand side of (3) and b for the right-hand one. Ob
viously a~b. Arguing by con1ndiction, suppose a> b. Taking sE(b, a) we see that 
yrf=Gs: =CK5 • The hypothesis on (/5-convexity of Gs and the above lemma entails 
the existence of rp 0 E(/5 such that rp0 (y)<h (G., rp 0 ). Henceforth 

Consequently 

inf {F(x): rp 0 (Cx)=rp0 (ji)}~s>b, 

which contradicts the definition of number b. • 
REMARK. (1) The hypothesis of the theorem is clearly fulfilled if C is a cyrtomorphism 
for some P:-convexity on X and F is a IJI-convex functional. 

(2) The idea of the a cove proof is the same as in the known ones but a noteworthy 
advantage here is that the separation is performed without linear and topological 
structures and basing only on a general (/5-convexity. 
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COROLLARY [8] . Let X be a linear space and Y be a linear topological space and 
let C: X-> Y be a linear operator, and let F: X-> R be a convex functional such that, 

for each r, CK,=C {x: F(x)~r} is closed. Then, for yECX, 

inf {F(x): Cx=.Y}= sup inf {F(x): <<rp, Cx)=<rp, y)}. 
fPE Y* 

Proof. Setting cfl= Y* one sees, by the assumption on closeness of CK, the Y*
-convcxity of these sets, which, because of the theorc m, completes the proof. la 

CoROLLARY 2 [7]. Let X be a linear normed space and Y be a linear topological 
space and let C: X-> Y be a linear operator possessing the property that C {xEX: llxll ~ 
~ 1} is closed. Then, for ji E ex, 

ir.f { lixll: Cx= ji} = sup inf {!lxll: < rp, Cx) =<rp, ji)} . 
<PE Y* 

This statemer:t about a probl m of moments is a particular case of Corollary 
and was proved by M.G. KREIN [1 ] for the case when Y is finite-dimensional and 
by A. G . BUTKOVSKI [2] for the case X=Lp and Y= lp and by S. ROLEWICZ [7] 
for the case when X and Y are BANACH spaces. 

CoROLLARY 3 [8]. Let X=X;, Y= Y~, C=C~, where X0 is a linear normed space, 
Y0 is a linear topological space and C0 : Y 0 ->X0 is a linear continuous operator. Then, 
for YE ex, 

inf {llxll: Cx=.Y}= sup inf {llxll: <x, CoYo)=(ji, Yo)}. 
)'oE Yo 

Proof. Set cf>= Y0 . By compactness of the unit ball and the continuity of C in the 
weak* topology, the sets G,: =C {x: llxll ~ r} are weak* compact. Since Y with 
weak* topology is a HAUSDORFF space G, are closed and then are Y0 -convex. 11 

The three corollaries above are other versions of S. ROLEWICZ's results. They 
can be proved also by HAHN-BANACH theorem. 

To state other corollaries we consider the set X", for fixed aE(O, 1], of all function
als on a linear normed space X, satisfying the HOLDER condition 

and f(O)=O. X" is clearly a linear space with ordinary operations of functionals. 
It turns into a normed space by defining the following norm (see [6]): 

llfll. = sup (fO") (z) , 
Hz 11,;; 1 

where fO" is the recession functional of degree a of functional[, that is a functional 
on X with the epigraph 

epi (/0") = { (x, v) E XX R: epif +Ux, }."v) Cepif, V }. > 0} . 

Let X and Y be linear normed spaces and C: X-> Y be a linear continuous operator. 
For xEX, qJEY" we set (C"V?) (x)=cp (Cx) . Then C" is ~~ linear operator of Y" into 

---~----------------------------------------------------------
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xa (since IICaqJIIa <::; IICIIa 111!lla). For xeX,jE xa, we set X (J)=J (x), then X is a linear 
functional on xa. We use a a (X) to designate the topology on xa defined by the 
class X of linear functionals on xa, that is the coarsest topology in which all xeX 
are continuous. The basis of neighborhoods of the origin in xa consists of all sets 
of the form 

(4) 

ea is a linear continuous operator from P with topology a, (Y) into x~ with topo
logy a a (X) . Indeed, 

(C«)- 1 U= {1! E P: lx;(C« 1!)1 <si, xieX}= {1! E Y«: ICxi (1!)1 <si, Cxi E Y} 

is a neighborhood of the origin of Pin topology a a (Y) for each U of the form (4). 
We have an analogy of ALAOGLU theorem : the unit ball S.: ={leX«: 11/11,<::; 1} 
is compact in topology a a (X) (for the proof see [6]). 

Let us define on the encountered set X of linear functionals on xa the following 
addition and multiplication with scalars (different from the linear operations in 
given linear 1:ormed space X): 

(x1EB x2) (J)=x1 (J)+x2 (J), for x1, x 2 eX, feX", 

(yox) (J)=yx(J), for xeX, yeR. 

We denote the linear hull with respect to EB and o by Lin X. Next we extend C to 
the whole Lin X by the formula 

(Cx)(qJ)=x(C"qJ), for xeLinX, qJEP. 

Then we still have x (J)=f(x) for xeLin X,feX«. In fact, x (J)=(.Ey, o xi) (f)= 
@ 

=Ey1 x 1 (J)=EyJ(x1)=J(Ey1 o xi)=f(x). (Because Lin X is a linear dual space 
@ 

of X«). Note that the topology on xa defined by Lin X also admits the basis (4), 
i.e. it coincides with a a (X). Indeed, for a neighborhood in the basis of the topology 
a" (Lin X) 

ki 

V={feX": J2 y~o x~ (f) j< si, x~EX, si eR}, 
@ 
J~ 1 

one finds a neighborhood in the basis ( 4) 

U={feX«: lx~ (J)I <i~~l} 
contained in V. Thus a a (Lin X)= a a (X) . 

CoROLLARY 4 [6]. Let X and Y be linear normed spaces and let C : X--+ Y be a linear 
c011tinuoils operator. Then, for feC" Y", 0 <a<::; I, 

inf {lliPIIa : qJ E P, C"qJ=/}= sup inf {ll1!lla: rp E Y", qJ (Cx)=f(x)}, 
xeLin X 
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Proof. Set q>=Lin X. By the compactness of the unit ball of Y" in a. (Y) and the 
continuity of c•, it is easy to see the Lin X-convexity of the sets G,: =C" {qiEY": 

: llqi ll .:::::s}. il 
Let us consider now convex functionals on a linear normed space X. Inasmuch 

as convex functionals different from constants may be HOLDER continuous with 
exponent a only if a= 1, expecting a similar assertion as in Corollary 4 we need to 
investigate the set X° C X 1 of all LIPSCHITZ convex functionals on X. We see that 
the operator C1: Y1---+X1 defined by (C1qi) (x)=qi (Cx) is also an operator of Y0 

into X 0
• In fact, for qi E Y 0 , x 1 , x 2 EX and yE [0, 1] we have 

C1qi (yx 1 +(1-y) x 2)=qi (yCx1 +(l-y) Cxz)::;:; 

::::;yqi (Cx1)+(1-y) qi (Cx2)=y (C1 q,>) (x 1)+(l-y) (C1qi) (x2), 

that is C1 qi E X 0 • 

COROLLARY [6]. Let X, Y and C be as in Corollary 4. If jE C 1 Y 0
, then 

inf {l\qill1: qi E Y 0
, C1 qi=f}= sup inf {!1qill1: qiEY0

, qi (Cx)=f(x)}. 
xELin X 

Proof. Consider the mapping C1: {Y0 , Lin Y}---+{X 0
, LinX}. We show at first 

the closedness in a 1 (Y) of S n Y 0 (S is the unit ball of Y1). Assume qi,,ES n Y 0
, qi11 ---+qi 

in a1 (Y). By compactness of S we have qiE.S. qi is also convex since, for YJ, y 2 EY, 
and J'E [0, 1], 

qi (yYt + (1-y) Yz)= lim (/Jn (YY1 +(1-y) Yz)::::; 

n->ro 

Hence SnY0 is compact in a1 (Y) and then, because of the continuity of C 1 the set 
C 1 {qi E Y 0

: llqil\ 1 ::::;r} is Lin X-convex. ·· lfi 
In [6] there were applications of Corollaries 4 and 5 in the observation th~ory. 

But it should be pointed out that some notations in the corresponding asserti Jns 
in [6] are incorrect. 
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Wzor na ekstremum w przypadku (l)-wypuklosci 

W og6lnym przypadku <1>-wypuklym dowodzi si<; nast<;puj<~ccego wzoru 

inf {F (x): Cx= y}= sup inf {F (x): 'fl (Cx)= !/1 {Y)} 
'PEW 

z kt6rego wynikaj~ rezultaty znane dla zadan wypuklych. 

B noli pa6ore ,noKa3bTsaercH cne,nyfOI.L(all ~bopMyna 

inf {F(x): Cx=y}= sup inf {F(x): 'P (Cx)=!/1 ()1)} 
q> E <I> 

,nna o5Il.(ero <jJ-BbiiiyKnoro CJI)''laH. HeKOTOphie H3BeCTHbie pe3yJ1hTaThi ,[(JI51 Bh111)'KJihiX Cny'laeB 

C'JlHafOTCll ec CJie,[(CTBH5IMH. 




