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Based on the classical methods of the variational calculus a practical method of construction
of an optimal feedback control has been given in the paper. In consequence, it yields Weierstrass
sufficient conditions for a minimum.

Introduction

The control theory literature has been concerned mainly with sufficient condit-
ions for global optimality, the most well-known result being the Hamilton-Jacobi-
-Bellman theorem [2]. This, however, requires the existence of a feedback control
and a solution to the Hamilton-Jacobi partial differertial equation. The local theory
treats mainly the exact expression Al of a change in a functional due to a change
in control [3]. A common technique is to add to the integrand of the functional an
exact differential in order to transform the original problem into a simpler one
(see, e.g. [2]; on the classical technique [1]). 5

In the calculus of variations there exists a technique of calculating that exact
differential. It is based on the theory of the field.

The present paper examines the case when the differential form ydx-Hdr becomes
exact in a control problem, which then gives a method of constructing an cptimal
feedback control and, in consequence, the Weierstrass sufficiency theorem.

1. Preliminary notes and the algorithm of Huygens
for on optimal controi

1. We shall be dealing with a Borel subset U of R". The assumption that U is
Borel is connected with the maximum principle. A Lebesgue measurable function
u: [0, 1]- U will be called a control or an admissible control. The choice of the
time interval [0, 1] is a normalization for notational convenience.
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Let f(t, x, u) be a vector function f:[0,1) X R*"X R"—=R", and let L (¢, x, u) be
a scalar function defined n [0, 1]X R*"X R,.

We suppose, for each f in [0,1] and u in U, that the functions (x)—f(t, x, 1),
(x)—L (t, x, u)are C* in R", and the functions (¢, x, v)—f (¢, x, v), (t, x, W)—=L (¢, x, 1)
are continuous in [0, I]X R*"X R".

An admissible trajectory x corresponding to a control u is an absolutely conti-
nuous function x: [0, 11— R" satisfying

X (O)=f(t, x (1), u(®), almost everywhere in [0, 1]. ' (1.1)

2. The class of all admissible pairs (x (£), u (£)), 7€[0, 1], such that in the first
extremity x (0)=0 and in the second- x (1)=e where e is a fixed point in R", will be
denoted by M.

Our main problem is the following:

Find a minimum of the integral

I(x, u)=f L (z, x (2), u(v)) dv (1.2)

__‘"aldng” the pair (x (¢), u(¢)) from among all palrsof M.

Further, we shall consider not only a single minimum problem, but various
minimum problems which arise when the second extremity of a trajzctory takes
different positions in the space R"*! of the variables (¢, x). The integrand L and the
first extremity will be kept fixed.

To this effect, we denote by M (7, x) the class of all admisible pairs (x (), u (),
&[0, 7], such that x (0)=0, x ()=x, 0<t<1, xeR". The same symbol x used for
a trajectory and a point of R" will not lead to confusion, for its meaning will be
clear from the context. In the minimum problem for this class we take the integral
in (1.2) in the interval [0, 7], i.e. '

It (x, u)= f L (7, x (@), u(®) dr. (1.3)

3. A pair (x(z), u(z)) of M (4, x) will be said to satisfy the maximum principle
(see, e.g. [2]) if there exists an absolulely continuous vector function y: [0, 1]—=R*
such that

@) 7 @=~f(x@®, u@) y O+IL: (7, x (1), u(®) ,
D y@Sf(nx@),u (1:)) — 2L (r, u(7), x (v))= (1.4)
=sup {y (¥) f (7, x (z), W)— AL (z, x (z), u): ucU}
where we consider only the situation when A=1.

4. Suppose now that, in any way (for example from the maximum principle
and the existence theorems), we are able to suspect that, for the pair (x° (v), «° (v)),
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7€[0, 7] of M (¢, x), integral (1.3) attains its minimum in the class M (¢, x). We denote
the value of this suspected minimum by S (z, x). ;

4
More generally, we can define S (7, x)= - inf © I*(x,u)= inf [ L (7,x(7), u
(x, u)eM (r, x) M(t,x)0
(r)) dr. The function S (f, x) is then always defined in M (7, %) and called the

value function. The S(z,x) may have the values —oco and --oo, the latter
whenever the class M (¢, x) is empty. We shall assume, however, in the whole
paper. that M # 0 and so is M (t,x) for some (7, x). It is t_:léér that the pair
(x° (¥), u® (7)), 7€[0, 7] and the value S (f,x) depend on (4 x)e[0, 1]xR".
Thus S(f, x) now becomes a function of (z, x). Evidently, it vanishes at the
point (0, 0), so that we can also write (1.3) along (x° (), ¥° (v)), = €]0, 7],
as the difference S(f,x) — S (0, 0). We shall write @,=&, (1, x, u) for
the exact derivative S,~+xS,=S8,-+fS, of the function S (¢, x) if it éxists'. Then
S (¢, x) — S (0, 0) is along (x° (v), u° (2)) of M (1, x) the integral of ®,. Of course,
the pair (x° (z), u° (), 7€[0, 1] must satisfy the inequality I (x, 1) =17 (x° #°), ie.,
if @, exists, there is '

[{L G x@),u@) s o (7, x (), u( 7))} >0 (1.5)

for all pairs (x, u) of M. This inequality is certainly true for all admissible triplets
(7, x, ),

Lt x,u)=Dq (1, x,u) . (1.6)

5. We shall now reformulate the consideration of 4. in the following algorithm
of Huygens (comp. [5]). Let M be a class of pairs (x, «) described in 2., and let (x°, %)
be a member of that class. If there exists an exact derivative @, such that L=@,
along (x°, «%) and that L> @, along all pairs (x, u) of M, then 7 (x°, u®) is the mini-
mum of I (x, u) for (x, uw)eM.

The proof of this algorithm is evident. Indeed, I (x, ©) is, for (x, #)eM, not less
than the corresponding integral of &, and we can take the latter along (x°, u%)
without altering its value which is then 7 (x°, u®).

2. A method of feedback control

Deznote by V the set in R*** covered by graphs of all admissible trajectories,
and let D; be any domain in V containing the interval [0, 1]. Let, further, # (¢, x)
denote a vector-valued function defined in D; with values in U.

Derinirion 2.1, We call i (7, x) an optimal feedback control if there exists an exact
derivative

Po==S,+ %Sy 5,+F S, @1
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such that, for all admissible triplets (¢, x, u) (i.e. (£, x) € Dz and those u (1) € U for
which the graphs of the corresponding trajectories lie in D),

L (f, x, H}} @o (!s x: “) (2‘2)
with equality when u=i.

Let M, denote a subclass of M of those pairs (x, u) whose graphs of trajec-
tories lie in D;. Then, by the algorithm of Huygens, it is evident, if an optimal
feedback control i (1, x) exists, that each pair (x°(2), @ (¢, x° (1)) of My, affords
a minimum to I (x, u) relative to pairs (x, u) of Mp..

In 4. (§ 1) we started from the function S which, of course, determines @,.

Conversely, @, determines S for an additive constant. Our task is to show that
when @, exists it is also completely determined by .

To this effect, we observe, by (2.2), that the difference L — @, regarded as a funct-
ion of u only attains its minimum equal to zero at u=#. This requires that, if we
assume J (1, x)=S; (¢, x), then

Sy=L—fS;=L—fy (2:3)

at y=a. If we put S, of (2.3) in inequality (2.2), then the latter is known as the Ha-
milton-Jacobi-Bellman sufficient condition for global optimality (see [3]), and if
we denote —H (¢, x, i (1, x), Sy) =L (¢, x, i (t, x)) — f (£, x, @ (1, X)) S« (1, x), then
(2.3) becomes

Sx= -H (t! X, i {t: x)’ Sx) s (24)

i.e. the Hamilton-Jacobi-Bellman differential equation. Simultaneously, by the
above
H(t,x,u(t,x), 7 (t,x))=max {y (¢, x) f(t, x, ) =L (t, x, u)} (t,x)eD; (2.5)
or '
H (1, x,4(t, x), 7 (1, x))—H (1, x, 4,  (, x)) =0 (2.6)
for all admissible (7, x, u). The left-hand side of (2.6) is known as the extension o

the excess function of Weierstrass (see [4]).

We may also express (2.3) by saying that for rectifiable curves C lying in a simply
connected subdomain of D;, the curvintegral

[ (L (t, x, @t X)) —f (1, x, @ (1, X)) 5 (1, x)) dit+7 (1, x) dx @.7

depends only on the endpoints of C. This expression is termed Hilbert’s independent
integral: its value, on account of (2.3), is clearly S (B)-S(A4) where 4, B are the
endpoints of C.

We shall term Dz-levels the set of points PeD; on which S (P) is constant. If we
denotz the left-hand side of (2.6), by E, then we have L= ®,+E and therefore, for
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any pair (x, u) of M whose arc of the trajectory C joins in D; two levels S=.S; and
S=953,

f L(t,x,u) dt=S,—5,+ j Edt . (2.8)
4 C

This is an extension of the famous formula of Weierstrass, whose equivalent in the
classical calculus, according to Young [5], has revolutionized the variational calculus.
In contrast, to date, formula (2.8) or its analogon, that is, the exact expression for
AI=1I(x, u)— S (1, e) (see [4]), do not appear to have played a central role in modern
control theory, although the expressions AI do appear as tools in the derivation of
optimization algorithms (see [3]).

3. The necessary exactness condition

The exactness condition that we have to study is that the expression
7 (t, x) dx+-(L( t, x, u)—F (t, x) %) dt (3.1

reduces to an exact differential dS in the variables (f, x) when we substitute x=

=f(t,x,u) and u=i (¢, x); 7 is defined as in § 2. We wish to find out when this
oceurs.

To this effect, we shall enlarge our setting by using the transformation
(t, )= (t,x), (t,x)eDs , (3.2)

in which the time 7 is unchanged. This means that x is replaced by a function x (¢, o)
where (#, o) belongs to some open simply connected set (0, 1) x G of R™**. Next,
we enlarge (3.2) to a map of triplets

(t, 0, 6)—(t, x, %) (3.2
by putting x=x,-x,4, i.e. we substitute for the variable X the total derivative of
x (1, o). Evidently, now

f(t, x(t, o), u)=x,+x,6. (3.3)

Further, the dot over a function of (7, ¢) will always denote the total derivative.
We suppose that the function x (¢, ¢) defined in (2.27)1s C*in (0, 1) X G, and 7 (¢, 0)=
=J(t,x(t, 0)) is C! there.

Now, we study under what additional circumstances a family of curves of (0, 1) X G
given by a differential equation

Xg (8, 0) 6=—x, (1, o) +f (1, x (1, 0), it (¢, x (1, 0))) (3.3%)

is such that map (3.2°) turns expression (3.1) into an exact differential dS in the
variables (¢, ¢). Then, the integral of (3.1) on an arbitrary curve of (0, 1) X G depends
only on the endpoints. We call it the corresponding Hilbert independent integral.
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We. shall suppose that, for the functions L (2, o}=L‘(r, x(t,0), (% cr))),
Ft, d=f(t, x(t, 0), 7 (1, x (¢, 0))), there exist contiruous derivatives L, (t,0), 1, 0)
Lt x, (1, x(t, 5))), a_o-f(r, x, i (1, x (1, 0))), for each fixed

o

i)

in (0, )X G and —

a
(t,x)eD:, in (0,1)X G and they satisfy at (1, x), x=x (t, ), the relations:

or ¢

-6;5%‘.: (¢, x, 4 (t, % (2, 0)))+Lx (4, 2, i (1, x (1, 0'))) x, {1, 0),

o @ | | ()
-5';:—6'?,41, X, @ (1, x (1, 0))+f (6 x4 (4 x (8 0))) %, (2, 0).

We nots at once that the induced feedback control @ (8, x (¢, o)) expressed by
map (3.2) satisfies, {or (¢, 0) €(0, 1) % G, the induced maximum relation

7t x(t, 0)) j'(f, x (2, ), @ (t,x(t,0))—-L(t,x(t, 0), i (t, x (2, a)))::
=max {7 {t,x(t, 0)) f(t, x (t, 0), u) =L (1, x (1, 0), u)} . (3.3"")

It is clear that one of the necessary and sufficient conditions for the existence
of S (¢, o) is satisfaction of the relations

Salajzsa_ra-‘! Sc‘rzslap T‘JJII:]: veny 112, o‘m(o‘l, ey o}n) = (3‘4)

Let 1<i, j<m be arbitrarily fixed. After substitution of (3.2”) in (3.1) we casily get
from the expression obiazined that
4 i 2 g 7 i 3.5
Sa!u'_i-_'_Sajol-“' E&:(}'-\sf}_a—ci(}’x% =X, yaj_laj)'ai: ) ( . )
g 8 o
Sayr— .S.‘“Q:F (Fxa)— -az" (Fx,+(L—5%)) . (3.6)

We calculate exactly the right-hand sides of (3.5) and (3.6). Thus

a * -
“ar U;x"‘)zﬁx"l"‘}-x"’i Fi=Xg, FH9%g 0 H g, F:=7), 3.7
hao'_- (}71'3 =}‘ja'! Xr+fxa,t=fﬂ 5:+j"x‘f;f+j';°'1 (x, —A‘T) v (3.8)

Note that, by (3.5),

Xa, (37—)7:)—J7a1 (l’,—i)= - Z‘ (xrr( J-':aj _y-a“ on) d.-‘=
J=1

== D (Se0;=Se;0)05. (39
J=1
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% We also note that, since (2.5) is satisfied (comp. also (3.3""’)), remembering
(3.3),

a R T T Y X g ..
a—di(y-’f—L) s Gf—L)=F,, X+5ifs Xo,— L Xo,+ 7o, {7 @, x) x

x f(ir, x, @ (t, x (1, 0))) -L (r, x, @ {t, x (1, )))}=F;, X+ xo—Lx X,, (3.10)

where the ¢, x in brackets are momentarily fixed points. By substituting (3.7), (3.8)
and (3.10} in (3.6), we find that

Sa[r_Sraiz:'-’a'; f_}m—}—j'f\_—Lt]— Z(Sa'aj_sa_,a‘.} d-i ‘
i=1

Herce
&y e 1 :
xrrl- [y_—i_.}yx_f-:]:(sc,t_Sur[-}‘[_‘}-‘ (SaiaJ_Sa}a'i) Gy (311)
i=1

Héi‘e, by (3.4), the summand on the right vanishes and, therefore, so do both sides
of (3.11) for each i, i=1, ..., m. If we change the order of the two fectors on the
left, the resuiting set of equaticns, cobtained from the vanishing of the left-hand
side for various 7, may now be written as the single vector equation

U+3f—LJ x,=0. (3.12)
This equation will be termed the induced conjugate differential equation.

The induced triplet (o, u*, p¥), when o, u¥=i (¢, x (1, 6)), ¥y =y* (1, o) satisfy
(3.3%), (3.3”"), (3.12), respectivaly, will be referred to as satisfying the induced
maximum principle.

We have thus proved the following

Tutorem 3.1. Let transformation (3.2) be such that x (1, o) is C* in (0, )% G, 7 (¢, 0)
is C! there, and there exist L,, f, that sctisfy relations (3.3""). Moreover, (3.2) turns
the expression (3.1) into an exact differential dS in (t, ©). Then, for each induced tra-
Jectory o under control i (t, o)=i (1, x (f, &), i.e., satisfying (3.3"), there exists an
induced conjugate function y (¢, o) such that the triplet (o, i1, y) satisfies the induced
maximum principle. The triplets (o, i (1, 0), 7 (1, 0)) also satisfy the induced maximum
principle.

Let now (3.2) be the identity map, so that x, is the identity matrix and let the
assumptions of theorem 3.1 be satisfied; setting there the variable x instead of o
and taking the open simply connecied sct D; instead of (0, 1) X G, we easily conclude
that:

THeoreM 3.17. If x°(¢), t€l0, 1), satisfies

% (r)=f(r, X0 (0, a4t x° @),
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then the function y° (£)=J (1, x° (1))=5x (1, x° (1)), 1€(0, 1), satisfies the conjugate
vector differential equation

FOO=—=y° (@) fu(t, x° (1), @ (1, x° () +Lx (1, x° (), @ (1, x° (1)) -

4. The sufficient exactness condition

In this section we give conditions for the following functions defined in (0, 1) X G
to vanish, where we assume m=n

0i(t, 0)=S,,.(t,0)=S,5,(t,0) i=1,..,m, 1)
WU (rs G)__"So'ifi {!5 g)'_Sn‘Jlri (f, G} 3 i’j=ls ey M1 (41’)
We put wiz(Wil) arey Wiu)» WJ=(WU; ey an)r f,j=l, vy M

From now on, we can and shall suppose, besides the assumptions
of §3, that: the family of induced triplets N satisfies the induced
maximum principle, det (x,)#0 and 7 is C* in (0, 1) % G, there exist
fow and L.

(4.2)

In accordance with Lagrange we shall apply the following, easy to verify identities
(see, e.g. [5], §15) )
i) d d

ey i gl 4.3
30 V" 55, Vi o0, ¥ 0 (4.3)
d d d o ol
s Wii— G, @i+ bo, p=\. -

Thus, because of (3.11) and (4.1), (4.17), we have

pi+ow;=0. 4.5)
The total derivatives of w;; (1, ¢) have the form
] d d

'J"u—_‘? Wit 66'_0' Wij - (4.6)

Applying successively (4.3), (4.4) and (4.5) to the right-hand side of (4.6), we find,
remembering (3.3°), that
; o e -
V==, E;j —, FE Lj=1,..n i

This is rather a classical result first obtained by Lagrange and we can encounter
similar results in, for exemple, [5] or [1].

Note that (4.7) is a syst. m of homogeneous linear differential equations for w,.
Moreover, the ¢, are, by (4.5), hecmogenecus linear combinations of the ;. Thus
we have .
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TueoREM 4.1. The functions @;, wy;, 1, j=1, ..., n, will vanish identically in (0, ) x G
if w;; vanish at some point of each trajectory of the family N (i.e. the curve satisfy-
ing (3.3).

Proof. Ttis a direct consequence of the property of solutions of a system of homo-
geneous linear differential equations.

In the particulac case of ¢=0, i.e. if c=const along each curve satisfying (3.3%),
then along each such curve the functions y,;=x, ¥, 1~ %o, Js, are constant.
Now, we give sufficient condition for the vanishing of the ¢, v;;.

To this effect, let =t (), 0eG, denote some C'-locus which cuts each trajectory
o of N but is not tangent to it (i.e. £,6#1) and let

Y (t, o) do—K (1, o) dt (4.8)
where Y=(Y,, ..., Y)=px,, —K=Jjx,+(L—jx), denote expression (3.1) in map
(3.2").

THeoreM 4.2, The functions g;, W;;, i, j=1, ..., n, will vanish in (0, )X G if expres-
sion (4.8) is an exact differential in the variable o on the locus t=t (0), 0 €G.

Proof. We first observe that, by the definition of (4.17), w;;=0, v;=—wy;, i,j=
=1, ...,n. Hence > 6;y,;6,=0 and, by (4.5), we have the identity
T
p6=0. (4.9)
where §0=(§91a seey ?}n)-

Next, we set {=t,d, }_"(o’)=(l_’1 {G): weey ?n (0‘))= Yt (G’), g)’ K(O'):K (1 (G)’ 0)‘
At the locus t=t (o), 0e€G, (4.8) takes the form
(Y-Kt,) do= Z (Y,—Rt,) do, . (4.10)
i=1

Since (4.10) is exact by hypothesis, we must have

0 a - 2 3
_a_a‘_j{?l_rtﬁg)—_a?((YI-—ISJK)=09 I!J=15"'1n' (4'11)

Here the left-hand side is the value of the expression

( @ é ) . @ ( a d ) v &
aT,““r'EE‘( =t K) =\ gt te, 5| (Yi= 1o, K)

o

for t=t (o), which is equivalent to

(an a}',) (aY{+aK) (an aK) -
3o, 0]\t Tl \ar tag, :
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and may be written in terms of (4.1), (4.1") (comp. (3.5), (3.6)) in the form y,;;+
+t,j 0;—1,, ¢;. By (4.11), this vanishes for 1=1¢ (o), i,j=1, ..., n. Hence we obtain
the vector equation

W:+fa0’a=fa,¢ . {412)

By multiplying scalarwise by ¢ and using (4.5), the definition of ¢ and identity
(4.9), we find that

E—1) 9;=0; i=1, ...m,

whence ¢, =0, i=1, ..., n, and thus ¢=0, so that (4.12) reduces to y;=0. This shows
that, for t=t (o), all y,; vanish and so, the assumptions of theorem 4.1 are satisfied.
This completes the proof. B

Note 1. In the particular case of 6=0, the nontangency condition is always satis-
fied.

Note 2. If the functions ¢, ., i,j=1, ..., n, vanish at the locus (=t (¢), c € G,
then expression (4.8) is an exact diffzrential in ¢ there. This is a direct consequence
of the relations

a _ d 2
70, T to, )= 5= (i to, )=y t-10; 9110, 9.

CoroLLarY 4.1. If the assumptions of theorem 4.2 are satisfied, the function S (f, &),
(f, 6)e(0, 1) X G, exists and may be defined by

tia) i

S(h&)=— [ L(t,x(t,0), i (z, 0)) dt

T
where the integral is taken along the trajectory o of N passing through the point (i, &)
and cutting the locus t=t (o), ceG.

This is a direct consequence of the integration of (4.8) along o in the int¢rva1

(7, ¢ (o).

5. The practical method of constructing an optimal
feedback control

In the preceding sections we gave necessary and sufficient conditions for the
independence of the Hilbert integral

[ 50 %) de(L (& %, i (6, X)) =5 (1, ) [ (&, x, @ (¢, x))) dt (5.1)

of the (¢, o) path of integration for given ends. They are as follows: each induced
triplet (o, w*, y*) satisfies the induced maximum principle and at some point of
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this triplet the functions y,;, @, vanish. All that was true by the assumption that
there exist a feedback control # (¢, x), (¢, x)éDs and a function 7 (¢, x), (¢, x)eDs.

In this section we give the method of a practical construction of both functions
# and .

To this effect, we shall describe a special family of induced triplets. Thus, let
us define on an open simply connected set G R" a pair of C'-functions ¢~ (o),
t*(0), ~(6)<t*(0), with values in the interval [0, 1] and such that, for some ¢°€G,
t7(¢%)=0, 1*(c%)=1.

Denote by Z—, Z, Z* the sets of pairs (¢, 6) where oeG and 1 satisfies, respect-
ively, the conditions

0<t(0)=t, t~(o)<t<i* (o), t=t*{a)<1. (5.2)

The notation [Z] will be used for the union of the sets Z—, Z, Z*.

Now, we consider a family 2 of pairs (x, #) depending on a parameter o, which
satisfy the maximum principle (comp. 3. § 1), given by the furctions

x(t,0), u(t,o) (t,o)eZ. (5.3)

Here o is the parameter which distinguishes a member of the family, i.e. ¢ remains
constart on each member of 2, and this member is then defined in the open interval
t~(o)<t<t*(o).

Further, we consider the set GC R*" of (g, p) and suppose that the set G is a pro-
jection of the set G in the following sense:

Given any point (o', p)e G and any sufficiently small open neigh-
bourhood Q C G of ¢!, there exists in 0 a C?-function p (o) such
that p (¢')=p' and that all points of the form [o, p (0)] for ceQ
lie in G.

(5.4)

Similarly as above, we denote by Z*~, Z*, Z** the scts of (¢, o, p) for which
1 is subject to respective conditions (5.2), and (o, p)e G. We write [Z¥] for the union
of the three sets. We shall further denote by Z* a family of canonical triplets (x, u, ¥)
which correspond to a member of X and which are obtained by giving, with functions
(5.3), a further conjugate vector function

y(t,o,p) (t,o,peZ*. (5.5)

The parameter p, occurring in (5.5), distinguishes the corresponding canonical
triplets. It appears here since, for a conjugate function which satisfies differential
equation (1.4) (i), we have no additional boundary conditions.

The definitions of the functions x (¢, ¢), y (¢, o, p) will be supposed extended
to the sets [Z], [Z*]. This means defining them for t=1%(o) and r=t"(0), where
the values of x, ¥ correspond to the end points of our members. The sets of pairs
(¢, x), where x=x (1, ¢) with (2, ) belonging to Z—, Z, Z*, [Z], will be denoted
by D, D, D*, [D], respectively.
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Moreover, we suppose the following conditions satisfied:

(i) For the functions L (¢, &)=L (tx(t0), ult @), f(t 0)=
=f(1,x(t, 0), u (¢, 0)), there exist continuous derivatives y

il a
Loss fos for in [Z] and 5. L (tx,u(, G})’_é}_ F(txut d).

for each fixed (1, x)€D, in Z and they satisfy at (1, x), x=x (¢, o),
aL @
the relations: e L (t, x, u(t, 0))+Ly (1, x, u (t, 0))x 56)

af d
xXx, (1, 0), el f(t, x,u(t, 0)+fx (1, x,u(t, 0)) x, (1, 6).

(i1) The function 7 (1, 6)=y (, o, p (6)) is C? in [Z].

(iii) The function x (¢, ¢) is C? in [Z].

(iv) det (x,)#0 in Z~uw Z and through each point of D~ U D there
passes one and only one trajectory x of Z.

By assumptions (5.6) (iii) and (iv), the mapping

(t,0)>(t,x(t,0): Z"UZ-D-UD (5.7
is a C*-diff of Z~ U Z onto D~ U D with the inverse C2-diff
0:(t, x)>(t, o (,x): D~ UD>Z~ U Z. (5.8)
For (¢,x)eD~ U D, let us set
i (t, x)=u(t,o(1,x), (5.9)
¥, x)=y (t, o (t, x), p (o (t, x)))=F (1, o (t, )) . (5.10)

Of course, (5.10) is defined only locally. We extended (7, x) and j (1, x) to the set
D* taking there, for @ (¢, x) and J (#, x), any value of u (t* (o), ) and y (¢t*(0), o,
p (), respectively, for that ¢ for which #=1%(0), x=x (t*(0), ¢). It is clear that
i (t, x), 7 (1, x) satisfy (2.5) in [D].

Now, we note that map (5.7) may be considered as transformation (3.2) and
that the x(t, o), 7 (1, x (1, ©))=y (1, 6, p (6))=7F (1, ¢) defined here satisfy the as-
sumptions about them made in § 4, i.e. (4.2). Moreover, in (3.2) we now set 6=0,
so that (3.3") takes the form

%, (t, 0)=1 (t, x (t, @), u (1, 9)) , (5.11)
and (3.12), since det (x,) # 0, takes the form
Ye(t, 0, p(0)=—~y (1, 0, p(0)) fi (1, % (1, 0), u (t, 0))+
+Le (2, x(1,0), u(r,0)). (5.12)

Hence we conclude that the induced triplets (o, u*, y*), where o=const, u*=
= (t, x (1, 9))=u(t, o), y*=7 (1, x (1, 0))=y (¢, 0, p (0)), satisfy the induced maxi-
mum principle.
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Suppose further that the Hilbert differential jdx--(L—J f) dt is an exact diffe-
rential in the variable ¢ on the locus t=¢*(0), ceG, i.e. in Z*. By theorem 4.2 and
note 1 following it, the fuctnions w,;, ¢, vanish in [Z]. Thus, Hilbert’s integral (5.1)
is dependent of the (¢, o) path of integration lying in [Z] for given ends (see note
2 §4).

Families of pairs (x, u) satisfying the maximum principle (having form (5.3)
they satisfy conditions (5.6)), for which Hiltert’s integral (5.1) is independent of
the (¢, x) path joining in D~ uD two points of D~ U D, will be called sprays of ex-
tremal pairs, and the corresponding families of cannonical triplets (x, u, y) — ca-
nonical sprays of extremal triplets. We state an existence theorem for canonical
sprays.

TueorEM 5.1. If the family X%, described above, satisfies conditions (5.6), then Hil-
bert’s integral (5.1) with i, y defined as in (5.9), (5.10) is independent of a rectifiable
path in D~ U D joining two points of D~ U D if and only if the line integral

JL(x(t,0),ut,0))di+y(1, 0 p(0)) x,do (5.13)
is independent of a rectifiable path in Z~ U Z joining two points in Z~ U Z.

Proof. We shall represent integral (5.1) as a line integral (5.13). By virtue of the
diff @ (5.8), of D~ w D onto Z~ U Z, the Hilbert integral over a rectifiable curve y
in D~ uD equals a line integral of form (5.13) over the arc I'=0(y) in Z~ U Z pro-
vided one sets x=ux (¢, o) in the coeflicients of dx and dt in (5.1) and

dx=x, (t, 6) di+x, (¢, 6) do . (5.14)
Subject to the diff @ (5.8) and relations (5.11), (5.14).,

T ()= [ 7t x) dx+(L (&, %, (6, )) =F (1, x) £ (8, x, @ (1, x))) dt=
= f L(t,x(t 0),u(t, o) dt-+y (t 0, p () x,da. (5.15)

We have to remember that p (o) is defined: only locally. Thus, each curve I must
be divided into a finite number of arcs on which p (o) exists and so, in (5.15) we have
such sums on both sides.

Theorem 5.1 is an immediate consequence of relation (5.13). B

Relation (5.15) has another important consequence.

LemMA 5.1. If y is a subarc of an extremal trajectory of the spray X, then J (y)=
= [ L (t, x, u,) dt where J(y) is defined on the left-hand side of (5.15) and u, is

E
the control corresponding to the extremal trajectory containing 7.
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Proof. In the coordinates #, ¢ the arc y has a representation x=x (¢, ¢) with ¢
constant. For this arc y, one must set do=0in the right member of (5.15). If t—y (f)=x
is a t-parametrization of y with ¢ € [1,, #,] C [0, 1], then (5.15) shows that

J(y)= fL (t.x(t, 0),u(t, o)) dt.

Setting u,=u (¢, 0), we have J (y)= }JL (&7 (), u, (1)) dt= [ L (1, x, u) dt. B

Norte 1. It is clear that if t*(a)=1, x (t*(0), @)=e or y (t*(0), 0, p)=)° for all
ceG or (a,p)eG, then T* is the canonical spray.

Norte 2. If Z* is the canonical spray, then the @ (t, x), (¢, x)e[D], of (5.9) is the
optimal feedback control and ¥ (¢, x), (¢, x)e[D] of (5.10) is the function S, (¢, x)
of §2.

Note 3. If the canonical spray Z* exists, then the function S (¢, x), (¢, x)e[D],
(considered in §§ 1 and 2) exists and may be defined in [D] by

t+(a*)
S x)=— f L ('f, x (7, o), i (z, x (z, o)) dv

T

where x (z, ¢*) is the trajectory of X passing through the point (¢, x)e[D] defined
in [t, £¥(o*)] (comp. Corollary 4.1), and its exact derivative is equal to the integrand
of (5.1).

Note 4. We do not make any assumptions about either continuity or even measura-
bility of the u (#, ¢) and, in consequence, of the feedback i (¢, x). It is essential in
practice.

The following theorem is an extension of the Weierstrass sufficiency theorem
from the calculus of variations.

THEOREM 5.2. (Sufficiency Theorem). Suppose that there exists a canonical spray XZ*
with the optimal feedback control i (1, x), (t, x)e[D], the function y (t, x) in [D] and
the pair (x°, u®) of M being a member of the spray X. Then the pair (x°, u®) affords
a minimum to I (x, u) (see (1.2)) relative to those pairs (x, u) of M whose graphs of
trajectories of x lie in [D] (ie. relative to Mp;).

Proof. Denote by 9°, y the curves corresponding to the pairs (x°, #°) and (x, 1)
of M, where the graph of x lies in [D], and set 7 (y)=1 (x, u). Let J (y) be the Hilbert
integral defined on the left-hand side of (5.15). According to lemma 5.1, J (%)=
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=1(y7). Since X* is a canonical spray, J (y)=J (y°), so that I (y°)=J (). Thus I (°)
is the integral (5.1) taken along y. Explicitly,

I(%= f [L (:, x (0), 7 (1, x (0))+7 (t, x (1) (f @, x (), u ()=
—f(t x (1), a(t, x (t))))} dr.

3
Since I(y)= [ L(t, x (1), u(r)) dt, we are led to the exiension of the Weierstrass
(i}

formula
1
1G)~10°)= [{H (b x @), a(tx ), 5 (@ x ©)))-

—H(t,x (1), u (1), 7 (1, x (r)))} dt
where H (1, x, u, 7) is defined in § 2. By viitue of the definition of a feedback control
(def. 2.1.), compare also (2.6),
I(»)-T(°=0. (5.16)
This completes the proof. | - |

Note 5. Ifin (1.1) f (¢, x, u)=u and U=R", then problem (1.2) becomes the standard

problem from the calculus of variations and # (7, x) is a geodesic slope or field slope,

¥ (t, x)=L, (1, x, (1, x)), (5.16) is the integral from the Weierstrass E-condition
E=L(t,x,u)—L(t, x,8)—(u—a) L, (¢, x, @) =0, (5.17)

and the spray Z' is a geodesic family or a field of extremals.

Note 6. In many books on the calculus of variations a field of extremals is defined
as the one which induces only a line independent Hilbert integral (5.1), but then
curves that define the field satisfy only the Euler equation and so, in a sufficiency
theorem there must occur E-condition (5.17). In optimization theory members of X
satisfy the maximum principle and thus, also a suitable inequality (5.17). Hence
the last inequality does not appear in our sufficiency theorem.

Now, we give a simple example to explain the above theory.

Exampre: Let U=[—1, 1]; admissible controls are measurable functions u: [0, 1]—
—[—1, 1]; admissible trajectories are absolutely continuous functions x: [0, 1]=R
satisfying

x ()=t (u(0)*. (5‘1?)1

We find a minimum of the integral

I(x, u)= J’ (x ()= (u (1)) at (5.18)

from among all admissible pairs (x, ) whose trajectories satisfy x (0)=0, x (1)=1/2.
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First, we calculate triplets (x, u, ¥) which satisfy the maximum prirciple. To this
effect, we set H (1, x, u, ¥)= —L (t, x, )+yf({t, x, )= —x+uw? Lytu*and H (¢, x, )=

= max H(t x,u,y). We know (comp. 3.0of § 1) that j=— H,. In our case this
—1l=su=1
gives y=1. Hence y (1, «)=1+a. Of course, y (7, ) are independent of x and v,

so we can take a=—1, i.e. y (1)=1—1, 1[0, 1]. We easily check that A attains its,
1

maximum at u=1 or u= —1 for each t€[0, 1], xeR. Thus x (¢, a):—z— t*+0,tel0, 1],

oeR and, for 0=0, we have the suspected trajectory x° (f)=x (1, 0)=-2— £,

We can now define the families 2 and Z*. The set G considered above is now
equal to R, The functions t~(o), t * (¢) are constant and equal to 0 and 1, respectively.
[Z1=Z~uZuZ*={(0, 0): ce R}U{(1, 0): 0<t<l, ceR}U{(1, 0): ceR}. The fa-
mily X is given by the functions

1
x(t, c:r)=‘-2- t* 4o, u(,o)=1 (,0)e€l[Z]. (5.19)

Siﬁ]j]arly, [Z*¥]=2Z*" uZ*u Z**={(0, o, p): (o, p)eG}U {(t, 0, p):0<t<l,
(0, p)eG}U{(1, g, p): (0, p)€G} where G=G X R=R? and Z* is obtained by adjoin-
ing to functions (5.19) the conjugate function
V(0 p=t=1 (t, o, p)€[Z*]. (5.20)
Of course, for the function p (¢) defined in (5.4) we may take p (¢)=0. It is easy
to check that all assumptions (5.6) are satisfied here. Hence the diff 8 of (5.8) has
1
the form @: (1, xj— (¢, x—-E!"), and

a(t,x)=1 in[D],

21
J_’;(ta x)=t—1 in [Dl: (52 )

1
where [D]:{(r,x):x=5r2+o-, (t,0)e[Z]}=1{(t,x): 0<i<1, xeR}. The sets

D=, D, D* are defined analogously.

Finally, by (5.20), we obtain that integral (5.13) is equal to zero for all rectifiable
paths in Z*, so that it is independent of them there.

Thus, all assumptions of the definition of a canonical spray are satisfied, hence
our family Z* is the canonical spray, and, by the sufficiency theorem, the pair (x°, u
where x° (£)=1/2 t?, u° (1)=1, t€[0, 1], gives the global minimum to (5.18). It is
evident that the # (¢, x) of (5.21) is the optimal feedback control.
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Warunki konieczne wyznaczania minimum
w klasycznym zadaniu sterowaniz optymalnego

Stosujge klasyczny rachunek wariacyjny podano praktyczna metode obliczania optymalnego
sterowania ze sprzgzeniem zwrotnym. W rezultacie otrzymano warunki dostateczne Weierstrassa
wyznaczania minimum funkcjonalu.

HCOG}ZG,EEEMBIE YCICBHE CORDEIC/ICHHA MHENMYMA
B RiIaccrqeckel azave CHTHEMATRHCIO YIDPAaBJICHHHA

Vicaonsaya KNACCHYECKOS BAPHAUMOHHOE HCMHCISHWE, HASTCA TPAKTHYECKHE METON BBRIYHC-
JIEHHA ONTHMANLHOTO YIIPABMEHHA ¢ ODPATHOH CBAZBO. B pe3yneTaTe MONy4YeHEl MOCTATOYHEIS
yCOBHA Beepiorpacca 04 ONDENSNEHHs MuHIMyMa dyHIuMoHANA.






