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Based on the classical methods of the variational calculus a practical method of construction 
of an optimal feedback control has been given in the paper. In consequence, it yields Weierstrass 
sufficient conditions for a minimum: 

Introduction 

The control theory literature has been concerned mainly with sufficient condit­
ions for global optimality, the most well-known result being the Hamilton-Jacobi­
-Bellman theorem [2]. This, however, requires the existence of a feedback control 
and a solution to the Hamilton-Jacobi pmiial differmtial equation. The local theory 
treats mainly the exact expression Lfl of a change in a functional due to a change 
in control [3]. A common technique is to add to the integrand of the functional an 
exact differential in order to transform the original problem into a simpler one 
(see, e.g. [2]; on the classical technique [1 ]). 

In the calculus of variations there exists a technique of calculating that exact 
differential. It is based on the theory of the field. 

The present paper examines the case when the differential form ydx-Hdt becomes 
exact in a control problem, which then gives a method of constructing an cptimal 
feedback control and, in consequence, the Weierstrass sufficiency theorem. 

1. Preliminary notes and the algorithm of Huygens 
for on optimal control 

1. We shall be dealing with a Bore! subset U of R'. The assumption that U is 
Bore! is connected with the maximum principle. A Lebesgue measurable function 
u: [0, 1]-+U will be called a control or an admissible control. The choice of the 
time interval [0, 1] is a normalization for notational convenience. 
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Let f(t, x, u) be a vector function f: [0 ,1) X R" X Rr ->R", and let L (t, x, u) be 
a scaJarJupction defined n [0, 1]XR"XRr· 

We suppose, for each t in [0, 1] and u in U, that the functions (x)->f(t, x, u), 
(x)->L (t, x, u) are C 1 in R", and the functions (t, x, u)-tf(t, x, u), (t, x, u)->L (t, x, u) 
are continuous in [0, 1] X R" x Rr. 

An admissible trajectory x corresponding to a control u is an absolutely conti­
nuous function x : [0, 1]-> R" satisfying 

x (t)=f(t, x (t), u (t)), almost everywhere in [0, 1]. (1.1) 

2. The class of all admissible pairs (x (t), u (t)), tE[O, 1], such that in the first 
extremity x (0)=0 andin the second: X (l)=e where e is a fixed point in R", will be 
denoted by M. 

Our main problem is the following: 
Find a minimum of the integral 

1 

I(x, u)= J L (r, x ~r), u(r)) dr 
0 

(1.2) 

''along'' the pair (x (t), u (t)) from among all pairs d: M . 

Further, we shall consider not only a single minimum problem, but various 
minimum problems which arise when the second extremity of a trajectory takes 
different positions in the space R"+ 1 of the variables (t, x) . The integrand Land the 
first extremity will be kept fixed. 

To this effect, we denote by M (t, x) the class of all admisible pairs (x (r), u (r)), 
,'E[O, t], such that x (0)=0, x (t)=x, 0< t:;;;_ I , xfiR". The same symbol x used for 
a trajectory and a point of R" will not lead to confusion, for its meaning will be 
clear from the context. In the minimum problem for this class we take the integral 
in (1.2) in the interval [0, t], i.e. 

t 

I' (x, u)= J L (r, x (r), u(r)) dr. (1.3) 
0 

3. A pair (x ( r), u ( r)) of M (t, x) will be said to satisfy the maximum principle 
(see, e.g. [2]) if there exists an absolutely continuous vector function y: [0, 1]->R" 
such that 

(i) y (r)= -f~ (r, x (r), u (r)) y (r)+.:lLx (r, x (r), u (r)), 

(ii) y (r) f(r, x (r), u (r)) -J.L (r, u (r), x (r))= 

=sup {y (r)f(r, x (r), u) - AL (r, x (r), u): u~U} 

where we consider only the situation when A= 1. 

(1.4) 

4. Suppose now that, in any way (for example from the maximum principle 
and the existence theorems), we are able to suspect that, for the pair (x0 (r), u0 (r)), 
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TE[O, t] of M (t, x), integral (1.3) attains its .minimum in the class M. (t, x); We <;J.enote 
the value of this suspected minimum by S (t, x). · 

t 

More generally, we can defineS (t, x)= inf 1' (x, u)= inf J L (r, x (<), u 
(x, u)EM (t, x) M (t , x) 0 

(•)) d<. The functionS (t, x) is then always defined in M (t, x) and called the 
value function. The S(t, x) may have the values -ro and +ro, the latter 
whenever the class M (t, x) is empty. We shall assume, however, in the whole 
paper. that M i=, 0 and so is M (t, x) for some (t, x). It is clear that the pair 
(x0 (•), u0 (•)), T E [0, t] and the value s (t, x) depend on (t, x) E [0, 1] X R". 
Thus S (t, x) now becomes a function of (t, x). Evidently, it vanishes at the 
point (0, 0), so that we can also write (1.3} along (x0 

(•), u0 
(•)), 'E [0, t], 

as the difference S (t, x)- S (0, 0). We shall write <P 0 = c'P0 (t, x, u) for 
the exact derivative S,+xSx=S,+f S, of the function S (t, ~) if it ~xists. Then 
S (t, x) ~ S (0, 0) is along (x 0 (<), u0 

(•)) of M (t, x) the integral or' <P0. Of wurse, 
the pair '(x0 (•), u0 

(•)), <E[O, 1] must satisfy the inequality J(x, u);;,j(x0 , u0 ), i.e., 
if <P0 exists, there is 

1 

J {L (•, x (•), u (•))- c'P0 (•, x (1:), u( •))}dr;;,O (1.5) 
0 

for all pairs (x, u) of M. This inequality is certainly true for all admissible triplets 
(t, x, u), 

L (t, x, u);;, <P 0 (t, x, u). (1.6) 

5. We shall now reformulate the consideration of 4. in th.;: follcwing algor,itJun 
of Huygens (comp. [5]). Let M be a class of pairs (x, u) described in 2., and let (x 0

, u0
) 

be a member of that class. If there exists an exact derivative q5 0 such that L= cf>0 

along (x0 , u0 ) and that L;;, cf> 0 along all pairs (x, u) of M, then I (x0
, u0

) is the mini­
mum of I (x, u) for (x, u)EM. 

The proof of this algorithm is evident. Indeed, I (x, u) is, for (x, u)EM, not less 
than the corresponding integral of <P0 and we can take the latter along (x0 , u0 ) 

without altering its value which is then I (x0
, u0

). 

2. A method of feedback control 

D<:note by V the set in R"+ 1 covered by graphs of all admissible trajectories, 
and let Du be any domain in V containing the interval [0, 1]. Let, further, ii (t, x) 
denote a vector-valued function defined in D;; with values in U. 

DEFINITION 2.1. We call ii (t, x) an optimal feedback control if there exists an exact 
derivative 

(2.1) 
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such that, for all admissible triplets (t, x, u) (i.e. (t, x) e D. and those u (t) e U for 
which the graphs of the corresponding trajectories lie in D;, ); 

L (t, x, u) ~ IP 0 (t, x, u) (2.2) 

with equality when u=ii. 

Let Mn;, denote a subclass of M of those pairs (x, u) whose graphs of trajec­
tories lie in D, . Then, by the algorithm of Huygens, it is evident, if an optimal 
feedback control ii (t, x) exists, that each pair (x0 (t), ii (t, x 0 (t))) of Mn;; affords 
a minimum to I (x, u) relative to pairs (x, u) of Mn;,. 

In 4. (§ 1) we started from the function S which, of course, determines @0 . 

Conversely, @0 determines S for an additive constant. Our task is to show that 
when IP 0 exists it is also completely determined by ii. 

To this effect, we observe, by (2.2), that the difference L - IP0 regarded as a funct­
ion of u only attains. its minimum equal to zero at u=ii. This requires that, if we 
assume ji (t, x)=Sx (t, x), then 

S,=L-f Sx=L-fji (2.3) 

at u=ii. If we putS, of (2.3) in inequality (2.2), then the latter is known as the Ha­
milton-Jacobi-Bellman sufficient condition for global optimality (see [3]), and if 
we denote - H (t, x, ii (t, x), Sx) = L (t, x, ii (t, x)) - f(t, x, ii (t, x)) S, (t, x), then 
(2.3) becomes 

S,= -H (t, X, ii (t, x), Sx), (2.4) 

i.e. the Hamilton-Jacobi-Bellman differential equation. Simultaneously, by the 
above 

H (t, x, ii (t, x), ji (t, x))=max {Y (t, x) f(t, x, u)-L (t, x, u)} (t, x) e Du (2.5) 

or 

H (t, x, ii (t, x), ji (t, x))- H (t, x, u, ji (t, x)) ~0 (2.6) 

for all admissible (t, x , u). The left-hand side of (2.6) is known as the extension o 
the excess function of Weierstrass (see [4]). 

We may also express (2.3) by saying that for rectifiable curves C lying in a simply 
connected subdomain of D~, the curvintegral 

J (L (t, x, ii (t, x))-f (t, x, ii (t, x)) ji (t, x)) dt+y (t, x) dx (2.7) 
c 

depends only on the endpoints of C. This expression is termed Hilbert's independent 
integral: its value, on account of (2.3), is clearly S (B)-S (A) where A, B are the 
endpoints of C. 

We shall term D;;- -levels the set of points PED" on which S (P) is constant. If we 
denot~ the left-hand side of (2.6), byE, then we have L= IP 0 +E and therefore, for 
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any pair (x, u) of M whose arc of the trajectory C joins in D; two levels S=S1 and 

S=S2, 

j L (t, x, u) dt=S2 -S1 + j Edt. (2.8) 
c c 

This is an extension of the famous formula of Weierstrass, whose equivalent in the 
classical calculus, according to Young [5], has revolutionized the variational calculus. 
In contrast, to date, formula (2.8) or its analogon, that is , the exact expression for 
Al=l (x, u)- S (1, e) (see [4]), do not appear to have played a central role in modern 
control theory, although the expressions AI do appear as tools in the derivation of 
optimization algorithms (see [3]) . 

3. The necessary exactness condition 

The exactness condition that we have to study is that the expression 

ji (t, x) dx+(L( t, x, u)- ji (t, x) x) dt (3.1) 

reduces to an exact differential dS in the variables (t, x) when we substitute x= 
=f(t, x, u) and u=ii (t, x); ji is defined as in § 2. We wish to find out when this 
occurs. 

To this effect, we shall enlarge our setting by using the transformation 

(t, a)-+(t, x) , (t, x) E D ;; , (3.2) 

in which the timet is unchanged. This means that xis replaced by a function x (t , a) 

where (t, a) belongs to some open simply connected set (0, J) x G of R"'+ 1 • Next, 
we enlarge (3.2) to a map of triplets 

(t, a, 0")->(t, x, x) (3.2') 

by putting x=x,+x"&, i .e. we substitute for the variable x the total derivative of 
x (t, a). Evidently, now 

f(t , x (t, o), u)=x, + x"&. (3.3) 

Further, the dot over a function of (t, a) will always denote the total derivative. 
We suppose that the function X (t, o) defined in (3.2') is C2 in (0, 1) X G, and ji (t, o)= 

= ji (t, x (t, o)) is C 1 there. 

Now, we study under what additional circumstances a family of curves of(O, 1) X G 
given by a differential equation 

x" (t, a)& = -x, (t, a)+f(t, x (t, o), ii (t, x (t, a))) (3.3') 

is such that map (3.2') turns expression (3 .1) into an exact differential dS in the 
variables (t, o). Then, the integral of (3.1) on an arbitrary curve of (0, 1) x G depends 
only on the endpoints. We call it the corresponding Hilbert independent integral. 
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We shaH suppose that, for the functions L (t, u) = L (t, X (t, u), ft (t, x (t, o))), 
f(t, u)=f(t, x (t, u), ii (t, x (t, u))), thereexistcontinuousdedvativesZ:" (t, u), fa (t, u) 

in (0, l) xG and ~ L(t,x,ft(t,x(t, u))),_!__f(t,xJi(t,x(t, u))), for each fixed 
au au 

(t,x)ED-;;, in (0, i)xG and they satisfy at (t,x), x = x(t, u), the relations: 

aL a 
ou = a; L (t, X, ii (t, X (t, u)))+Lx (t, X, ii (t, X (t, o))) Xa (t, u); 

ac a 
-/-=-~-- f(t, X, fi (t, x (t, o')))+I- (t, x, ii (t, x (t, u))) Xa (t, u). 
uu OU 

(3 .3") 

\:Ve n::>t~ at once t!c.at the induced f.cedba.ck control ii (t, x (t, u)) expressed by 
map (3.2) satisfies, for (t, u) E (0, 1) x G, the induced maximum relation 

Y (t, X (t, u)) f(t , X (t, u), ii (t, X (t, u))) -L (t, X (t, u), ~~ (t, X (t, u)))= 

=max {y (t, x (t, u)) f (t, x (t, u), u) - L (t, x (t, u), u)} . (3.3"') 

It is clear that one of the necessary and sufficient conditions for the existence 
of S (t, u) is satisfaction of the relations 

Let l ~ i,j~m be arbitrarily :fixed. After substitution of (3.2') in (3.1 ) we easily get 
from the expression obtained that 

a a 
Sa,, -S,a,=Tt(yxa)- au. (yx,+(L-yx)) . (3 .6) 

l 

We calculnte exactly the right-hand sides of (3.5) and (3.6). Thus 

a . . 
Tt (yxa)=Jixa,t+xa, y,=xa,Y+yxa, ,+xa, (j\-y), (3.7) 

(3.8) 

Note that, by (3.5), 

m 

=-2.; (Sa,a; - Sa
1
a)ifi. (3.9) 

j =l 

----- - --------------------------
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'. WG also ncte that, since (2 .5) is satisfied (comp. ·also (3.3"')); remembering 

(3.3), 

a _ a _ _ a 
-(-"-L)=-(-t- L)---; "+"f.-- - L '"..1... - {-(t )· .., Y··· a YJ -YG. x )~ "'" .·'·G· .~ -~G - 1 a y , x x 
Q(j . (J. I I I G 

' ' i 

X f(t, X, ii (t, X (t, o)))-L (t, X, ii (t, X (t, a)))}= YG, x+ff, X a -Lx X a, (3.10) 

where tJ-e t, x in brackets arc momCJ~tarily fixed poircts. By substituting (3.7), (3.8) 

and (3 .10) in (3.6), WC find that 

"' s - s = x r;:: I ~~- - Ll- \1 cs - s ) o- . a,t 1a 1 a 1 -../ T .. . _.\ - ~ _L.; a 1ai aiai J 

j=l 

He rice 

"' 
Xa, [Y+;Y,f:, -LJ=(Sa,,-S,a)+ };CSG,uj-Suju) &i. . (3 .11) 

j = l 

Here, by (3.4), the summand on the right vanishes and, therefore , so do both sides 
of (3 .11) for each i, i=l, ... ,m. If we change the order of the two f:::ctors on the 
left, the resulting set of equaticns, obtained hem the vanishing of the kft-hand 
side for various i, may now be written as the si1:gle vector equation 

(3.12) 

This equation wi ll be termed the induc.~d conj-ugate differential eql1ation. 

The induced triple:t (a, u ~', y':'), when a, u''' =fi (t , x (t, a)), y'''=y~' (t, a) satisfy 
(3.3'), (3.3'"), (3.12), respect:vdy, will be rEferred to <: S satisfying the induced 
maximum principle. 

¥ /e have thus proved the fo llowiEg 

THEOREM 3.1. Let transformation (3.2) be such that X (t, a) is C 2 in (0, 1) X G, y (t, a) 
is C 1 there, and there exist Lu, ]~ that satisfy relations (3.3"). Moreover, (3.2) turns 
the expression (3.1) into an exact differential dS in (t, a} Then, for each induced tra­
jectory u under control ii (t, u)=Li (t, x (t, u)), i.e., satisfying (3 .3'), there exists an 
induced conjugate function y (t, a) such that the triplet (u, i!, y) satisfies the induced 
maximum principle. The triplets ( u, ii (t, u), y (t, a)) also satisfy the induced maximum 
principle. 

Let now (3.2) be the identity map, so that Xu is the identity matrix and let the 
assumptions of theorem 3.1 be satisfied; setting there the variable x instead of a 
and taking the open simply connected set D,; instead of (0, 1) x G, we easily conclude 
that: 

THEOREM 3.1'. If x 0 (t), tE(0, 1), satisfies 

x0 (t)=f(t, x 0 (t), ii (t, x 0 (t)))' 

--------------------------------------------------
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then the function y 0 (t)=ji (t, x 0 (t))=Sx (t, x 0 (t)), te(O, 1), satisfies the conjugate 
vector differential equation 

y0 (t)= - y0 (t)fx (t, x0 (t), ii (t, x 0 (t))) +Lx (t, x 0 (t), U (t, x0 (t))). 

4. The sufficient exactness condition 

In this section we give conditions for the following functions defined in (0, I) x G 
to vanish, where we assume m=n 

rp 1 (t, a)=S"'' (t, a)-S,", (t, a) i=1, ... , n, 

lflu (t, u)=S",aJ (t, a)-S";"c (t, u), i,j=1, ... , n. 

We put lfl,=(lf/il> ... , lfl,"), lflj=(lf/lj> ... , lflnJ, i,j=1, ... , 11. 

f 
From now on, we can and shall suppose, besides the assumptions 
of § 3, that: the family of induced triplets N satisfies the induced 

l ~aximun2 principle, det (xa) 7" 0 and y is C 2 in (0, I) X G, there exist 

fa" and Laa· 

(4.1) 

(4.1') 

(4.2) 

In accordance with Lagrange we shall apply the following, easy to verify identities 
(see, e.g. [5], § I 5) 

(4.3) 

(4.4) 

Thus, because of (3.11) and (4.1), (4.1'), we have 

rp,+&i!f1=0. (4.5) 

The total derivatives of l!fu (t, a) have the form 

a a 
l/Ju= -~- lYu+G- -~- lflu · ot oa 

(4.6) 

Applying successively (4.3), (4.4) and (4.5) to the right-hand side of (4.6), we find, 
remembering (3.3'), that 

. a& a& 
t/Ju= -wj -

3
- -lfiJ -~-, i,J=1, ... , n. 

-O'j vai 
(4.7) 

This is rather a classical result first obtained by L::~grange and we can encounter 
similar results in, for ex< mpk, [5] or [I]. 

Note that (4.7) is a syst,.rn of homogeneous linear differential equations for lflu· 
Moreover, H:e Cf'i are, by (4.5), homogcnecus linear combinations of the i!fij· Thus 
we have 3. 
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THEOREM 4.1. The functions rp,, 'lfu, i,j=1, .. . ,n, will vanish identically in (0, I) x G 
if 'l'u vanish at some point of each trajectory of the family N (i.e . the curve satisfy­
ing (3 .3')). 

Proof. It is a direct consequence of the property of solutions of a system of homo­
geneous linear differential equations. 

In the particulac case of &=0, i.e. if a=const along each curve satisfying (3.3'), 
then along each such curve the functions 'lfu =xu, y"

1 
-x"1 y"' are constant. 

Now, we give sufficient condition for the vanishing of the rp;, 'lfu· 

To this effect, let t=t (a), aEG, denote some C1-locus which cuts each trajectory 
a of N but is not tangent to it (i.e. t"&# 1) and let 

Y(t, a) da-K(t, a) dt (4.8) 

where Y=(Y1 , ... , Y.)=yx"' -K=jix ,+(L-yx), denote expression (3.1) m map 
(3.2'). 

THEOREM 4.2. The functions rp;, 'lfu, i,j= 1, .. . , n, will vanish in (0, 1) X G if expres­
sion ( 4.8) is an exact differential in the variable a on the locus t= t (a), a E G. 

Proof. We first observe that, by the definition of (4.1'), 'lfu=O, 'lfu= -'1'1;, i,j= 
= 1, .. . , n. Hence .J; &, 'l'u 6-i=O aEd, by (4.5), we have the identity 

i,j 

rp&=O . (4.9) 

where rp=(rp1 , .. . , rp.). 

Next, we set ~=t"&' Y(a)=(Y1 (a), ... , Y;,(a))=Y(t(a),a),K(a)=K(t(a),a). 
At the locus t=t (a), a E G, (4.8) takes the form 

n 

(Y-Kt") da=}; (Y;-Kt",) da1 • (4.10) 
i=l 

Since (4.10) is exact by hypothesis, we must have 

0 - - 0 - -
--;- (Y;-t",K)--~-(Y1 -t"1 K)=0, i,j=l, .. . ,n. (4.11) 
ua1 ua; 

Here the left-hand side is the value of the expression 

for t=t (a), which is equivalent to 

(4.11') 

-------------------------
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and may be written in terms of (4.1), (4.1') (comp. (3.5), (3.6)) in the form lflii+ 
+taj (Oi -ta, !fii. By (4.11), this vanishes for t=t (1J), i,j=l, ... , n. Hence we obtain 
the vector equation 

(4.12) 

By multiplying sc<:larwise by G- and using ( 4.5), the definition of?; and identity 
(4.9), we find that 

(1;-l)rpi=O, i=l, .. . ,n , 

whence rpi=O, i=1, ... , n, and thus rp=O, so that (4.12) reduces to lfli=O. This ~hows 
that, for t=t (cr), all \flu vanish and so, the assumptions of theorem 4.1 are satisfied. 
This completes the proof. Ill 

NOTE 1. In the particular case of &=0, the nontangency condition is always satis­
fied. 

NOTE 2. If the functions rpi,iflu, i,j=1, ... ,n, vanish at the locus t= t (cr) , uEG, 
then expression ( 4.8) is an exact difLrcntial in u there. This is a direct consequence 
of the relations 

CoROLLARY 4.1. If the assumptions of theorem 4.2 are satisfied, the function S ( f, a), 
(f, O')E(O, 1) X G, exists and may be defined by 

r(a) 

S (f, 0')=- J L (t, x (t, u), ii (t, u)) dt 
-
r 

where the integral is taken along the trajectory u of N passing through the point (f, 0') 
and cutting the locus t=t (cr), uEG. 

This is a direct consequence of the integration of (4.8) along cr in the interval 
[i, t ( cr) ]. · 

5. The practical method of constructing an optimal 
feedback control 

In the preceding sections we gave necessmy and sufficient conditions for the 
independe11ce of the Hilbert integral 

J J' (t, x) dx + (L (t, x, ii (t, x))-y (t, x)f(t, x, fi (t, x))) dt (5.1) 

of the (t, cr) path of integration for given ends. They are as follows : each induced 
triplet ( u, u*, y*) satisfies the induced maximum principle and at some point of 
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this triplet the functions lJiii> q;i vanish. All that was true by the assumption that 
there exist a feedback control ii (t, x), (t, x)eD;; and a function y (t, x), (t, x)eD;;. 

In this section we give the method of a practical construction of both functions 
ii and ji. 

To this effect, we shall describe a 8pecial family of induced triplets. Thus, let 
us define on an open simply connected set GcR" a pair of C1 -functions t- (a), 

t+(a), r(a)<t+(a), with values in the interval [0, 1] and such that, for some a0eG, 
t-(a0)=(), t+(a0)=1. 

Denote by z-, Z, z+ the sets of pairs (t, a) where aeG and t satisfies, respect­
ively, the conditions 

(5.2) 

The notation [Z] will be used for the union of the sets z-, Z, z+. 
Now, we consider a family 2: of pairs (x, u) depending on a parameter a, which 

satisfy the maximum principle (comp. 3. § 1), given by the funqions 

x (t, a) , u (t, a) (t, a) E Z. (5.3) 

Here a is the param~::ter which distinguishes a member of the family, i.e. a remains 
comt2.rt on each member of 2:, and this memb<:r is then defined in the open interval 
r-(a)<t<t+(a). 

Further, we consider the set GC R 2
" of (a, p) and suppase that the set G is a pro­

jection of the set G in the following sense: 

l 
Given any point ( al, p 1

) e G and any sufficiently small open neigh-
·. bourhood QC G of al, there exists in Q a C 2-function p (a) such (

5
.4) 

that p (a1)=p1 and that all points of the form [a, p (a)] for aeQ 
. lie in G. 

Similarly as above, we denote by z*-, Z'\ zo<+ the sets of (t, a, p) for 'Nhich 
t is subject to respective conditions (5 .2), and (a, p)eG. We write [Z*] for the union 
of the three. sets. We shall further denote by .E* a family of canonical triplets (x, u, y) 
which correspond to a member of 2: and which are obtained by giving, with functions 
(5.3), a further conjugate vector function 

y(t, a,p) (t, a,p)eZ*. (5.5) 

The parameter p, occurring in (5.5), distinguishes the corresponding canonical 
triplets. It appears here since, for a conjugate function which satisfies differential 
equation (1.4) (i), we have no addi1ional boundary conditions. 

The definitions of the functions x (t, a), y (t, a, p) will be supposed extended 
to the sets [Z] , [Z'']. This means defining them for t=t+(a) and t=t-(a), where 
the values of x, y correspond to the end points of our members. The sets of pairs 
(t, x), \vhere X=X (t, a) with (t, a) belonging to z-, Z, z+, (Z], will be denoted 
by n-, D, n+, [D], respectively. 
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Moreover, we suppose the following conditions satisfied: 

j (i) For the functions L (t, a)=L (t, x (t, a), u (t, a)), f(t, a)= 

=f(t, x (t, a), u (t, a)), there exist continuous derivatives L", 
_ 

7 
_ a a 

L""' lcr• !acr in [Z] and a; L (t, X, u (t, a)), a; f (t, X, u (t a)) 

for each fixed (t, x) ED, in Z and they satisfy at (t, x), x=x (t, a), 
aL a 

the relations: a;;= aa L (t, X, u (t, a))+Lx (t, X, u (t, a))x 

a] a 
xx" (t, a), ea =au f(t , x, u (t, a))+fx (t, x, u (t, a)) Xa (t, a). 

(ii) The function}-: (t, a)=y (t, a, p (a)) is C2 in [Z]. 

(iii) The function x (t, u) is C2 in [Z]. 

(iv) det (xa)#O in z- u z and through each point of n- UD there 
l passes one aEd only one trajectory x of E. 

By assumptions (5.6) (iii) and (iv), the mapping 

(t, a)-+ (t, x (t, a)): z- u Z-+D- u D 

is a C2-diff of z- u Z cnto n- u D with the inverse C2-diff 

e: (t, x)-+(t, a (t, x)): n- V D-+Z- u z. 
For (t, x)ED- u D, let us set 

ii (t, x)=u (t, a (t, x)), 

ji (t, x)=y (t, a (t, x), p (a (t, x)))=.Y (t, a (t, x)). 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Of course, (5.10) is defined only locally. We extended ii (t, x) and ji (t, x) to the set 
n+ taking there, for ii (t, x) and ji (t, x), any value of u (t+ (a), a) and y (t+(a), .a, 
p (a)), respectively, for that a for which t=t+(u), x=x (t+(a) , a). It is clear that 
ii (t, x), ji (t, x) satisfy (2.5) in [D]. 

Now, we note that map (5.7) may be considered as transformation (3.2) and 
that the x (t, a), ji (t, x (t, o))=y (t, a, p (a))= y (t, a) defined here satisfy the ?S­
sumptions about them made in § 4, i.e. (4.2). Moreover, in (3.2') we now set 0"=0, 
so that (3.3') takes the form 

x, (t, a)=f(t, x (t, a), u (t, a)), 

and (3.12), since det (xa) # 0, takes the form 

y, (t, a, p (a))=- y (t, a, p ( u)) fx (t, X (t, o), u (t, a))+ 

(5.11) 

+Lx (t, X (t, a), U (t, a)). (5.12) 

Hence we conclude that the induced triplets (a, u*, y*), where a=const, u*== 
=ii (t, x (t, a))=u (t, a), y*=ji (t, x (t, a))=y (t, u, p (a)), satisfy the induced maxi­
mum principle. 
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Suppose further that the Hilbert differential ydx+(L- y f) dt is an exact diffe­
rential in the variable a on the locus t= t+( a), aeG, i.e. in z+. By theorem 4.2 and 
note 1 following it, the fuctr...ions !flu, rpi vanish in [Z]. Thus, Hilbert's integral (5.1) 
is dependent of the (t, a) path of integration lying in [Z] for given ends (see note 
2 § 4). 

Families of pairs (x, u) satisfying the maximum :rrinciple (having form (5.3) 
they satisfy conditions (5.6)), for which Hilcert's integral (5.1) is independent of 
the (t, x) path joining in D-uD two points of D-uD, will be called sprays of ex­
tremal pairs, and the corresponding families of cannonical triplets (x, u, y)- ca­
nonical sprays of extr.::mal triplets. We state an existence theorem for canonical 
sprays. 

THEOREM 5.1. If the family I:*, described above, satisfies conditions (5.6), then Hil­
bert's integral (5.1) with ii, y defined as in (5.9), (5.10) is independent of a rectifiable 
path in D- u D joining two points of D-uD if and only if the line integral 

J L (t, x (t, a), u (t, a)) dt-1-y (t, a, p (a)) X" da (5.13) 

is independent of a rectifiable path in z- u z joining two points in z- u z. 

Proof. We shall represent integral (5.1) as a line integral (5.13) . By virtue of the 
diff e (5.8), of D- u D onto z- u Z, the Hilbert integral over a rectifiable curve y 
in D- u D equals a line integral ofform (5.13) over the arc T=B(y) in z- u Z pro­
vided one sets x=x (t, a) in the coefficients of dx and dt in (5.1) and 

dx=x, (t, a) dt+x" (t, a) da. (5.14) 

Subject to the diff e (5.8) and relations (5.11), (5.14)., 

J (y)= J y (t, x) dx+(L (t, x, ~~ (t, x))- y (t, x) .f(t, x, ii (t, x))) dt= 

= J L (t, x (t, a), u (t, a)) dt+y (t, a, p (a)) Xa da. (5.15) 
r 

We have to remember that p (a) is defined· only locally. Thus, each curve r must 
be divided into a finite number of arcs on which p (a) exists and so, in (5.15) we have 
such sums on both sides. 

Theorem 5.1 is an immediate consequence of relation (5.15). 

Relation (5.15) has another important consequence. 

11 

LEMMA 5.1. If y is a subarc of an extremal trajectory of the spray I:, then J (y)= 
= J L (t, x, uy) dt where J (y) is defined on the left-hand side of (5 .15) and u1 is 

1 

the control corresponding to the extremal trajectory containing y. 
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Proof. In the coordinates t, a the arc y has a representation x=x (t, a) with a 
constant. For this arc y, one must set da=O in the right member of (5.15). If t--+y (t)=x 
is a t-parametrization of y with t E [tt> t2 ] C [0, 1], then (5.15) shows that 

t z 

J (y)= J L (t, x (t, a), u (t, a)) dt. 

'• 
tz 

Setting u1 =u (t, a), we have J (y)= J L (t, y (t), u1 (t)) dt= J L (t, x, u) dt. • 

'• 

NoTE I. It is clear that if t+(a)=1, x(t+(a), a)=e or y(t+(a), a,p)=y0 for all 
a E G or (a, p) E G, then .E* is the canonical spray. 

NoTE 2. If .E* is the canonical spray, then the ii (t, x), (t, x)E[D], of (5.9) is the 
optimal feedback control ~nd y (t, x), (t, x)E[D] of (5.10) is the function Sx (t, x) 
of § 2. 

NoTE 3. If the canonical spray .E* exists, then the function S (t, x), (t, x)E[D], 

(considered in §§ I and 2) exists and may be defined in [DJ by 

t +(a*) 

S (t, x)=- r L (r, X (r, a*), ii (r, X (r, ai'))) dr 

where x (r, a*) is the trajectory of E passing through the point (t, x)E[D] defined 
in [t, t+(a*)] (comp. Corollary 4.1), and its exact derivative is equal to the integrand 
of (5.1). 

NoTE 4. We do not make any assumptions about either continuity or even measura­
bility of the u (t, a) and, in consequence, of the feedback ii (t, x). It is essential in 
practice. 

The following theorem is an extension of the Weierstrass sufficiency theorem 
from the calculus of variations. 

THEOREM 5.2. (Sufficiency Theorem). Suppose that there exists a canonical spray E* 
with the optimal feedback control ii (t, x), (t, x)E[D], the function y (t, x) in [D] and 
the pair (x0 , u0 ) of M being a member of the spray E. Then the pair (x0

, u0
) affords 

a minimum to I (x, u) (see (1.2)) relative to those pairs (x, u) of M whose graphs of 
trajectories of x lie in [D] (i.e. relative to Mv-;;). 

Proof. Denote by y0
, y the curves corresponding to the pairs (x0

, u0
) and (x, u) 

of M, ·where the graph of x lies in [D], and set I (y)=l (x, u). Let J (y) be the Hilbert 
integral defined on the left-hand side of (5.15). According to lemma 5.1; J(y0)= 
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=l (y0
). Since .E* is a canonical spray, J (y)=l (y0), so that I (y0)=1 (y). Thus 1 (y0) 

is the integral (5.1) taken along y. Explicitly, 

1 

I (y0)= I {L (t, X (t), ii (t, X (t)))+ji (t, X (t)) (/(t, X (t), u (t))-
0 

- f(t, X (t), ii (t, X (t))))} dt. 
1 

Since I (y) = J L (t, x (t), u (t)) dt, we are led to the extension of the Weierstrass 
0 

formula 
1 

](y)-l(y0)= I {H(t,x(t) , ii(t,x(t)), ji(t, x(t)))-
o 

- H (t, X (t), u (t), ji (t, X (t)))} dt 

where H (t, x, u, ji) is defined in § 2. By vi1tue of the definition of a feedback control 
(def. 2) .), compare also (2.6), 

This completes the proof. 

(5.16) 

• 
NoTE 5. If in (1.1) f(t, x, u)=u and U=R", then problem (1.2) becomes the standard 
problem from the calculus of variations and tl (t, x) is a geodesic slope or field slope, 
ji (t, x)=L, (t, x, ii (t, x)), (5.16) is the integral from the Weierstrass £-condition 

E=L (t, x, u)-L (t, x, ii)- (u-t-i) L, (t, x, ii) ~ 0, (5.17) 

and the spray .E is a geodesic family or a field of extremals. 

NOTE 6. In many books on the calculus of variations a field of extremals is defined 
as the one which induces only a line independent Hilbert integral (5.1), but then 
curves that define the field satisfy only the Euler equation and so, in a sufficiency 
theorem there must occur £ -condition (5.17). In optimization theory members of L 

satisfy the maximum principle and thus, also a suitable inequality (5.17). Hence 
the last inequality does not appear in our sufficiency theorem. 

Now, we give a simple example to explain the above theory. 

ExAMPLE: Let U = [- 1, 1]; admissible controls are measurable functions u: [0, 1]---+ 
---+ [ -1, 1]; admissible trajectories are absolutely continuous functions x: [0, 1]---+R 
satisfying 

x (t)=t (u (t))Z. (5.17)' 

We find a minimum of the integral 

I(x, u)= J (x (t)-(u (t))1) dt (5.18) 
0 

from among all admissible pairs (x, u) whose trajectories satisfy x (0)=0, x (1)= 1/2. 
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First, we calculate trip1ets (x, u, y) which sat1sfy the maximum prirciple. To this 
effect, we set f1 (t, x, u, y)=-L (t, x, u)+yf(t, x, u)=- x+u2 +ytu2 and H (t, x, y)= 
= max f1 (t, x , u, y) . We know (comp. 3. of§ 1) that y= -Hx. In our case this 

-1 ::::;;; u::;;;1 

gives y = l. Hence y (t, a)=t+a. Of course, y (t, a) are independent of x and u, 
so we can take ex = -1, i.e. y (t)=t-1, te[O, 1]. We easily check that f1 attains its, 

1 
maximum at u= 1 or u= -1 for each tE[O, 1], xER. T. hus x (t, a)=-

2 
t 2 +a, t E [0, 1], 

. 1 
oER and, for a=O, we have the suspected trajectory x 0 (t)=x (t, 0)=-.z t 2

• 

We can now define the families I: and I:*. The set G considered above is now 
equal toR. The functions t-( a) , t +( a) are constant a nd equal to 0 and 1, respectively. 
[Z]=Z- uZuZ+={(O, a): aER}u{(t, a): 0 < t < 1, aER}u{(1, a): a eR}. The fa­
mily I: is given by the functions 

1 
x (t, a)=2 t 2 + a, u (t, a)= 1 (t, a) E [Z]. (5.1 9) 

Similarly, [Z*]=Z* - u Z* u zu= {(0, a, p): (a, p) E G} u {(!, a, p): 0 < t < l, 
(a, p)EG}u{(l, a, p): (a, p)eG} where G=G XR=R2 and I:* is obtained by adjoin­
ing to functions (5.19) the conjugate function 

y (t, a, p)=t-l (t, a, p) E [Z*]. (5.20) 

Of course, for the function p (a) defined in (5.4) we may take p (a)=a. It is easy 
to check that all assumptions (5.6) are satisfied here. Hence the diff 0 of (5.8) has 

1 
the form 0: (t, x)->(t, x--zt 2

), and 

1 

zl(t,x)=l in [DJ, 

y(t,x)=t -1 in [DJ, 
(5.21) 

where [D]={(t, x):x=-.zt 2 + a, (t,.a)E[Zl}={(t,x): 0:(!:(1, xeR}. The sets 

D-, D, D+ are defined analogously. 

Finally, by (5.20), we obtain that integral (5.13) is equal to zero for all rectifiable 
paths in z+' so that it is independent of them there. 

Thus, all assumptions of the definition of a canonical spray are satisfied, hence 
our family I:* is the canonical spray, and, by the sufficiency theorem, the pair (x 0

, u 
where x 0 (t)= 1/2 t 2

, u0 (t)= 1, tE[O, 1], gives the global minimum to (5.18). It is 
evident that the ii (t, x) of (5.21) is the optimal feedback control. 
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Warunki konieczne wyznaczania mmJmum 

w klasycznym zadaniu sterowania optJrnalnego 

Stosuj«c klasyczny rachunek wariacyjny podano praktyczn« metod~: obliczania optymalnego 
sterowania ze sprz~<i:eniem zwrotnym. W rezultacie otrzymano warunki dostateczne Weierstrassa 
wyznaczania minimum funkcjonalu. 

Heuu;W.il:liiMb!e JCJIGRI!ll onpe,u:eJieHH.H MliHMMYMa 

Il I'J12CC!1"'!CC!WH 3a)J,a•Ie Cfi!TH!V.aJIM!OrO ynpaBJICHIISI 

Vlcnono3Y!! KrracC!f'IeCt<Oe BapHaUf!OHHoe HC'!KcneHHe, .n;aeTCli rrpai<Tll'!eCKlili MeTO.I\ Bb!'IIIC­
neHH:l orrTnMallbHoro yrrp3.BneHnl! c o6paTHOK CBli3bfO. B pe3ynhTaTe rrony'!eHbi .n;ocraTO'IHbie 
ycnoBmr Beepunpacca .n;rr~ onpe,[lenemm MHHHMYMa .pymCI.\HOHana. 




