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This paper deals with the problem of robustness of decentralized s-coupled control systems. 
Bounds on perturbations in ti)e coupling parameter are established and it is shown that it is possible 
to calculate a sector such that system stability is assured. The suggested approach is not crucially 
dependent on any particular method for decentralized control system design. 
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1. Introduction 

Reduction of computation and simplification of the control system structure 
are of particular concern in decentralized control of large scale systems [1]. The 
methods for model simplification*) can be divided into two classes: agregation 
methods [3] and perturbation methods. It is common practice to divide the pertur­
bation methods into two subclasses ofnonsingular perturbation (s-coupling) [6] - [9] 
and singular perturbation [ 4 J methods. 

When perturbation methods are used, following his intuition and experience 
a designer n-::glects small parameters, that is, sets them to zero to produce a simpli­
fied system. However, the question is whether an approximate design can be satis­
factorily applied to high order systems. A shortcoming of these methods is that 
they do not give an estimation of a range of the parameters in which the reduced 
solution can be used to stabilize the original system. Therefore, a fundamental 
problem in large scale system theory is to give conditions for the success of design 
based on simplified models- this is essentially a robustness problem. 

*)This research was partially supported by the U.S. - Yugoslav Scientific and Technological 
Cooperation under Grant ENERGY-401. 
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In this paper we cons;der a problem of robustness of decentralized t:-coupled 
systems subject to variations in the coupling parameter. A brief description of the 
paper is as follows. The d::sign procedure and problem formulation are given in 
Section 2. The main results and robustness characterization are given in Section 3. 

2. Design procedure and problem formulation 

The s-coupling approach is based on the notation of a nonsingular perturbation, 
i.e., a perturbation term is in the right-hand side of a differential equation. We define 
the ~;-coupled decentralized control system as 

I 
le k 

;( (t)=Ax (t)+ ~;Ax (t)+ }.; B1 u1 (t)+c:}; B 1 u1 (t) 
~J i i 

u1 (t)=F1 C1 x(t), i=1,2, .. . ,k 

where xER" and u, E R.m: are the state and inputs of (S0), and 

A=A+s (t ).A, 

A= diag (Au), 

0 

0 

B1=B1+ s (t) B1 

-o A12 
A21 0 

A= 

Au Ak2 

-Bu 

B1-1,1 

B1 = 0 
Bt+l,i 

Alk 

• · • A2k 

... 0 

(1) 

(2) 

(3) 

(4) 

(5) 

In the design procedure the model (1) and (2) can be employed to express the 
fact that a large scale system is composed of several similar subsystems which are 
uncoupled if a coupling parameter s is neglected. The decentralized control methods 

~) A great variety of reduced-order modeling techniques exist for genera] systems (see e:g. the 
bibliography of [2]). 
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for large scale systems ba~ed on s-coupling approach follow directly from the results 
developed in [7] - [9]. It can be easily shown that the s-coupling method can be 
applied to both approaches for decentralized control designs suggested in [10]. The 
first approach is based on minimization of the decentralized quadratic performance 
index 

00 k 

J= J (xT Qx+}; u: R, u,) dt (6) 
0 

Q= (7) 

The second approach is based on computation of a complete state feedback (by 
linear quadratic methodology) and reduction to a specified control with a decentra­
lized structure. 

In both cases the computation of the deccntraiized corJrol can be done by de­
COlipling subsystem calculation by using Maclaurin series expansion. Then the 
control law can be expressed as 

U; (t)= -Ri 1 BT KA; X (t), i=l, 2, ... , k (8) 

where the values of the matrices .k and /1, dep::nd on the specific approach chosen; 
B,=B, (s0

), K=K(s0
) and A,=A, (s0 ) arC! calculated for some c=E0 . 

When the control (8) is used in the actual system (S0 ) the closed loop stability 
is in question. Because of continuity, for sufficiently small L1 s= s- s0 it can be expected 
that the actual system will remain stable. Therefore, in what follows, it will be as­
sumed that the closed loop sy:3kni 

(9) 

where A=A (s0 ), B,=B, (s0), K=K (s0 ) and i(=A , (t:0 ), is stable. However, if during 
the operation of the system the coupling paramete r considerably changes its value, 
then the stab:llty of the system can be destwyed. A shortcoming of a weak coupling 
approach is that, in general case, it does not give estimation of range of the para­
meter s in which the approximate solution can be usc-d to stabilize the perturbed 
system. Therefcr~, it should be pointed out that it is not only important that there 
exists s· so that the closed loop system is stable, but also it is important to know for 
which range of values of s the closed loop system rtmains &tc:ble. In the following 
section we give such an estimation. 
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Before that, notice that the value of the corresponding performance index is 
J=xr (t0 ) Px (t0 ), where P satisfies the matrix equation 

(10) 

where 

k 

5: ~T i'>T o ~T ~ ~ 
T=O+ A. 1\.. Bi R 1 B. KA,. 

_, ..::-.J ' ' 
(11) 

For ease in subseq1:e1t calculation it is assumed that the matrix T is a nonsingular 
matrix, thus guaranteeing [11] that Pis positive definite. 

3. Robustness characterization 

Let the actual value of the coupling parameter s (t) be 

s (t)=s0 +Lfc (t) (12) 

Then the perturbed system can be presented in the form 

k 

(S1): x (t)=(A+L1e.A- 2_;c.Bi+L1s.B;) R;- 1 B'{ .K;i;} x (t) (13) 

To estimate the range of the allowable perturbation .de: which does not affect system 
stability we give the following theorem. 

Theorem 1. Let the closed loop system (S1), eqn. (13), be stable for s=s0 , i.e . .ds=O. 
Then it will remain stable as long as 

s(t)=s0 +L1e(t), for all ts[O, oo) (14) 

where 

k k 

S=T- 1 ((.A- .2_; Bt R;- 1 BJ" KAr P+P (.A- .2_; .Bi R;- 1 BJ" KAi)) (16) 
i 

matrices P and Tare defined with (10) and (11), respectively, and Amax ( ·) denotes 
maximum eigenvalue of ( ·). 

Proof. The proof proceeds by utilizing argument of Lyapunov theory. Consider 
the positive definite function V (x) for the perturbed system (S1 ) as 

V (x)=xT (t) Px (t) (17) 
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Sir:c~ P is positive definite matrix it remains to examine V (x). Taking the time 
derivation of V (x) along the solution of (S1), it follows 

k 

V(x)= -xr (T-Js (t) ((.A- _2 B1 R-; 1 B'{ JL11)r P+ 
i 

(18) 

making the simplification by using the Lyapunov matrix equation (10). Asymptotic 
stability follows if V(x) is negative definite, which follows if 

k k 

T-As(t)((.A- _2B1 R; 1 Br£JfP+P(A- _2B1 R; 1 B;rKA1)))>0 (19) 
i 

To prove condition (15) recall the following lemma. 

LEMMA 1. [12]: If E and Fare symmetric matrices and E is positive definite, there 
exists a nonsingular matrix G such that 

GT (E+F) G=I+H (20) 

where matrix H is a diagonal matrix whose elements are eigenvalues of E- 1 F. 

Therefore, using the results of Lemma 1, 1t can be easily concluded that the 
perturbed system (S1) will remain asymptotically stable if the following inequality 
is satisfied 

k 

1-.dt (t) -1i (r- 1 ((.A- L Bt R; 1 _Br KAr P+ 
i 

k 

+P(.A- _2B1R; 1 B{KA1)})>0 
i (21) 

}=1, 2, ... , n 

i.e., 

1-.dt(t)lli(S)>O, j=1,2, ... ,n, for all tE[O,oo) (22) 

where the matrix S is defined by (16). 

Now, under the assumption that J.m,. (S) > 0, which is the usual case, it follows 
that 

i.e., the perturbed system (S1 ) remains stable if 

.de (t)E[O, .d tmax), for all t E [0, - oo) 

(23) 

(24) 

11 
The results of Theorem 1 can be expresed alternatively in term of specific bounds 

on .de (t), so that the results become easier to appreciate. This is done in the following 
lemma. 
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LEMMA 2. If the perturbation parameter As (t) satisfies the condition 

IL1sl (II AII s+ l).B~ R;- 1 .8( KAd ls)< Amin<::. 
i 2 }•max (25) 

for all t E [, eo) 

where the matrices P and Tare defined by (10) and (11 ), respectively, and 11 ·lis denotes 
spectralrtorm of ( ·); then the perturbed system remains stable. 

Proof. The proof is similar to the proof of Theorem I. Choosing V (x)=xT (t)Px (t), 
where the matrix P is a positive definite solution of (10), as a Lyapunov function 
or the system (S 1), y· (x) can be calculated as before to give 

k 

V(x)=-xT (r- A.s(t)((A- )_;B1R; 1 B( Kiif P+ 
k 

+P (A- 2.;.8; R;- 1 _BT Kli;))) X (26) 

Now, notice that 
k 

xT Llc (t) P (A-}.; B1 R;- 1 _BT Kfi,) x< [[xll; IIPI!s I lA+ 
,, 

+ _2; B; R;- 1 B( KA,! Is1L1.sl (27) 

Therefore, ft"Om (26) , (27) and condition (25) it foliows that 
k 

XT Llc(t) P (A-}.; B;R;- t ET Kfi,) X< 1(2}'min (T) llxll; (28) 

and ~i" (x) becomes 
V (x) < -XT (T-}'min (T) I) X (29) 

It is easy to see that V (x) < 0, for all x (t), and, hence, the perturbed system 
remains stable. mm 

The perturbations acting on the coupling pan1mcter c: (t) are frequently not 
known accurately, although some estimate of their maximum bounds may be avai­
lable. The results of Lemma 2 provide analytically verifiable conditions which can 
be used to cvaluat;; robustness again-;t the p:~rturbations in the coupling parameter 
s (t). Any variations within the sector (25) cannot dcstabilize the nominal closed 
loop stable system. 

The following corollary is easy to prove but is interesting as it include& the parti­
cular but important case: when only the z,~ro terms of the corresponding 1·1aclaurin 
s::ries expansion are included. 

COROLLARY 1. The closed loop system (S1 ) with decentralized control law 

ll; (t)=- R;- 1 B"{ J?/1; X (t) , i= I, 2, ... , k (30) 
where 

(31) 

r 
I 

I 

-- ---------------------------------------------------------------------------------
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will remain stable as long as e<LI .sm,., where Li s is defined by (15) for T=T(O), and 
the matrix P (0) is a positi'IJe definite solution of the linear equafion 

k k 

(A- '\' J{R-:- 1 _ET Kili)T P-';-P (If- ')1 lJiR-:- 1 _ET J(J:i)+ 
~ t ..{_J 1 l 

l . i 

where 

r-o -
I : 

(32) 

I
. I 

A=diag (Au), Q=diag (Qu) and B1= Bu , i= 1, 2, ... , k (33) 

0 

Notice that the result of Corollary 1 is a gcr.cralization cf result presented in 
[13], [14] where an explicit weak coupl.ing condition which insures that the approxi­
mate solution for s=O of full state feedback , stabilizes the actual system, has been 
obtained. 

So far , the robustness analysis has b<en restricted to the case when the pertur­
bations in all interconnecti ons are the same, i.e., Lis (t) has the same value for the 
whole system. However, in the case of most engineering systems, during the operation 
of the system, the perturbation co1.1piing parameter may have di fferent values for 
different interconnections. In what follows we consider the case when the perturbat­
ion matrices LleA and Llc:B1, i= 1, 2, .. . , k, during the operation of the system become 

0 
Llc1A2t 

A1= 

Lick Ll c1 -

Ll e2 A 12 

0 

L1 E2 Ak2 

Ll,kAtk­

L1,k A2k 

0 

In this case A 1 and B1 can be presented as 

A 1 =AE, B 1 =BE . 

Llc1 Bi-1,l 
B1= 0 (34) 

L1e;Bi+1. 1 

(35) 
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where 

E=diag (As;) , i=l,2, ... ,k, B1=[Bz BJ ... BiJ (36) 

and 

0 Bl2 
-

B1< 
B21 0 Bz,, 

B= (37) 

_Bkt Bk2 0 

Now, the following lemma holds. 

LEMMA 3. The closed loop system 

k 

x(t)=(A+A 1
- _2;(Bi+B!)R; 1 B'{ xlqx(t) (38) 

M'here A 1 and B 1 are deji11ed by (35), will remain stable if the following condition holds 

(39) 

for all tE[O, eo), where matrices T and P are defined with (10) and (11), respectively. 

Proof. This is a straight forward generalization of Lemma 2. 

Although the expressions for the bounds on the perturbations in the coupling 
parameter s (t) appear to be complicated, they are, in fact, not very difficult to cal­
culate. Once the decentralized control problem is solved a few further computations 
are needed to carry out the robustness analysis. Remember that matrices P and T 
are calculated as a part of a design procedure and the calculation of the suboptimal 
index re;formance. In addition, there are straightforward methods for J.max calculat­
Jons. 

4. Conclusions 

A computationally effi.ciert method for robustness evaluation in decentralized 
s-coupled control systems has been proposed. Bounds on perturbations in the coup­
ling parameter have been e~:tablished Sl!Ch that stability of the system is assured. 
The case when the pertmbaticns on the coupling parameter have different values 
for different interconnectiom; has been also considned. The results presented in this 
paper are readily applicable to practical situations in which a designer has estimates 
on the bounds of perturbations. 
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Odporna stabilnosc zdecentralizowanych epsilonowo 
powil!zanych systemow sterowania 

W artykule rozwai.ono zagadnienie odpornosci w zdecentralizowanych , epsilonowo powi<tza­
nych systemach sterowania. Podano ograniczenia na zmiany parametru powi<tzania i wykazano, 
i.e moi.na znalezc obszar, w kt6rym stabilnosc jest zapewniona. Proponowane podejscie nie zalei.y 
specjalnie od i.adnej szczeg6lnej metody projektowania zdecentralizowanych system6w. 

CTOHKan ycTOH'fJIBOCTh ,!I.ClieHTpamnonaHHMX 

e-CBH3aHJibiX CHCTeM ynpaBJleJUIH 

B crar&e paccMaTpHsaercH norrpoc yCTOti '!HBOCTI{ n AeueHrpanH30BaHHh!X e-CB5!3aHHhlX 
cHcreMax ynpanrreHHH. IIpHBeAeHhi orpaHM•JeHHH Ha H3MeHeHH5! napaMeTpa csm11 H noKa3aHo, 
'!TO MO>KHO HafiTH o6rracr&, a Koropoii: ycroii:•nmocTh o6ecrre'!eHa. IIpeArraraeMhlfi IIOAXOA oco6o 
He 3aBHCHT OT K3KOTO-llH60 'l3CTHOTO MeTOA3 npoeKTHpOBaffil5! Ael]eHrparrH30BaHHhiX CHCTeM. 
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