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This paper deals with the problem of robustness of decentralized s-coupled control systems.
Bounds on perturbations in the coupling parameter are established and it is shown that it is possible
to calculate a sector such that system stability is assured. The suggested approach is not crucially
dependent on any particular method for decentralized control system design.
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1. Introduction

Reduction of computation and simplification of the control system structure
are of particular concern in decentralized control of large scale systems [1]. The
methods for model simplification®) can be divided into two classes: agregation
methods [3] and perturbation methods. It is common practice to divide the pertur-
bation methods into two subclasses of nonsingular perturbation (e-coupling) [6] — [9]
and singular perturbation [4] methods.

When perturbation methods are used, following his intuition and experience
a designer neglects small parameters, that is, sets them to zero to produce a simpli-
fied system. However, the question is whether an approximate design can be satis-
factorily applied to high order systems. A shortcoming of these methods is that
they do not give an estimation of a range of the parameters in which the reduced
solution can be used to stabilize the original system. Therefore, a fundamental
problem in large scale system theory is to give conditions for the success of design
based on simplified models — this is essentially a robustness problem.

*) This research was partially supported by the U.S. — Yugoslav Scientific and Technological
Cooperation under Grant ENERGY-401.
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In this paper we consider a problem of robustness of decentralized e-coupled
systems subject to variations in the coupling parameter. A brief description of the
paper is as follows. The dssign procedure and problem formulation are given in
Section 2. The main results and robustness characterization are given in Section 3.

2. Design procedure and problem formulation

The e-coupling approach is based on the notation of a nonsingular perturbation,
i.e., a perturbation term is in the right-hand side of a differential equation. We define
the e-coupled decentralized control system as

ke k
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In the design procedure the model (1) and (2) can be employed to express the
fact that a large scale system is composed of several similar subsystems which are
uncoupled if a coupling parameter ¢ is neglected. The decentralized control methods

*) A great variety of reduced-order modeling techniques exist for general systems (see e.g. the
bibliography of [2]).
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for large scale systems based on e-coupling approach follow directly from the results
developed in [7] — [9]. It can be easily shown that the e-coupling method can be
applied to both approaches for decentralized control designs suggested in [10]. The
first approach is based on minimizatior_l of the decentralized quadratic performance
index '

=] k
J= [ (xTQx+ D'ul R, ui) dt (6)
[t i
where 0=0">0, R,=R">0, and
] Oy e0y5 *0t 0y
o=| - 5 e (7
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The second approach is based on computation of a complete state feedback (by
linear quadratic methodology) and reduction to a specified control with a decentra-
lized structure.

In both cases the computation of the decentralized control can be done by de-
coupling subsystem calculation by using Maclaurin series expansion. Then the
control law can be expressed as

w ()=—R7PBTRA, x (), i=1,2,..k (8)

where the values of the matrices K and A, depznd on the specific approach chosen;
B,=B, (), R=K () and A,=4, (e,) are caleulated for some s=&,.

When the control (8) is used in the actual system (Sg) the closed loop stability
isin question. Because of continuity, for sufficiently small de=#—¢, it can be expected
that the actual system will remain stable. Therefore, in what follows, it will be as-
sumed that the closed loop system

% (x):(A“- i‘ B.R' BT K;i,.} x (1) (9)

where A=A (&), B;=B, (¢0), K=K (¢,) and A,= 4, (&,), is stable. However, if during
the operation of the system the coupling parameter considerably changes its value,
then the stab’lity of the system can be destroyed. A shoricoming of a weak coupling
approach is that, in general case, it does not give estimation of range of the para-
meter ¢ in which the approximate solution can be used to stabilize the perturbed
system. Therefcr:, it should be pointed out that it is not only important that there
exists £ so that the closed loop system is stable, but also it is important to know for
which range of values ¢f ¢ the closed loop system remains stable. In the following
section we give such an estimation.
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Before that, notice that the value of the corresponding performance index is
J=xT (to) Px (t,), where P satisfies the matrix equation

(4- ZB R7* BT RA)" P+P(d- Zk‘B} Ry BT RA+T=0  (10) -
i i

where
k
T:QJ,—Z AT RT B, R, BT RA, (11)
i

For ease in subsequent calculation it is assumed that the matrix T is a nonsingular
matrix, thus guaranteeing [11] that P is positive definite.

3. Robustness characterization

Let the actual value of the coupling parameter ¢ (¢) be
& (f)=s0+de (1) (12)

Then the perturbed system can be presented in the form
k
(S): % (r):(zf—i—zfsff- D'(Bi+4¢B) R BT Kﬁi) x(f) (13)
i

To estimate the range of the allowable perturbation Ae which does not affect system
stability we give the following theorem.

Theorem 1. Let the closed loop system (S,), eqn. (13), be stable for e=¢,, i.e. Ae=0.
Then it will remain stable as long as

e (t)=ey+de(t), for all 2 [0, c0) (14)
where

Ae(t) <Aep=A"1 () (15)

max
k K
S=7-1 (A~ > B, R;* BT RA)" P+P (A~ Y B, R7* BT RA)) 6
i i
matrices P and T are defined with (10) and (11), respectively, and 4., (*) denotes

maximum eigenvalue of ().

Proof. The proof proceeds by utilizing argument of Lyapunov theory. Consider
the positive definite function ¥ (x) for the perturbed system (S,) as

V (x)=xT (¢) Px (1) a7
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Sircz P is positive definite matrix it remains to examine ¥ (x). Taking the time
derivation of V' (x) along the solution of (S;), it follows

V()= —xT (T—-Aa 0 ((Ju i‘ B, R BT m})f P+
+P(d- 2 B.R7'BIRA))x  (19)

making the simplification by using the Lyapunov matrix equation (10). Asymptotic
stability follows if V (x) is negative definite, which follows if

k k
T—Ae (f) ([A'~ ZE, R;*ﬁTﬂi)’"P+P {A‘ - B, R;‘E‘ffﬁi)))>0 (19)
i i
To prove condition (15) recall the following lemma.

Lemma 1. [12]: If E and F are symmetric matrices and E is positive definite, there
exists a nonsingular matrix G such that

GT (E+F) G=I+H 20

where matrix H is a diagonal matrix whose elements are eigenvalues of E-' F.

Therefore, using the results of Lemma 1, it can be easily concluded that the
perturbed system (S;) will remain asymptotically stable if the following inequality
is satisfied

1—de(t) 4, (T“ ((A‘— Zk‘fz,. A BTK&)T P+

+P(d- Zs R BT RA)))>0 ail

F=1 2l
o8y
1—=A4e(t) 4;(S)>=0, j=1,2,...,n, for all te]0, o) (22)
where the matrix § is defined by (16).

Now, under the assumption that 2., (S)>0, which is the usual case, it follows
that

Aemax=Amax () (23)

i.e., the perturbed system (S,) remains stable if
Ae (1)el0, de,,),  for all 1€[0, — o) (24)
H

The results of Theorem 1 can be expresed alternatively in term of specific bounds
on de (1), so that the results become easier to appreciate. This is done in the following
lemma.
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LemMma 2. If the perturbation parameter Ae(t) satisfies the condition
f“ 3 1 AT pA R
el (||A'||s+% 1B, R7* B} RAN) <2 -
Sfor all te[, o0)

where the matrices P and T are defined by (10) and (11), respectively, and || +||, denotes
spectral rorim of (*); then the perturbed system remains stable.

Proof. The proofis similar to the proof of Theorem 1. Choosing V (x)=xT () Px (1),
where the matrix P is a positive definite solution of (10), as a Lyapunov function
or the system (S,), ¥ (x) can be calculated as before to give

V(x)=—xT (T~A (r)[( EER BTAA)

4P (,«I-- j’éi R BT Kﬁi})) x  (26)
Now, notice that ‘I

k
xT 4s (1) P(A‘— N B R BT 1&&,.} x<|ix|(2 1P|l 1A+
! 3
+ ZE R7UVBTRANe @D

Therefere, from (26), (27) and condition (25) it follows that
k

xT de (1) P(4 Z CAL) 2 <12 (T) 1112 (28)

and ¥ (x) becomes
V ()< =" (T— dnia (T) I) x . (29)
It is easy to see that ¥ (x)<0, for all x (¢}, and, hence, the perturbed system
remains siable, B

The parturbations acting on the coupling paramecter «(7) are quuemly not
known accurately, although some estimate of their maximum bounds may be avai-
lable. The results of Lemma 2 provide analytically verifiable conditions which can
be used to evaluatz robustuess against the parturbations in the coupling parameter
e (7). Any variations within the sector (25) cannot destabilize the nominal closed
loop stable system.

The following corclilary is easy to prove but is interesting as it includes the parti-
cular but important case when only the zero terms of the corresponding Maclaurin
szries expansion are included.

CoroLLARY 1. The closed loop system (S,) with decentralized conirol law

u, (N=—R; BT RA, x(r), i=1,2,...,k (30)
where
E}:BI (0) : K=K(0) s /T::At (0) (31
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will remain stable as long as e <Ae,,,,, where Ae is defined by (15) for T=T (0), and
the matrix P (0) is a positive definite solution of the linear equation

(;1'— }i‘f&} R:1ET K’ﬁ,.]T PP (;{— jﬁi R7t BT Kﬁi) +
L i

| =

-

where

A=diag (4;,), O=diag (¢,) and B,=| B, |, i=1,2,...k (33)

Notice that the result of Corollary 1 is a gercralization of result presented in
[13], [14] where an explicit weak coupling condition which insures that the approxi-
mate solution for e=0 of full state feedback, stabilizes the actual system, has been
obtained.

So far, the robustness analysis has bren resiricted to the case when the pertur-
bations in all interconnections are the same, i.e., de(¢) has the same value for the
whole system. However, in the case of most engineering systems, during the operation
of the system, the perturbation coupling parameter may have different values for
different interconnections. In what follows we consider the case when the perturbat-
ion matrices ded and 4B, i=1, 2, ..., k, during the operation of the system become

_AEEB_“
0 ey Ay --- AzkAlk_ .
ASI-AZI [:3 e A:k.AZk AEI_BE_I’i
Al= ’ . s Bll.: 0 (34)
o i d&;Bl-;l_;
Aeg Aoy Aoy Ay 0 O
A&y By

In this case A' and B' can be presented as

A'=AE, B'=BE (35)
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where
E=diag (d¢;), i=1,2,..,k, B'=[B!B! --- B!] (36)
and
i3 0 B12 Blkd
Byy 0 .-+ By
B=| = ) (37
_Bkl B, --- 0 _
Now, the following lemma holds.
LEMMA 3. The closed loop system
X
% (z):(A" 4t~ 3'(B+BY R BT m,.) x (1) (38)
i

where A* and B' are defined by (35), will remain stable if the following condition holds

g ‘J"rniu (T)

k
e s (I1IL+ 3] 1B 11R7* BT RAL) S (39)

for all t€]0, ), where matrices T and P are defined with (10) and (11), respectively.

Proof. This is a straight forward generalization of Lcmma 2. i)

Although the expressions for the bounds on the perturbations in the coupling
parameter & (f) appear to be complicated, they are, in fact, not very difficult to cal-
culate. Once the decentralized control problem is solved a few further computations
are needed to carry cut the robustness analysis. Remember that matrices P and 7'
are calculated as a part of a design procedure and the calculation of the suboptimal
index pe:-formance. In addition, there are straightforward methods for 2, calculat-
ions.

4. Conclusions

A computationally efficiert method for robustness evaluation in decentralized
e-coupled control systems has been proposed. Bounds on perturbations in the coup-
ling parameter have been established such that stability of the system is assured.
The case when the perturbaticns on the coupling parameter have different values
for different interconnections has been also considered. The results presented in this
paper are readily applicable to practical situations in which a designer has estimates
on the bounds of perturbations.
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Odporna stabilno$é zdecentralizowanych epsilonowo
powiazanych systeméw sterowania

W artykule rozwazono zagadnienie odpornosci w zdecentralizowanych, epsilonowo powiaza-
nych systemach sterowania. Podano ograniczenia na zmiany parametru powigzania i wykazano,
#e moina znaleZé obszar, w ktorym stabilnos¢ jest zapewniona. Proponowane podejicie nie zalezy
specjalnie od zadnej szczegdlnej metody projektowania zdecentralizowanych systemow.

Crofikas yCTOHYMHBOCTL JICHEHTPATHIOBAHHBIX
E-CBH3AHHLIX CHCTEM yﬂpa‘B.ﬂEHH}l

B craThe pacCMATPHBAETCH BOMPOC YCTOHYMBOCTH B JCUEHTPANH3OBAHELIX E-CBA3AHHBIX
CHCTEMAX YIpaelleHus. [IpPHBENEHBI OTPAHWYEHWS HA HIMEHEHWs IApaMETpa CBA3W M IIOKa3laHo,
4TO MOXKHO HafiTe o6nacTs, B KOTOPO# ycToiivmBoCcTh: obecnevena. [lpennaraemstii monxon ocobo
HE 3aBHCHT OT KaKoro-nuGo YacTHOTO METOM@ TIPOEKTHPOBAHMS JEHUEHTPANTU3OBAHHBIX CHCTEM.







