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Considered is an orbit, with respect to the action of the control law: u= Fy+Gv (with F, G
constant), of a linear multivariable time invariant controllable and obssrvable system described by
the state space equations: x= Ax-Bu, y= Cx. There has been established an explicit relation bet-
ween parameters of the Luenberger observable companion forms of any element of the orbit and
these of the system and matrices F and C. Topoelogical characterisation of the orbit has been pre-
sented.

1. Imtroduction

Establishing an existence of solution and evaluating it — these are the main
aspects of the exact model matching problem. Usually an existence question is
answered when, following a given algorithm, we attempt to solve some resulting
algebraic equations that describe relations between parameters of systems and
regulators. However, such an approach makes it impossible to determine a whole
class of systems which admit the use of an exact model matching scheme.

Thus, the task of establishing a simple characterization of class of systems for
which the exact model matching problem can be solved, gains a special importance.
For the exact model matching by a state feedback some results have already been
published: Ackerman [1], Cramer [2], Wolovich, Falb [7], Wolovich [8]. Even in this
simpler case, the connection between the problem stated above and sets of structural
invariants of systems is unknown.

The paper presents a characterisation of a class of systems for which there exists
a solution to the exact model matching by output feedback and input vector trans-
formation. Characterization has been done in terms of structural invariants of sys-
tems and parameters of proportional regulators.
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2. Problem statement

Consider a system
X=Ax+Bu, x(0)=0 (2.1a)

y=Cx, (2.1b)

where x=x (t)eR", y=y (t1)eR?, u=u(t)eR? are state, output and input vectors
respectively determined for 1=0. The system is assumed to be controllable and
observable; 4, B, C are constant real matrices of appropriate sizes, C is of a full
rank. A transfer function matrix of (2.1) is

H(s)=C(s1,—-A)"'B. (2.2)

and is a strictly proper element of R (s5)?*9 — set of px g rational function matrices
over reals, In the paper we consider a family of systems which can be obtained from
(2.1) under an action of the control law

u=Fy+Go (2.3)

where v=2 (f)eR" is a vector of an external input and F and G are real constant
matrices of appropriate sizes.

There exists such a nonsingular martix Q that a state space coordinate trans-
formation

£=0x (2.4)
yields following state space and output system equations for
F=A%+Bi, x(0)=0 (2.52)

y=Cx (2.5b)
in so called Luenberger observable companion form '

HAI].' Ayp v Ay,

A= T e R =1,
_Apl ApZ Aw
(00 +++ 0 =
4=’ 00
00 -+ 1%
(0 +++ 0 %
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(ny, ny, ..., n,) is a p-tuple of observability indices of (2.1), » denotes possibly non
zero elements of 4,; and C, i,j=1, ..., p. B has no special form (Luenberger [4]).
Let k;=n,+n,+...-Fn; for i=1, ..., p.

We denote 4, and €, matrices formed of columns numbered k; i=1, ..., p of matrices
A and C respectively. Since C has a full rank, matrix C, is nonsingular. Thus ma-
trices

Kea=4; C;Y, Me,=Ct (2.6)
are well defined. They have the following form
_911 "ty
Kea=|= === = |, auER"‘,
Qpy *°" Gy

- .
al;=[a;;0, Gij1s -vr Qijn,-1], @=0 for k=min (n;, n;).

1 0 .+ 0 0
- 1 wee

T I R
L""bp1 —bpz g —.b.p. p—1 I

b;;=0 for n;=n;. (Ackermann [1])
After Vardulakis ([9]) we call elements b, ; and these of vectors a;, which by definition
equal zero the “sacred zeros” of matrices M., and K¢ ,.

REMARK. It is well known that elements of M, below a diagonal, and of K.,
which are not the sacred zeros are so called £ and « (respectively) parameters for
an observable pair of matrices (C, 4) and they are invariant to nonsingular change
of coordinates in a state space. Conversely, given a set of « and f§ parameters one
can easily write down matrices K., and M.,. For notational reason we will use
K¢, and M, instead of o and f parameters and even place them on a list of complete
and independent invariants, always having in mind that they symbolize « and £
parameters. According to this agreement, it will be shown in the proposition (3.9)
that the following quadruple )

(chs MCA.) Ea (nl.! iy np)) d (2'7)
forms a complete set of independent invariants (shortly: structural invariant) of
the observable system (2.1) (in fact, by assumption, it is controllable as well).
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The task of the paper is to find a solution to the following problem: Given the
structure invariant (2.7) of the controllable and observable system (2.1) and a pair
of matrices (F, G) in (2.3), evaluate the structure invariant of the closed loop system
(2.1 — 2.3) as a function of (2.7) and of the pair (F, G).

3. Minimal observability matrices, structural invariants

Before we solve the problem stated in the previous section, we recall some pro-
perties of minimal observability matrices, which will be our main tool.

DermitioN (3.1). Given the controllable and observable system with a rational

proper transfer function matrix HeR (s)?*9, we call a matrix SyeR [s]?*+2 (a px

(p-g) matrix whose elements are polynomials over reals) the minimal observability

matrix for the system with the transfer function matrix H if

1° if §2=[P, R] and PeR [s]?*?, then H=P~' R

2° for each complex s, the matrix Sj, (s) has a full rank

3° a matrix [P],eR?*? consisting of coefficients of the highest degree s terms in each
row of polynomial matrix P is nonsingular.

TueoreM (3.2). Let SyeR [s]7**+9 be a minimal observability matrix jor a system

with transfer function matrix HeR (s)7*9, then

1° Let m; be the highest degree of terms in the i-th row of Sy (the i-th row index)
i=1,2, ..., p. Then {my, my, ..., m,} is the set of observability indices for the sys-
tem with transfer function matrix H. The sum m+m,~+...-+m, is the dimension
of its controllable and observable state space representation.

2° Given any two minimal observability matrices S§, and Q, for the system with trans-
fer function matrix H, there exists one and only one polynomial unimodular inver-
tible matrix DeR [s]P*? such that S3=DQ},.

3° Let S}, and Q% be any two minimal observability matrices for the system with trans-
fer function matrix H. Assume that their row indexes my, ma, ..., m, form non-
decreasing sequence, then the unimodular polynomial matrix mentioned in p. 2°
has a form

D, 0«0
p=| T 2 T 6:3)
Uy Uy -+ D,

A positive integer t can be evaluated as follows: cut the sequence my, m,, ..., m,
into constant subsequences, each of the maximal length, i.e. we have
M= =M, <M 1= =M <SP g g1,

Thus t is the smallest number of constant subsequences obtained from the sequence
of the observability indices of the system with transfer function matrix H.
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Let k ()=ry+...4r for i=1, 2, ..., t—1. Let k(t)=p. Matrices D,€R"*™ are non-
singular for i=1,2,...,1. Matrices U €R [s]"*" have entries with degree not
exceeding the number k (i)—k (j) for i=2,3, ..., t, j=1,2, .., i—1.

4° Let Sy=|[P, R] and PeR [s]P*?. Then H is strictly proper (for any entry of H, degree
of numerator is less than degree of denominator) if and only if for each i=1,2, ..., p
deg ri;<my j=1,2, .., q, where R=[r;].

Proof. The property 1° has been proved in [3]. The proof of 2° and 3° can be found
in [6]. The property 4° is obvious. |

ProrosiTioN (3.4). Given any controllable and observable system (2.1),
1° the action of the control law (2.3) implies a linear transformation of a minimal
observability matrix of the system

1, 0
S0 15859 [_; G] (3.5)

2° the action of output feedback F alone (G=1, in (2.3)) spoils neither its obser-
vability nor controllability.

3° the action of input vector transformation G alone (F=0 in (2.3)) always yields
an observable system (in the case when G is square and nonsingular it is control-
lable as well).

Proof. ad 1°. Perform a matrix multiplication in (3.5), and then use the property
1° of the definition (3.1). We obtain the closed loop system transfer function matrix
of (2.1 — 2.3). ad 2°. The constant matrix on the right side of (3.5) is nonsingular
and hence both properties 2° and 3° are always preserved, when (2.1) is subjected
to (2.3). Thus, transformed as in (3.5), minimal observability matrix remains the
minimal observability matrix for the closed loop system. Since its row degrees are
the same as those of the matrix S, we conclude that the minimal state space represen-
tations of both systems have the same dimensions.
ad 3°. Under the action of (2.3) matrices 4 and C do not change, hence the closed
loop system (2.1 — 2.3) remains observable. If G is square and nonsingular, by
the same arguments as in p. 2°, we conclude that in (3.5), on the right side, there
we have a minimal observability matrix. ]
Among all minimal observability matrices for the system (2.1) there exists espe-
cially nice one which we will call a Popov’s canonical form (according to its connection
with Popov’s work). Let

S“I 0 . 0
e (3.62)
0 0 o g%

ls ==sm100 +++0 0 +++00 +++0
e ess gha—1 e P
S 00 0 I s y 0 00 0 (3.6b)

e s saw a = s sas = a sas o+ s sss

00 +++0 00 -0 0 eels oer gt
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PropOSITION (3.7). Given (Kcy, Mcy, B, (ny, ..., n,)) defined in section 2, if
| P=["] Mca—SKea (3.89)
R=SB ' (3.8b)

then Sg:fP, R] is a minimal observability matrix for t_hé system (2.1) (we call it
the minimal observability matrix in Popov’s canonical form or shortly in Popov’s
form). ’

Proof. From [5] it follows that, given matrices £ and R as in (3.8), condition 1°
of the definition (3.1) is satisfied. We have to verify conditions 2° and 3°. But, [£],=
=M, .s0 condition 3° is fulfilled. One can easily verify, that if there exists 5,eC
such that rank [2, R] (s,) is less than p, then there exXists a polynomial matrix
Qe€R [5]7*? such that Q is left divisor of [P, R] and determinant of Q is divisible by
§—5g, and hence m=deg det P exceeds the dimension of the minimal state space
representation of the system, but this contradicts the assumption that ny, ..., 1, are
Ehe observability indces of controllable and observable system. - ]

ProposiTioN (3.9). Given the observable system (2.1) with matrix C of a full rank,
if (ril, s Mp) 18 @ p-tuple of observability indices of the system, and K¢, and Mg,
are defined in (2.6), B is defined in (2.5a), then (K¢ 4, Mcy, B, (ny, ..., n,)) is a complete
set of independent invariants for the system.

Proof. By dual version of result from [5], (KCA, My, (ny, ..., n,)) is a complete
set of independent invariants for the system (2.1) with B=Q~! (see (2.4)). Given
in (2.1) any matrix B, there exists uniquely determined matrix B such that (2.5)
represents (2.1) in its observable companion form, and conversely, for any nxgq
matrix B there exists an observable system (2.1). Thus we conclude that B belongs
to the set of structural invariants for (2.1). 22

4. Solution of the problem

In what follows we assume that G is square and nonsingular. Then, by the pro-
position (3.4) p. 3° the matrix on the right side of (3.5) is the minimal observability
matrix. Suppose we have a minimal observability matrix S of the system (2.1) in
its Popov’s form. Then

5 [j} g]=s§ (4.1)

is a minimal observability matrix for the closed loop system (2.1 — 2.3). By (3.2),
there exists uniquely determined polynomial unimodular pXp matrix D such that

ol 1, 01 &
D5 [_; G]=S$ (4.2)
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and .9.2 is the Popov’s form of a minimal observability matrix for the closed loop
system. By (3.7), we may write

82=[0, 7] (4.32)

and .
U=I5" Mc,4,~ SKc,4, (4.3b)
: V=SB, (4.3¢c)

where (K¢, 4, Mc,a, Bys (g, ..., 1)) is a structure invariant of the closed loop
system (2.1 — 2.3) (unknown at the moment). Thus we have

ProrosiTioN (4.4). Given a minimal observability matrix in the Popov’s form for
the system (2.1) and given a matrix of the control law

1, 0 |
L={_F G] (4.5)

where F and G are defined in (2.3), there exists one and only one unimodular poly
nomial matrix D such that the minimal observability matrix DSS L of the closed
loop system (2.1 — 2.3) is in Popov’s form.

ProrosiTION (4.6). The matrix D in the proposition (4.4) has a form
D=1,—D;' DyD, (4.7)

where D,, is a constant p X p matrix that brings rows of S in such an order that
their indices form a nondecreasing sequence; Dy has a block structure the same as
(3.3) but now D;=0 for i=1, ..., ; elements of polynomial matrices U,; have degree
less than k(i)—k (j) for i=2,..,t j=1,..,i—1.

Proof. By (4.4), given a control law matrix L, there exists unimodular polynomial
matrix D such that (4.2) holds. In the appendix we establish the following

LemMA (4.8). Let S§=[[s"] Mci—SKc., SB] be the minimal observability matrix in
Popov’s form for the system (2.1) and (ny, ..., n,) be its row indexes. Let 5?.:[[55] Me 4,
—S8Kc, 4, SB 1] be the minimal observabiliy matrix in Popov’s form of the closed loop
system (2.1 — 2.3) and (fiy, ..., fi,) be its row indexes. Then fi;=n; for i=1,..,p
and Mc 4 =Mcy.

Let D,, be a constant p X p matrix that brings rows of matrix S in suitable order
(see the proposition (4.6)). By the preceding lemma, row indexes of D,S2 form a
onndecreasing sequence. Multiplying from the left both sides of (4.1) by D,DD,,
for some polynomial matrix D we have

DD, 89 L=52. (4.9
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By the theorem (3.2) p. 3°, D,,D=D has a form (3.3). Hence ,in (4.2) D=D_' DD,,=
=DD,, From (4.9) and (4.8) it follows that.

bp,, ([5'"] Mc—S (KCA+BF))=Dw ([5"] Mc,— SKClAl) (4.10)

Given the matrix D, let [D], be a constant pXp matrix which has the following
block structure

D, 0 -0

_ 0 D, -

Blo=| Y2 P2 70
U:O]. U:uz e By

Blocks U}, have the same size as corresponding blocks U, in (3.3). Every term of
U?; equals the coefficient of (k (i) —k (j))-th power of a variable s (according to the
notation used in (3.2) p. 4°) of a polynomial standing in the same row and the same
column of matrix U;;. Nonsingular matrices D; are the same as in (3.3). It is easy
to see that

[ﬁDw [5"]]n=[-ﬁ]o [Dw [S"]]nz[ﬁ]o Dy
On the other hand, fiom (4.10)
[ﬁDw [S"I]h-:-Dw L

Hence we get [D]y=1,, which completes the proof. 2]

Denote D the matrix D 'DoD,, as in (4.7). By (4.6), it follows immediately that
(4.2) is equivalent to

SKe,4,=D [s"] Mc+-(1,— D) S (Kc4+BF) (4.11)
SB,=(1,—D) SBG (4.11b)
What we shall do now is to compare coefficients of polynomial terms of both

sides of (4.11). It seems to be reasonable to introduce two constant matrices which
enable us to write down (4.11) as a parametrised system of linear equations.

ProposITION (4.12). Let Dy be any polynomial pxp matrix satisfying conditions
specified in the proposition (4.6). Then given a matrix D=D_'D,D,, there always
exist constant nx p and nxn matrices J; and J, such that

D [s"1=5J, (4.13a)
DS=SJ, (4.13b)

Proof. Itis easy to see that polynomials in the j~th row of the matrix D' DD, [s"]
have degrees not exceeding n;—1, which justifies (4.13a). Similarly, polynomial
terms in the j-th row of DS have degrees less than n;—1. B
Notice that J,=J; (D,) and J,=J, (D,), and terms of J; are uniquely determined
by terms of J, and vice versa.
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PRrOPOSITION (4.14). Let (Kei Mcy, B, (4, ..., n,)) be a structural invariant of the

controllable and observable system (2.1). Let (F, G) be any pair of constant matrices

FeR1*P and GeR?*? with G nonsingular. Let J; and J, be constant nxXp and nxn

matrices satisfying the following conditions:

1° there exists a polynomial matrix D=D_' D,D,, with D, and D,, specified in the
proposition (4.6), such that (4.13) holds,

2° a matrix
JiMc+(1,=73) (Kcat+-BF) (4.15)
has the same sacred zeros as the matrix K.
Then
(JiMcat-(la=T3) (Kea-BF), My (1,—102) BG, (ny, ..., n,)) (4.16)

is a structural invariant of the closed loop system (2.1 — 2.3).

Proof. Let J; and J, be any constant matrices satisfying conditions 1° ard 2°, then .
formally, we may write

-Kc,Al=J1 Mea+(1,—J3) (}"CA"]’BF) -

By the lemma (4.8), we know that (4.16) is a structural invariant of some system,
which we expect to be the closed loop sysiem (2.1 — 2.3).

On the other hand, let D be a polynomial matrix satisfying condition 1°. Multi-
plying (4.15) from the left by the matrix S, we obtain the right side of (4.11a). Simi-
larily, S(1,—J,) BG yields the right side of (4.11b). By cquivalence of (4.2) and
(4.10), we conclude that (4.16) is the structural invariant of the closcd loop system

(2.1 —=23). B

ProrosiTioN (4.17). Given the structural invariant (2.7), there always exist constant
matrices J; and J, satisfying conditions 1° and 2° of the proposition (4.14) and they
are uniquely determined.

Proof. Suppose that given a matrix F, there is a contradiction in a set of equations
obtained from 2°. Then there is no unimodular matrix D that brings the minimal
observability matrix S L to its Popov’s form and this contradicts the proposition
(4.4). Every arbitrariness in choice of J, contradicts the uniqueness of matrix D esta-
blished in the proposition (4.4). i

Proposition (4.14) can be generalised. Actually, parameters of Popov’s form of
a minimal observability matrix via (2.6) are in one to one correspordance to those
of the Luenberger observable companion form (2.5). For any GeR?*" and any

FeRe*»
1, 01 [1,0)[1,0
L‘“‘[-} G]:[upf 1] [op G]:LFL" (1%
a -

Given a minimal observability matrix S of the system (2.1), S2=S L may not be
a minimal observability matrix, but S Ly is. If S =Sg L, then there exists a poly-
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nomial unimodular matrix D such that S =DSy L is the Pepov’s form of S7..
Morteover, since Popov’s form is invariant to an action of G, we may write -

S2=DS? L=(DS} Ly) Lo=82 Lg

The matrix S2 may not be minimal, but it can be uniquely written in the form (3.8).

Thus we have

CoRrROLLARY (4.20). Let in the proposition (4.14), C be any constant qXr matrix.
Then (4.16) is a structural invariant of the observable system (2.1 — 2.3).

ProrosiTion (4.21). With assumptions of the corollary (4.20) no more than (p+r)
rank B elements of matrices K., and M, can be assigned arbitrarily by the control
law (2.3).

Proof. LetJ, and J, be any constant matrices satisfying condition 1° of the propo®
sition (4.14). Then, condition 2° yields two systems of linear, with respect to elements
of J,, equations. The first one-that assigns zero value to sacred zeros in (4.15)-
-determines all values of the matrix J, and can be symbolically written in a form

E, (EF, J1)=0 (4-22)

By the theorem (3.2), there always (i.e. for any pair (F,.G)) exists a solution J; to
this equation and is unique. Since elements of J; are rational functions of elements
of BF, we conclude that the solution of (4.22)

Ji=Y (BF) (4.23)

is a continuous mapping. ¥: F—R", F<R"™ is a linear p-rank B — dimensional
subspace.

The second system assigns values to those elements of the matrix (4.15) which are
not the sacred zeros. It can be written in a form

E, defines a continuous, with respect to elements of BF and J,, mapping. Substi-
tuting (4.23) into (4.24) we get

K:= <, (BF, Y (BF))=F, (BF) (4.25)
E,: Vo W=E, (V)c R™™ is continuous. m is the number of the sacred zeros of
Kc4 By (4.16),
B}=E,(BG,J,) (4.26)
From (4.23) we get
Bi=E, (BG, Y (BF)) (4.27)

Es: Vix VoW, =E; (V% V)< R™is continuous in elements of BG and BF. ¥, cR™
is a linear r -rank B-dimensional subspace.
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We say that (BF,, BG,)~(BF,, BG,) (the pairs are equivalent) if £, (BF;)=
=F, (BF,) and E, (BG,, Y (BF\))=E; (BG,, Y (BF,)). If E=(E,,E;) and E is a
mapping

E-VixVI W xW.

induced by E, then E is a continuous bijection, hence homecmorphsm and W, x W
is a k-dimensional topological manifold with k< (p-+r) rank B.
Here we have two simple examples. B

El. Given a transfer function matrix of a system

s 543 0 524543
H()=(—1)(*+s5+3))" | 824543 5P 4543 0
3 3 s—1

characterise a family of all observable systems obtained of it by means of (2.3) with
constant Fand G of appropriate size. The minimal observability matrix S9 in Popov’s
form is

[s—1 0 0 101
Sh=| 0 s-1 0 110 nm=n=1,n=2.
0 -—-3s*4s+3001

(5 00 1000
S=
2

[s"]=[0 s 0 0100
|00 {001 s
100 10 0 101
Mo=|010]|, Key=|01 0], B=|110],
(001 03 -3 001
9o -1 000

where ¢ denotes the sacred zero.
We have now to determine the unimodular polynomial matrix D.

000
D=1y, D=0 0 0|, where a;,a,€R .
a, a; 0

We evaluate elements of matrices J, € R*** and J, e R***#,

0 0 0] 0 0 0
Dls"l=|0 0 o]|=s |0 0 o|=s/,
a;s as 0| 00 0
i | a a, 0
[0 0 0 0] [0 0 00
DS=0 0 00|=S |0 0 00|=5/,.
a, a; 00 a, a, 00
) © loooo
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We are able now to write down matrices K 4, and B, of the closed loop system
(2.1 —2.3).

000 100 1 0 00
Kea=[0 0 0f Jo10|+] 0o 100
000| {001 gy, gy, 10
a; a, 0 0 0 01
[10 1] [fi1 fiz f1s 10 0
(1110 Ja1 f22 23| +]0 1 0))=
001 fal faz faa 0.3 —3
(000 00 —1
r1+f11+f31 fr2+Ss2
- S+ L1+f12+/22
f3l —d (1‘|"f11+f31)_32 (fll+ 21) 3+f32"ﬂ1 (’flz‘{’fzz)“}"b
| 91 az
fi]+j‘33
Jia+fos
—3+fss—ay (fia+f33)—az (fis-+/f23+3)
-1

b= az (I “|‘f1 z"f'fzz)-

Since K, and K¢ ,, must have the same sacred zeros, we get a, =a, =0.
Thus any feedback applied to the given system doees not affect the canonical form
of the minimal observability matrix S% (we call such a feedback covariant — Var-

dulakis [9]). Matrix K¢ , has a form

1+fll+f31 j'12+j'32 f]3+f3_3
fll—}—le 1 E-f12+f23 fl3+f23
fa 3+f32 —3+4fa3
0 0 -1

Ke,a,=

Matrix B, is

g =07 ga1
.0

; 101 g11 g1 t+8ga
By=|110 831 v =1811t8a 7]
001
000

100

9 1 U E] ('ﬁhﬁb ﬁ3}:(11 ls 2}'
091

E2. Given in El the transfer furction matrix H and given a matrix

st 4842 0
T(s)y=((s+1) (s*+s+2))~* 0  s24s42
1 s+3
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find such a pair of matrices (F, G), provided it exists, that a system represented by H
under an action of control law (2.3) is controllable and observable and its transfer
function matrix is T.

The minimal observability matrix in Popov’s form for 7 is

s+1 0 0 10
Si=| 0 s+l 0 01
-1 =2 #4s5+201

100 -1 0 0 10

Mc =|010], Keu=| 0 -1 0}, B=|01
001 1 2-2 01

0 0 -1 00

‘We compare invariants of the systom described by the matrix 7" and those evaluated
in El. We obtain the following equations:

I4+fiitfsi=—1 fia+f3.=0 Jia1+f3:=0
f11+f21=0 1+f12+f22=_1 fi3+f23=0
f31=1 3+f32=2 f33“3="2

g111831=1 g12+83,=0
g11+82=0 gi2+g=1

8a1=0 g32=1
Hence we get
-3 1 -1 1 —1
F= 3 -3 1|,G=1-1 2
1 -1 1 0 1

5. Appendix

First we formulate an algorithm of determining parameters (2.7) of the minimal
observability matrix in Popov’s form.

ALGoriTHM (5.1). Let H be a strictly proper pxq transfer function matrix of the
system (2.1).

Step 1. Given a matrix H, multiply each row of a matrix
SI= Ii -3 H]

by the least common denominator of its elements. Let S, denote the resulting
px(p+q) polynomial matrix.




354 J. M. MYSZEWSKI

Step 2. Performing a series of elementary operations on columns of the matrix S5,
we bring it to the form: [7, 0], where T is an upper right triangular polynomial
pXp matrix. Let :

Ss=T-*S,

Since T is a left divisor of S,, S; is a polynomial px (p+¢q) matrix).

STEP 3. Performing a series of elementary operations on rows of matrix S,, we
bring it to the following form

S‘;: [TI) R]

where T is a lower left triaﬁgular polynomial pxp matrix (diagonal elements
of Ty have degrees greater than any othter elements of the corresponding column
of S,).

Step 4. Perform a series of operations on rows of matrix Sy, following a diagram
presented below. Let

W=[X, Y]

be a polynomial matrix with two pxp and pxq blocks X and Y. W, denotes the
i-th row of the matrix W. a;;=deg x;, — degree of an element of block X, standing
in the i-th row and j-th column. ‘denotes the modified element.

Transformation type 1: make

W, =W, — 5"~ W, (5.2a)
W,=W, ' (5.2b)
with feR such that a:_,'cau‘
Transformation type 2: make
W= W+ fs“1=45 W, (5.3a)
W=W, (5.3b)
with feR such that a;;<a,;.
Transformation type 3: make
W= W5k o W, (5.4a)
W =W, (5.4b)
with fER such that a_, <a.
Transformation type 4: make
W;ﬂ= W - famek = amk 7. (5.5a)
W,=W, (5.5b)

with feR such that 4

k.

<.a;;k.
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Transformation
TYPE 1 TYPE 2

Transformation Transfoermation
TYPE 3 TYPE 4

3 ]

Fig. 1.

LemMa (5.6). Let SG=[P, R] be the minimal observability matrix in Popov’s form
for the system with the strictly proper px q transfer function matrix H. P is a poly-
nomial p X p matrix, R is a polynomial px q matrix. Let p,;, r,€R [s] be elements
ofﬁ and R respectively. Let n; for i=1, ..., p be row indexes of S’g. Then

monic polynomial of degree n,, for i=j
p;j=| polynomial of degree min(n, n;)—1, for i<j (5.7a)
polynomial of degree min(n,;, n;—1), for i>j

r;;=polynomial of degree n,—1, for i=1,..,p (5.7b)
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Proof. By (3.8),
F= [s"] Mcy—SKc,

R=5B
The straightforward consequence of properties of matrices K., and M, is that:
deg p;;=n; for i=1, .., p

fni, if m;<n,

for i>j dcgp“-—-{n___l 8,
J 3 = E]

[n,—1, if n,<n;

i<y degp‘J‘:]n;—] if m>n,

deg ry;<n; for i=1,..,p. B

ProrosiTioN (5.8). Givena matrix .S, in the step 3, a finite number of transformations
specified in step 4 yields Popov’s form of the minimal observability matrix of the
system (2.1).

Proof. If W=[X, ¥]is a final polynomial matrix obtained in the step 4, then it
is easy to verify that X~ ! ¥=H. Matrix T (obtained in the step 2) was the greatest
left divisor of matrix S,. Hence matrices S,, S; as well as S, satisfy condition 2°
of definition (3.1).

Transformations [—4 are, in fact, elementary operations on rows of matrix W
which have to be pzrformed in order to bring X to desired form. In each loop con-
dition (5.7a) is checked. In the case when any entry fails to satisfy it, appropriate
rows are modified.

Given a matrix Sy, in a finite number of elementary operations performed on its rows,
we can make it a minimal observality matrix (Forney [3]). Since any minimal obser-
vability matrix can be brought to its Popov’s form by multiplicating it from the left
by a polynomial unimodular matrix (which simply represents elementary operation
on rows), we conclude that after a finite number of transformations, to be performed
in step 5, we obtain a minimal cbservability matrix in Popov’s form. Since it is
unique, it is the minimal observability matrix in Popov’s form of the system (32.1).

We can now prove the lemma (4.8).
Proof of the lemma (4.8). We subject the matrix S9 L to the step 4 of the algorithm
(5.1). We shall show that any transformation performed on rows of Sfl L preserves
the matrix Mq, and the order of row indexes.

Suppose that for some i>j we have a;;=a;;. On the other hand we have a;;<ay,
so a;;<a,;<a;. Transformation 1 is to be done. We claim that

aptay—aj<mn for k=1, ..,j.

It is equivalent to a;—n;<n;—a;;. But n;—a;;=0 and a,,—n;<0. The inequality
stated above is not valid when and only when simultaneously a;=n; and a,;=n,.
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Recall that for n;=n; (as a property of the matrix M.,) we have a;;<m—1, that
contradicts the foregoing statement. For k=j-+1, ..., p apta,—a;;<n+ap—a; <
<n—1.
Thus we see, that the coefficient of s™ in term x;, is that of xy, for k=1, ..., p.
Similarly, if transformation 3 is to be accomplished (in the case when for i<j we
have a;;=a;;), one can easily verify that for k=1, ...,7 a,;—a;;+az<n;—1, that
shows that the coefficient of s™ in term x), equals that of x,,. Moreover, for k=i+1, ...
-p k#j a,<nm—1 and auéau j
Her-ce we conclude that transformations 2 and 4 (which cause a change of the order
of rows) will not be used and that the matrix M., is invariant to transformations
I and 3, which completes the proof. 2]
As an example we compute the minimal observability matrix in Popov’s form
of the system with a transfer function matrix as below

524543 0 524543
H(5)=((s=1) (s*+s+3))7* | s*+5+3 s°+s+3 0

3 3 s—1
The matrix S, in step 1 is
[s—1 O 0 106 1
S,=| 0 s-1 0 11 0
| 0 0 -D(*+s5+3) 3 3 51
The matrix T is
(1 0 0
T=|0s—11
[0 0 3
The matrix Sy in step 2 is
[s—1 0 0 10 1
Ss=| 0 1 —=1/3(s%4s+3) 00 —1/3
| 0 0 13(+s+3) -1 11 1/3(s—1)
The matrix S, in step 3 is
[s—1 0 0 101
S;=| 0 s5-1 0 110
0 —-3s524543001

It is already the minimal observability matrix in Popov’s canonical form.

6. Conclusions

As we have shown, it is possible to characterize strictly proper systems, obtainable
from a given system by means of the control law (2.3), by its structural invariant
and elements of matrices F and G. Though we have not presented any new invariant
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with respect to the application of the control law (2.3) (the invariance of observabi-
lity indicies and of the matrix M, is the fact well known), the corollary (4.20) shows
how the structural invariants of the system transform while the system is subjected
to the output feedback. The proposition (4.20) establishes the topological property
of the set of all systems that can be obtained from the given controllable and obser-
vable system by use of the control law (2.3) — it is a manifold of dimension not
greater than (p-r) rank B. Thus the probability that, given two lincar systems (2.1)
there exists a control law (2.3) that transforms one system into the another (even
in the case when they have the same observability indices) is zero, unless rank B=n.
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Dopuszezalne uklady dla zadania ukladu o zadanej
macierzy transmitancji operatorowych

W pracy badapa jest orbita wielowymiarowego, stacjonarnego, liniowego, sterowalnego i ob-
serwowalnego ukladu opisywanego rdwnaniami

x=Ax+Bu, y=Cx (¥
wzgledem dziatania proporcjonalnego sprzezenia zwrotnego
u=Fy+Gvy

Wprowadzone zostaly zaleino$ci wiazace parametry obserwowalnej postaci kanoniczej Luenber-
gera rownan (*) ukladu zamknigtego z parametrami uktadu otwartego oraz elementami macierzy
F i G, Przedstawiona zostala topologiczna charakteryzacja rozpatrywanej orbity.
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JonycTaMEIe CHCTeMBI s 3aa49H CHETE32 CHCTEMBI
€ 3a/IaHHcHi MaTpuiell ONMepPATOPHBIX HePeJaTOYHBIX

dymcumii

B pabote mccrmemyerca opbmTa MHOTOMepHOH, CTaUHOHApPHON, muEeitnoil, ympapisemMolt
u HabGniomaemMoil CHCTeMBI, OMMCHIBAEMOll YpABHEHHAAME

x=Ax+Bu, y=Cx ()
N0 OTHOLIEHHIO K BO3/EHCTBHIO MPONOPLHOHANLHON 00paTHOH CBA3K
u=Fy+Gv

S ﬂpCﬂCTaBJ'ICH!:‘.[ IOIYYCHHBIE 3aBHCHMOCTH, CBASBIBAIOIIHE IAPAMETDEI B HEGI]}OILEEMOM KaHO-
mudeckom eune Jlioenbeprepa ypasnernuii (34) 3aMKHYTOM CHCTEMBI C mapaMeTpaMH Pa3OMKHYTOH
CHCTEMEI, & TAKKE IEMEHTaMH MaTpuukl F 1 G. Tlpencrasniena TONOJOTHYECKAs XapakTepHCTHEKA
paccMaTpaBaeMoit OpOHTEL
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