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Considered is an orbit, with respect to the action of the control hw: u=Fy+G" (with F, G 
constant), of a linear multivariable time invariant controllable and obssrvable system described by 
the state space equations: x=Ax+Bu, y= Cx. There has been established an explicit relation bet­
ween parameters of the Luenberger observable companion forms of any element of the orbit and 
these of the system and matrices F and C. Topological. characterisation of the orbit has been pre­
sented. 

1. Introduction 

Establishing an existence of solution and evaluating it - these are the main 

aspects of the exact model matching problem. Usually an existence question is 

answered when, following a given algorithm, we attempt to solve some resulting 

algebraic equations that describe relations between parameters of systems and 

regulators. However, such an approach makes it impossible to determine a whole 

class of systems which admit the use of an exact model matching scheme. 

Thus, the task of establishing a simple charact·=rization of class of systems for 

which the exact model matching problem can be solved, gains a special importance. 

For the exact model matching by a state feedback some results have already been 

published: Ackerman [1], Cramer [2], Wolovich, Falb [7], Wolovich [8 ]. Even in this 

simpler case, the connection between the problem stated above and sets of structural 

invariants of systems is unknown. 

The paper presents a characterisation of a class of systems for which there exists 

a solution to the exact model matching by output feedback and input vector trans­

formation. Characterization has been done in terms of structural invariants of sys­

tems and parameters of proportional regulators. 
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2. Problem statement 

Consider a system 

x=Ax+Bu' X (0)=0 

y=Cx, 
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(2.la) 

(2.1 b) 

where x=x (t)ER", y=y (t)ERP, u=u (t)ERq are state, output and input vectors 
respectively determined for t~O. The system is assumed to be controllable and 
observable; A, B, C are constant real matrices of appropriate sizes, C is of a full 
rank. A transfer function matrix of (2.1) is 

(2.2) 

and is a strictly proper element of R (s )P x q- set of p X q rational function matrices 
over reals. In the paper we consider a family of systems which can be obtained from 
(2.1) under an action of the control law 

u=Fy+Gv (2.3) 

where v=v (t)ER' is a vector of an external input and F and G are real constant 
matrices of appropriate sizes. 

There exists such a nonsingular martix Q that a state space coordinate trans­
formation 

x=Qx 

yields following state space and output system equations for 

i=.Ax+Bii, x (O)=O 

y=Cx 

in so called Luenberger observable companion form 

Au= 0 · · · 0 * -min (n1, nJ, i'lj 
0 ... 0 0 

0 ... 0 0 

i,j=l, ... ,p 

(2.4) 

(2.5a) 

(2.5b) 
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-0 ::: ~ ~- , 
0 ... 0 0 

C;= 0 ... 0 1 -i 
0 •.. 0 * 

'-~ ... 0 * 
(nt> n2 , •• • , n.) is a p-tuple of observability indices of (2.1), * denotes possibly non 
zero elements of Au and C1 i,J= I , ... , p. iJ has no special form (Luenberger [4]). 
Let k,=n1+n2 + ... +n1 for i=l, ... ,p. 
We denote Av and c. matrices formed of columns numbered k, i= I , ... , p of matrices 
A and C respectively. Since C has a full rank, matrix c. is nonsingular. Thus ma­
trices 

A A-1 A-1 
KeA=A. c. , MeA=CP (2.6) 

are well defined. They have the following form 

KeA = r~~1 
::: ~1·•] , au ER"' , 

aP1 a •• 

a0=[auo, aut. ... , aun,-d, auk=O for k ~ min (n, , ni). 

bu=O for n; ~ ni. (Ackermann [1]) 
After Vardulakis ([9]) we call elements bu and these of vectors au which by definition 
equal zero the "sacred zeros" of matrices MeA and KeA-

R EMARK. It is well known that elements of Me A, below a diagonal, and of KeA 
which are not the sacred zeros are so called fJ and a (respectively) parameters for 
an observable pair of matrices ( C, A) and they are invariant to nonsingular change 
of coordinates in a state space. Conversely, given a set of a and fJ parameters one 
can easily write down matrices KeA and MeA- For notational reason we will use 
KeA and M CA instead of a and fJ parameters and everi place them on a list of complete 
and independent invariants, always having in mind that they symbolize a and fJ 
parameters. According to this agreement, it will be shown in the proposition (3.9) 
that the following quadruple 

(KeA, MeA, B, (n 1 , ... , n.)) (2.7) 

forms a complete set of independent invariants (shortly: structural invariant) of 
the observable system (2.1) (in fact, , by assumption, it is controllable as well)~ 
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The task of the paper is to find a solution to the followin$ problem: Given the 
structure invariant (2.7) of the controllable and observable system (2.1) and a pair 
of matrices (F, G) in (2.3), evaluate the structure invariant of the closed loop system 
(2.1 - 2.3) as a function of (2.7) and of the pair (F, G). 

3. Minimal observability matrices, structural invariants 

Before we solve the problem stated in the previous section, we recall some pro­
perties of minimal observability matrices, which will be our main tool. 

DEFINITION (3.1) . Given the controllable and observable system with a rational 
proper transfer function matrix HER(s)vx•, we call a matrix SnER [s]vx(v+q) (a p X 

(p+q) matrix whose elements are polynomials over reals) the minimal observabili ty 
matrix for the system with the transfer function matrix H if 
1° if S~=[P, R] and PER [srv, then H=P- 1 R 
2° for each complex s, the matrix S~ (s) has a full rank 
3° a matrix [PhERP x P consisting of coefficients of the highest degrees terms in each 

row of polynomial matrix P is nonsingular. 

THEOREM (3.2). Let S~ER [s]Pxtp +•> be a minimal observability matrix for a system 
with transfer function matrix HER (s)pxq, then 

1° Let mi be the highest degree of terms in the i-th row of S~ (the i-th row index) 
i=J, 2, .. . , p. Then {mt. m2 , ••. , mP} is the set of observability indices for the sys­
tem with transfer function matrix H. The sum m 1 + m2 + ... + mP is the dimension 
of its controllable and observable state space representation. 

2° Given any two minimal observability matrices S~ and Q~for the system with trans­
fer function matrix H, there exists one and only one polynomial unimodular inver­
tible matrix DER [s]v xp such that S~=DQ~. 

3° Let S~ and Q~ be any two minimal observability matrices for the system with trans­
fer function matrix H . Assume that their row indexes ml> m 2 , ••. , mP form non­
decreasing sequence, then the unimodular polynomial matrix mentioned in p. 2° 
has a form 

(3 .3) 

A positive integer t can be evaluated as follows: cut the sequence m1 , m2 , ••• , mP 
into constant subsequences, each of the maxima/length, i.e. we have 

Thus t is the smallest number of constant subsequences obtained from the sequence 
of the observability indices of the system with transfer function matrix H. 
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Let k (i)=r1 + ... +r1 for i=l, 2, ... , t-1. Let k(t)=p. Matrices D1ER'' xr, are non­
singular for i =I, 2, ... , t. Matrices UuER [s ]' x ' have entries with degree not 
exceeding the number k (i)- k (j) for i=2, 3, ... , t, j= I, 2, ... , i -1. 

4o LetS~= [P, R] and PER [s]Px P. Then His strictly proper (for any entry of H, degree 
of numerator is less than degree of denominator) if and only if for each i= 1, 2, .. . ,p 
deg rii<m1 j= I, 2, ... , q, where R= [ruJ. 

Proof. The property 1° has been proved in [3]. The proof of 2° and 3° can be found 
in [6]. The property 4o is obvious. • 

PROPOSITION (3.4). Given any controllable and observable system (2.1), 
1° the action of the control law (2.3) implies a linear transformation of a minimal 
observability matrix of the system 

so so[IPO] 
HH R -F G (3.5) 

2o the action of output feedback F alone (G= 1 q in (2.3)) spoils neither its obser­
vability nor controllability. 

3° the action of input vector transformation G alone (F=O in (2.3)) always yields 
an observable system (in the case when G is square and nonsingular it is control­
lable as well) . 

Proof. ad 1°. Perform a matrix multiplication in (3 .5), and then use the property 
1° of the definition (3.1). We obtain the closed loop system transfer function matrix 
of (2.1 - 2.3). ad 2°. The constant matrix on the right side of (3.5) is nonsingular 
and hence both properties 2° and 3° are always preserved, when (2.1) is subjected 
to (2.3). Thus, transformed as in (3.5), minimal observability matrix remains the 
minimal observability matrix for the closed loop system. Since its row degrees are 
the same as those of the matrix S~ we conclude that the minimal state space represen~ 
tations of both systems have the same dimensions. 
ad 3°. Under the action of (2.3) matrices A and C do not change, hence the closed 
loop system (2.1 - 2.3) remains observable. If G is square and nonsingular, by 
the same arguments as in p. 2°, we conclude that in (3.5), on the right side, there 
we have a minimal observability matrix. 11 

Among all minimal observability matrices for the system (2.1) there exists espe­
cially nice one which we will call a Popov's canonical form (according to its connection 
with Popov's work). Let 

l
s'" 0 

[s"]= ~ ~"' 
0 0 

0 l 0 

••• snp 

(3.6a) 

r
l s 

S= ~ ~ 
0 0 ···0 00 ···0 0···1s 

... 0 ] 

~~: ~~~.-1 (3.6b) 

· · · s"'- 1 0 0 · · · 0 0 · · · 0 0 
· · · 0 I s · • · s"' - 1 0 · · · 0 0 
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PROPOSITION (3.7). Given (KeA• MeA• B, (nl> ... , nP)) defined in' seCtidn 2;·· if 

P= [s"] MeA-:- SKeA 

R=SB' 

(Ha) 

(3.8b) 

then S~=[P, R] is a minimal observability matrix for the system (2.1)(we call it 
the minimal observability matrix in Popov's canonical form or shortly in Popov's 
form). 

! ' . ' 

Proof. From [5] it follows that, given matrices P and R as in (3.8), condition 16 

of the definition (3.1) is satisfied. We have to verify conditions 2o and 3°. But, [Ph= 
=MeA• so condition 3° is fulfilled. One can easily verify, that if there exists s0 EC 
such that rank [P, R] (s0) is less than p, then the~eexists a . polynomial matrix 
QER [s]P xv such that Q is left divisor of [P, R] and determinant of Q is divisible by 
s-s0 , and hence m=deg det P exceeds the dimen$i'on of the minimal state space 
representation of the system, but this contradicts the assumption that nb ... , nv are 
the observability indces of controllable arid observable system. • 
' 

PROPOSITION (3.9). Given the observable system{2.1) with matrix C of a full rank, 
if (nb ... , nP) is a p-tuple of observability indices of the system, and KeA and MeA 
are defined in (2.6), B is defined in (2.5a), then (KeA, MeA• B, (nb ... , nv)) is a complete 
set of independent invariants for the system. 

Proof. By dual version of result from [5], (KeA• MeA• (nb ... , nv)) is a complete 
set of independent invariants for the system (2.1) with B=Q- 1 (see (2.4)). Given 
in (2.1) any matrix B, there exists uniquely determined matrix B such that (2.5) 
represents (2.1) in its observable companion form, and conversely, for any n X q 
matrix B there exists an observable system (2.1). Thus we conclude that B belongs 
to the set of structural invariants for (2.1). • 

4. Solution of the problem 

In what follows we assume that G is square and nonsingular. Then, by the pro­
position (3.4) p. 3° the matrix on the right side of (3.5) is the minimal observability 
matrix. Suppose we have a minimal observability matrix S~ of the system (2.1) in 
its Popov's form. Then 

so [ Ip O]=so 
H -F G T 

(4.1) 

is a minimal observability matrix for the closed loop system (2.1 - 2.3). By (3.2), 
there exists uniquely determined polynomial unimodular p Xp matrix D such that 

(4.2) 

1 
I 
I 

I 
I 
i 
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and S~ is the Popov's form of a minimal observability matrix for the closed loop 
system. By (3.7), we may write 

s~=[O, V] 

and 

O=[i] Me A -SKe A 
l 1 1 1 

(4.3a) 

(4.3b) 

(4.3c) 

where (Ke,A,, Me,A,, B1 , (fi1 , :··' fiP)) is a structure invariant of the closed loop 
system (2.1 - 2.3) (unknown at the moment). Thus we have 

PROPOSITION (4.4). Given a minimal observability matrix in the Popov's form for 
the system (2.1) and given a matrix of the control law 

L=[ lp 0] 
-FG 

(4.5) 

where F and G are defined in (2.3), there er-.ists one and only one unimodular poly 
nomial matrix D such that the minimal observability matrix DS~ L of the closed 
loop system (2.1 - 2.3) is in Popov's form. 

PROPOSITION (4.6). The matrix Din the proposition (4.4) has a form 

(4.7) 

where Dw is a constant p Xp matrix that brings rows of S~ ,in such an order that 
their indices form a nondecreasing sequence; D 0 has a block structure the same as 
(3.3) but now Di=O for i=l, ... , t; elements of polynomial matrices Uu have degree 
less than k(i)-k(j) for i=2, ... , t j=l, ... , i-1. 

Proof. By (4.4), given a control law matrix L, there exists unimodular polynomial 
matrix D such that (4.2) holds. In the appendix we establish the following 

LEMMA (4.8). Let S~=[[s"] MeA - SKeA, SB] be the minimal observability matrix in 
Popov'sformfor the system (2.1) and (nt. ... , nP) be its row indexes. Let S~=[ [s"] Me,A, 
-SKe,A,, SB!] be the minimal observabiliy matrix in Popov's form of the closed loop 
system (2.1- 2.3) and (fit. ... , fip) be its row indexes. Then ii;=n; for i=l, ... ,p 

and Me,A, =MeA-

Let Dw be a constant p Xp matrix that brings rows of matrix S~ in suitable order 
(see the proposition (4.6)). By the preceding lemma, row indexes of DwS~ form a 
onndecreasing sequence. Multiplying from the left both sides of (4.1) by DJ5Dw, 
for some polynomial matrix fj we have 

(4.9) 
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By the theorem (3.2) p. 3°, DwD=D has a form (3.3). Hence ,in (4.2) D=D;,I DDw= 
=DDw. From (4.9) and (4.8) it follows that. 

(4.10) 

Given the matrix D, let [DJ0 be a constant p Xp matrix which has the following 
block structure 

Blocks U~i have the same size as corresponding blocks Uu in (3.3). Every term of 
U?i equals the coefficient of (k(i)-k(j))-th power of a variables (according to the 
notation used in (3.2) p. 4°) of a polynomial standing in the same row and the same 
column of matrix Uu. Nonsingular matrices D 1 are the same as in (3.3). It is easy 
to see that 

[ DDw [s"Jh=[DJo [Dw [s"J)h=[DJo Dw · 

On the other hand, from (4.10) 

[DDw [s"Jh=Dw. 

Hence we get [DJ 0 = lv, which completes the proof. 11 
Denote !J the matrix D;/DoDw as in (4.7). By (4.6), it follows immediately that 

(4.2) is equivalent to 

SKc,A, =D [s"] McA+(lv-!J) S (KcA+BF) 

SEt =Clv-!J) SBG 

(4.1la) 

(4.11b) 

What we shall do now is to compare coefficients of polynomial terms of both 
sides of (4.11). It seems to be reasonable to introduce two constant matrices which 
enable us to wri te down (4.11) as a parametrised system of linear. equations. 

PROPOSITION (4.12). Let D 0 be any polynomial pxp matrix satisfying conditions 
specified in the proposition (4.6). Then given a matrix D=D,: 1 D0 Dw there always 
exist constant n X p and n X n matrices J 1 and J2 such that 

D [s"]=SJ1 

DS=SJ2 

(4.13a) 

(4.13b) 

Proof. It is easy to see that polynomials in the j-th row of the matrix D;/ DoDw [s"] 
have degrees not exceeding ni-1, which justifies (4.13a). Similarly, polynomial 
terms in the j-th row of DS have degrees less than ni-l. Ill 
Notice that J1 =J1 (Do) and J2 =J2 (D 0 ), and terms of J1 are uniquely determined 
by terms of J 2 and vice versa. 

l 

I 
I 

i 
i 
! 
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PROPOSITION (4.14). Let (KeA• MeA, B, (n 1 , ... , n.)) be a structural invariant of the 
controllable and observable system (2.1 ). Lc:t (F, G) be any pair of constant matrices 
FeRqxp and GeRqxq with G nonsingular. LetJ1 and 12 be constant n x p and n x n 

matrices satisfying the following conditions: 
lo there exists a polynomial matrix D=D,~ 1 DaDw with D0 and Dw specified in the 

proposition (4.6), such that (4.13) holds, 
2° a matrix 

has the same sacred zeros as the matrix KeA­
Then· 

(JlMeA+(l"-12) (KeA+BF), MeA, On-12) BG, (nr. .. . , np)) 

Ls a structural invariant of the closed loop system (2.1 - 2.3) . 

(4.15) 

(4.16) 

Pro of. Let 11 and 12 be any constant matrices satisfying conditions 1 o ar.d 2°, then 
formally, we may write 

Ke,A ,=Jl MeA + (l"-12) (KeA + BF). 

By the lemma (4.8), we know that (4.16) is a structural invariant of some system, 
which we expect to be the closed loop system (2.1 - 2.3). 
On the other hand, let D be a polynomial matrix satisfying condition 1°. Multi­
plying (4.15) from the kft by the matrix S, we obtain the right side of (4.11a). Simi­
larily, S (1"-12 ) BG yields the right side of (4.11 b). By equivalence of ( 4.2) and 
(4.10), we conclude that (4.16) is the structural invariant of the clo s·~ d loop f.ystc m 

(2.1 - 2.3). 11 

PROPOSITION (4.17). Given the structural invariant (2.7), there always exist constant 
matrices 11 and 12 satisfying conditions 1 a and 2° of the proposition ( 4.14) and they 
are uniquely determined. 

Proof. Suppose that given a matrix F, there is a cont;adiction in a set of equations 
obtained from 2°. Then there is no unimodular matrix D that brings the minimal 
observability matrix S~ L to its Popov's form and this contradicts the proposition 
(4.4). Every arbitrariness in choice of 11 contradicts the uniqueness of matrix D esta­
blished in the proposition (4.4). ~ 

Proposition (4.14) can be generalised. Actually, parameters of Popov's form of 
a minimal observability matrix via (2.6) are in one to one correspord~nce to those 
of the Luenberger observable companion fo<m (2.5). For any GeRq xr and any 
FeRq xp 

L=[~~ ~]=[ ~~ ~J [~" ~]=LFLG (4.19) 

Given a minimal observability matrix S1~ of the system (2.1), S~= S1~ L may not be 
a minimal observability matrix, but sz LF is. IfS~, ==SZ LF, then there exists a poly-
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nomial unimo::lular matrix D such that s~, =DS2 LF is the Pcpov's form of s~,· 
Moreover, since Popov's form is invariant to an action of G, we may write . 

-o o o -o Sy=DSH L=(DSH LF) LG=Sy, LG 

The matrix S~ may not be minimal, but it can be uniquely written in the form (3.8). 
Thus we have 

COROLLARY (4.20). Let in the proposition (4.14), C be any constant q x r matrix. 
Then (4.16) is a structural invariant of the observable system (2.1- 2.3) . 

PROPOSITION (4.21). With assumptions of the corollary (4.20) no more than (p+r) 
rank B elements of matrices KcA and MeA can be assigned arbitrarily by the control 
law (2.3) . 

Proof. Let 11 and 12 be any constant matrices satisfying condition lo of the propo• 
sition ( 4.14). Then, condition 2° yields two systems of linear, with respect to elements 
of 11 , equations. The first one- that assigns zero value to sacred zeros iri (4.15)­
-determines all values of the matrix 11 and can be symbolically written in a form 

(4.22) 

By the theorem (3.2), there always (i.e. for any pair (F, .G)) exists a solution 11 to 
this equation and is unique. Since elements of 11 are rational functions of elements 
of BF, we conclude that the solution of ( 4.22) 

11 = Y(BF) (4.23) 

is a continuous mapping. Y: V-+ R"", V c R"P is a linear p ·rank B - dimensional 
subspace. 
The second system assigns values to those elements of the matrix ( 4.15) which are 
not the sacred zeros. It can be written in a form 

(4.24) 

E 2 defines a continuous, with respect to elements of BF and 12 , mapping. Substi­
tuting (4.23) into (4.24) we get 

(4.25) 

E2 : V-> W=E2 (V)c R"v-m is continuous. m is the number of the sacred zeros of 
KcA· By (4.16), 

(4.26) 

From ( 4.23) we get 
(4.27) 

E 3: v1 X V ..... w1 =E3 ( vl X V) c R"' is continuous in elements of BG and BF. vl c R"' 
is a linear r ·rank B-dimensional subspace. 
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We say that (BF1 , BG1) ~ (BF2 , BG2) (the pairs are equivalent) if ff2 (BF1)= 
= ff2 (BF2 ) and £ 3 (BG~> Y(BF1))=E3 (BG 2 , Y(BF2)). If E = (ff2 , £3) and E is a 
mapping 

£: vl x v; _ __, W1 x w. 
induced by E, then E is a continuous bijection, hence homeomorphsm and wl X w 
is a k-dimensional topological manifold with k,;;.(y+r) rank B. 
Here we have two simple examples. [I 

El. Given a transfer function matrix of a system 

characterise a family of all observable systems obtained of it by means of (2.3) with 
constant F and G of appropriate size. The minimal observability matrix S~ in Popov's 
form is 

where 0 denotts the sacred zero. 
We have now to determine the unimodular polynomial matrix D. 

D= [~ ~ ~1 , where al> a 2 ER . 
a1 a2 0 

Dw=13' 

We evaluate elements of matrices ] 1 E R4 x 3 and ] 2 ER4 x 4 . 

[0 0 0] rO 0 OJ D [s"]= 0 0 0 =S 0 0 0 =SJ1 , 

a1s a2 s 0 0 0 0 
a 1 a2 0 

[
0 0 0 0] rO 0 0 OJ DS= 0 0 0 0 =S 0 0 0 0 =SJ2 • 

a 1 a2 0 0 a 1 Gz 0 0 
0 0 0 0 

- ----------------------------------------------
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We are able now to write down matrices Kc A and B1 of the closed loop system 
1 l 

(2.1- 2.3). 

lo 0 01 [ 1 0 0] r 1 Kc,A, = 0 0 0 0 1 0 + 0 
0 0 0 0 0 1 -a1 

a 1 a2 0 0 

0 0 01 1 0 0 . 
- a2 1 0 

0 0 1 

112+132 
l+f12+fz2 
3+/32 -at U12+!32)+b 

b= -a2 (l +ftz +fzz) . 
Since KcA and Kc,A, must have the s:tme sacred zeros, we get a~ = a2 =0. 

Thus any feedback applied to the given system does not affect the canonical form 
of the minimal observability matrix S~ (we call such a feedback covariant- Var­
dulakis [9]). Matrix Kc,A, has a form 

Matrix B1 is 

l
l 0 I 

B1= I 1 o 
0 0 1 
0 0 0 

112+132 
l +JJ2+fz3 
3+/~2 
f/J 

•••J 

j' 

E2. Given in El the transfer fur.ction matrix Hand given a matrix 
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find such a pair of matrices (F, G), provided it exists, that a system represented by H 
under an action of control law (2.3) is controllable a11d observable and its transfer 
function matrix is T. 
The minimal observability matrix in Popov's form for T is 

[

s+1 0 0 1 0] 
S~= 0 s+1 0 0 1 

-1 - 2 s2 +s+2 0 1 

Me A = 0 1 0 , Kc A = 0 [1 0 0
1 

r-1 
l 1 0 0 1 . 1 1 1 

0 
-1 

2 
0 

~ 1 , B1=r~ ~J. -2 0 1 

0 -1 0 0 

We compare invariants of the system described by the matrix T and those evaluated 
in E l. We obtain the following equations: 

Hence we get 

5. Appendix 

1+/u +/31 = - 1 .f1z +/32=0 
/11 +fn =0 1 + f12+fzz = -1 

h1=1 3+hz=2 

/13+/33=0 
f13+fz3=0 
/33-3= -2 

g l l +g31 = 1 g12+g32=0 
gu+gzl=O g12+gzz=1 
g31 =0 g32=l 

-3 
-1 

-11 [ 1 -1] 1 , G= -1 2 . 
r.J o 1 

First we formulate an algorithm of determining parameters (2.7) of the minimal 
observability matrix in Popov's form. 

ALGORITHM (5.1). Let H be a strictly proper pXq transfer function matrix of the 
system (2.1). 

STEP 1. Given a matrix H, multiply each row of a matrix 

by the least common denominator of its elements. Let S2 denote the resulting 
p X (p + q) polynomial matrix. 
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STEP 2. Performing a series of elementary operations on columns of tp.e matrix Sl, 
we bring it to the form: [T, 0], where T is an upper right triangular polynomial 
p Xp matrix. Let 

S3=T- 1 S2 

Since T is a left divisor of S2 , S3 is a polynomial p X (p+q) matrix). 

STEP 3. Performing a series of elementary operations on rows of matrix S 3 , we 
bring it to the following form 

-
where T1 is a lower left triangular polynomial p x p matrix (diagonal elements 
of T1 have degrees greater than any otter elements of the corresponding column 
of S4 ). 

STEP 4. Perform a series of operations on rows of matrix S4 , following a diagram 
presented below. Let 

W=[X, Y] 

be a polynomial matrix with two p X p and p X q blocks X and Y. W1 denotes the 
i-th row of the matrix W. au=deg xu- degree of an element of block X, standing 
in the i-th row and j~th column. 'denotes the modified element. 
Transformation type 1 : make 

with fER such that a;i < au. 
Transformation type 2: make 

with fER such that a;i<a;i· 
Transformation type 3: make 

with fER such that a~k <amk· 
Transformation type 4: make 

w;= Wi + fsajj-au W1 

W~= W1 

w;,= r¥k+ fsakk-amk Wm 

W~=Wm 

(5.2a) 

(5.2b) 

(5.3a) 

(5.3b) 

(5.4a) 

(5.4b) 

(5.5a) 

(5.5b) 

l 

I 
j • 

I 
I 
I 
i 
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LEMMA (5.6). Let S~= [F, R] be the minimal obsm;abi/ity matrix in Popov's form 
for the system with the strictly proper p X q transfer function matrix H . .P is a poly­
nomial p X p matrix. R is a pJ!ynomial p X q matrix. Let Pu, ruER [s] be elements 
of P and R respectively . Let n, for i= 1, ... , p be row indexes of S~. Then 

[

monic polynomial of degree IZ;, for i=j 
Pu= polynomial of degree min(n., nj)-1, for i<j 

polynomial of degree min(n;, nj-1), for i>j 

r0 =polynomial of degree n1-1, for i=1, .. . ,p 

(5.7a) 

(5.7b) 
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Proof. By (3.8), 
P=[s"] McA-SKcA 

R=SB 

J. M. MYSZEWSKI 

The straightforward consequence of properties of matrices KcA and MeA is that: 

deg p,,=n1 for i= 1, ... , p 

for 
. . d Jn,, if n, <n1 
l>J egpu=l 1 .f n1 - , 1 n1?::n1 , 

degr0 <n, for i=l, .. . ,p . 

PROPOSITION ( 5.8). Given a matrix S 4 in the step 3, a finite number of transformations 
specified in step 4 yields Popov's form 6f the minimal observability matrix of the 
system (2.1) . 

Proof. If W=[X, Y] is a final polynomial matrix obtained in the step 4, then it 
is easy to v.~rify that x- 1 Y=H. Mat;ix T (obtained in the step 2) was the greatest 
left di visor of matrix S2 . Hence matrices S2 , S 3 as well as S4 satisfy condition 2° 
of definition (3.1 ). 
Transformations I-4 are, in fact, elementary operations on rows of matrix W 
which have to be performed in order to bring X to desired form. In each loop con­
dition (5.7a) is checked. In the case when any entry fails to satisfy it, appropriate 
rows are modified. 
Given a matrix S4 , in a finite number of elementary operations performed on its rows, 
we can make it a minimal observality matrix (Forney [3]) . Since any minimal obser­
vability matrix can be brought to its Popov's form by multiplicating it from the left 
by a polynomial unimodular matrix (which simply represents elementary operation 
on rows), we conclude that after a finite number of transformations, to be performed 
in step 5, we obtain a minimal observability matrix in Popov's form. Since it is 
unique, it is the minimal observability matrix in Popov's form of the system (32.1) . 

• We can now prove the lemma (4.8). 

P r oof of the lemma (4.8). We subject the matrix S~ L to the step 4 of the algorithm 
(5.1). We shall show that any transformation performed on rows of S~L preserves 
the matrix Jl.1cA and the order of row indexes. 

Suppose that for some i> j we have au?::a11 . On the other hand we have a0 ~au, 
so a11 ~ a0 ~ au. Transformation 1 is to be done. We claim that 

It is equivalent to aik-n1 <n,-a0 . But n1-au ?:: O and a1"-n1 ~0. The inequality 
stated above is not valid when and only when simultaneously a1,=n1 and au=n1• 
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Recall that for ni?>n1 (as a property of the matrix MeA) we have au~n1 -l, that 
contradicts the foregoing statement. For k=J+1, ... ,p a1k+au-a11 ~n1+a1k-aJi~ 
~ni-l. 

Thus we see, that the coefficient of s"' in term x;k is that of xik• fork= I, ... , p. 
Similarly, if transformation 3 is to be accomplished (in the case when for i<j we 
have au?>a1J, one can easily verify that for k=1, .. . , i au-a11+a1.~ni-1, that 
shows that the coefficient of s"' in term x;k equals that of xik· Moreover, for k=i+ 1, ... 
... ,p ki=j a;k~ni-l and au~a;1 -l. 
Hence, we conclude that transformations 2 and 4 (which cause a change of the order 
of rows) will not be used and that the matrix MeA. is invariant to transformations 
1 and 3, which completes the proof. Ill 

As an example we compute the minimal observability matrix in Popov's form 
of the system with a transfer function matrix as below 

The matrix S2 in step 1 is 

[

s-1 0 0 
S2 = 0 s-1 0 

0 0 (s-1)(s2 +s+3) 
~ ~ ~ l 
3 3 s-1 

The matrix T is 

[
1 0 0] 

T= 0 s-1 1 
0 0 3 

The matrix S 3 in step 2 is 

1 l -1/3 
1/3 (s-1) 

The matrix s4 in step 3 is 

1 0 1] 
1 1 0 
0 0 1 

It is already the minimal observability matrix in Popov's canonical form. 

6. Conclusions 

As we have shown, it is possible to characterize strictly proper systems, obtainable 
from a given system by means of the control law (2.3), by its stmctural invariant 
and elements of matrices F and G. Though we have not presented any new invariant 



358 J. M. MYSZEWSKI 

with respect to the application of the control law (2.3) (the invariance of observabi­
lity indicies and of the matrix MeA is the fact well known), the corollary (4.20) shows 
how the structural invariants of the system transform while the system is subjected 
to the output feedback. The proposition (4.20) establishes the topological property 
of the set of all systems that can be obtained from the given controllable and obser­
vable system by use of the control law (2.3) - it is a manifold of dimension not 
greater than (p+ r) rank B. Thus the probability that, given two linear systems (2.1) 
there exists a control law (2.3) that transforms one system into the another (even 
in the case when they have the same observability indices) is zero, unless rank B=n. 
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Dopuszczalne uklady dla zadania ukladu o zadanej 
macierzy transmitancji operatorowych 

W pracy badana jest orbita wielowymiarowego, stacjonarnego, liniowego, sterowalnego i ob­
serwowalnego ukladu opisywanego r6wnaniami 

x=Ax +Bu, y= Cx (*) 

wzgl<;;dem dzialania proporcjonalnego sprz~;zenia zwrotnego 

u=Fy+Gv 

Wprowadzone zostaly zaleznosci wi4:Z4ce parametry obserwowalnej postaci kanoniczej Luenber­
gera r6wnan (*) uk!adu zamkni<;;tego z parametrami uk!adu otwartego oraz elementami macierzy 
F i G. Przedstawiona zostala topologiczna charakteryzacja rozpatrywanej orbity. 



Admissible systems 

.LI;orryCTHMbie CliCTeMbl )l.JHI 3a)l.a'llf CHHTe3a CHCTeMbi 

c 3a)l.ammii MaTIJHI\eii onepaTopHLIX rrepe)l.aTO'lllhiX 

cjJyHKUHii 
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B pa6oTe nccrre.zzyeTCJI op6nTa MHoroMepnoii, CTaiJ;Honapnoii, mrneii:Hoii, yrrpaBJTJieMofi 

H Ha6mo.n;aeMOH CHCTeMbl, OilliChiBaeMOH ypaBHeHHJIMH 

x = Ax+Bu, y = Cx (*) 

IIO OTHOilleHHIO K B03.[\eHCTBIDO npOIIOpll,HOHaJThHOH o6paTHOH CBJ!3H 

u=Fy+Gv 

_ Ilpe.n;CTaBJTeHhl IIOJIY'feHHhJe 3aBHCHMOCTH, CBJ!3h!Ba!OII]Re napaMeTphl B Ha6mo,[laeMOM KaHO­

J-lli'IeCKOM BH,l\e J110eH6eprepa ypaBHeHHH (~-) 3aMKHYTOH CRCTeMhi C napaMeTpaMH pa30MKHYfOH 

CRCTeMhi, a TaKJKe :meMeHTaMH MaTpRll,hl F H G. Ilpe.n;CTaBJTeHa TOIIOJTOrH'.!eCKaJI xapaKTepRCTI!Ka 

paccMaTpRBaeMOH op6nnr. 

--------------------
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