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The surrogate dual program offers a more effective bound than the Lagrangean dual on the 
primal optimal value in branch-and-bound methods since it yields usually a tighter duality gap. 

Three algorithms for solving the surrogate dual program are presented and compared experi­
mentally. Two of them are based on a quasi-subgradient search method. One has been presented 
in [3], while another is a new proposal. Both are endowed with a new effective stop test. The remain­
ing one originates from generalised programming a11d follows the scheme discussed in [3]. All of 
them require solution of a knapsack problem in each iteration. 

1. Introduction 

The surrogate constraint, as a single constraint which can substitute for a whole 
set of constraintf, was introduced into mathematical programming by Glover [5], 
for binary integer-programming problems. Since Luenberger [10] used a similar 
approach in duality for quasiconvex programs a more theoretical stream of .work 
was initiated, e.g. [7], [6], [8). On the other hand, surrogate constraints have demons­
trated their utility as a part of branch-and-bound methods in integer programming, 
e.g. [1], [9]. 

Two methods for calculating surrogate constraints are described in this paper 
from a more practical than theoretical point of view. They are discussed and com­
pared in their algorithmic forms suitable for implementation. Obviously some parts 
of the presented algorithms can take different forms while being still based on the 
same method, so it is not claimed here that these representations are unique or even 
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best. They are described as examples in order to show how each of these two 
methods proceeds and what its most important features are. Finally a comparison 
is done by a numerical experiment using integer test problems with a nonlinear 
objective function and linear constraints. 

Briefly, the first method consists in constructing a sequence of nested sets such 
that the "volume" tends to zero and unsatisfactory points are rejected in each step. 
It will be called the decaying polytope algorithm, and is based on the first scheme 
proposed by Dyer [3]. The other method is an application of a search direction 
scheme with an a priori stated step size sequence. A linear functional strongly sup­
porting the interior of the upper level set of a certain function is used for construction 
of a search direction. Two algorithms were developed using such vectors, named 
quasisubgradients [7], which define such a functional. The quasi-subgradient Algo­
rithm B is based on the second of Dyer's schemes [3] but is endowed with a new 
effective stop test. Algorithm C is a new proposal which exploits the same ideas 
as Algorithm B. 

In the next section of the p:.tper only those parts of the general theory appear 
which are necessary for the presentation of the algorithms. 

2. Preliminaries 

Consider the following integer program 

(P) f=min {f(x): xeX, g(x)~O, x integer}, 

where f: R"-+R, g: R"-+Rm and X={xER": O~xk~u, k=l, ... , n}. 

It is not necessary heve to assume lower semicontinuity off and continuity of g 

in view of the fact that the x's are integer although the results cited hereafter were 
proved in a more general case under these assumptions. 

n 

When f is separable i.e. can be represented as a sum 1; f, (xk), and constraints 
k=l 

are linear: g (x)=Ax-b, where matrix A and vector bare both integer, the problem 
is often called the multidimensional knapsack problem (nonlinear ifj, are nonlinear). 
All test probkms in the numerical experiments are exactly of this form but these 
particular assumptions are not necessary for the presentation of all algorithms. 
Thus for (P) with only the initial assumptions, for any wERm, wa=o the following 
relaxation is defined [6]. 

(S) h (w)=min {f(x): xeX(w), x integer}, 

where X (w)= {xeX: (w, g (x)) ~0}. Then 

(SD) h=sup {h (w): wERm, wa=o} 

is the surrogate dual program for (P). h: R'"-+ R is called the surrogate dual function 
and the constraint defining X(w) a surrogate constraint. Program (SD) is aimed 
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at finding the best surrogate constraint, if it exi~ts. The two properties of the set 

X(w): X(O)=X and X(sw)=X(w) for s>O, yield respectively two features of the 

surrogate dual function : h (O)~h (w) for all w90 and h (sw)=h (w). Thus zero 
may be excluded from the feasible set and an arbitrary normalization of the vectors 

w is possible, which allows us to restrict the feasible set in (SD) to a compact one. 
The following results state the basic properties of the problem. 

PROPOS!TION 1 [7] (Weak Duality Theonm) fi ~~ 

PROPOSITION 2 [3] h=/ and h is achieved if and only if h (w)=f(x) for some 
w90 and x feasible in (P). Ti-.en x solves (P) and w solves (SD). 
If the equality does not hold the quantity (/-h) is called the duality gap. The smaller 
the duality gap, the moie valuable is the pioblem (SD). 

PROPOSITION 3 [7] h (w) is a lower semicontinuous, quasiconcave function on 

R'~={w ER"': w90}. 

PROPOSITION 4 [3] !i is attained on a relatively open convex cone contained 

in R'~. 
As a result of the last proposition "sup" in the statement of (SD) can be replaced 
b y "max". It should be stressed however that this is possible only because all x 
belong to the integer lattice. Then the feasible set in (P) has no cluster point; if it 
has, h may not be equal to any h (w) (see example 1 in [3}) . Proposition 3 indicates 
that (SD) is rather a difficult problem from the operative point of view for it in­
volves maximizing a function which can be discontinuous. Thus some additional 
characterization of the value h can be helpful. In order to achieve a more geometrical 

characterization, a concise notation for cer tain famiiics of sets is convenient. Let 
T (a)= {xEX:f (x) ~ex, x integer},for every aER, be a lower level set of the function[ 
Then the inequ ality h (w) ~ex is equivalent to the condition T (a) n X (w) #0. Denote 
the optimal set of (S), i.e. {xEX(w): h (w)=f(x) , x integer}, by Q (w). Then clearly 
the se:t Q(w) can be expressed as T(h(w))nX(w). LetR(ex)=g(T(ex)) denote the 
1mage of a level set under the constraint function g. Also denote by R* (ex) the set 

{wE R'~: (w, v)90 for all v ER (ex) }. 

PROPOSITION 5 [3] Tile value 11 can be determined by the program 
m in {a: int R* (ex)=Qi} . 
Plainly 0Eco R (ex) implies int R* (a)=Qi where "eo" means convex hull and "inf" -

interior relative to R'~ . 

PROPOSITION 6 (3] int R* (a) =Qi if and only if eo R (ex)nR~ #Qi (R~ = -R':;_) 

COROLLARY 1. The value h can be determined by the program 
min {a: eo R (a) 1\ R":._ # 0}. 
Since h is a ttained for some w obviously 

---------------------------
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COROLLARY 2. h (w)=h if and only if eo R (h (w)) 11 R~ .,r,.0. 
The first characterization (Proposition 5) is essential in the decaying polytope algo­
rithm while the result of Corollary 1 serves as a reasonable stop test in both quasi­
subgradient algotrihms. 

3. Decaying polytope algorithm 

The algorithm described in thi s section uses the arbitrary normalisation : llwll =I. 
m 

The L 1 norm is chosen: 11 wll = 1; I w11 • Hence (SD) can be rewritten in the form 
l= 1 

m 

(SD') h=max {h(w): weR':, _27w1=l}. 
!=t 

Define the feasible set K' = {wE R': : ( w, e)= 1} where e= [1, ... , 1]. Then K' is com­
pact and convex. 

A polytope of the form W= {weK': (w, gi)*O,jeJ}, where J is a finite index set 
of vectors gi, is used as an outer approximation of R* (a). The convergence of the 
algorithm depends on finding an interior point (relative to K') of such a polytope 
in each iteration. A measure of "volume" of the polytope interior is also required. 
Dyer [3] proposed the following linear program as a solution for both tasks. 

(L') r=max 17; (w, gi) -n117*0 (j eJ), (w, e)= 1, w*O, 

where n1=v [(g1, g1) -(e, giYfm] 

Number r will be called the radius of Wand it is not difficult to see that int W# 0 
if and only if r > 0. When r > 0, the program (L') yields one interior point of W which 
is used to permit a wider choice depending on a scalar parameter. New vectors are 
successively added to the set defining Wand the lower bound a on /1 is enlarged, whe­
never possible, during the calculations. Thl!S a sequence of polytopes and a sequence 
of lower bounds for Ji are generated. 

Algorithm A 

STEP 0: Set 0<8~1, w 1 eK', W0 +--K', o: 1 +--CO, i+-1. 

STEP 1: Determine any x 1 E Q (w1
). Let g1=g (x1) . 

STEP 2: If f(x 1)>a1, a;+- f(x;). 

STEP 3: If g1 ~ 0, then stop. 
STEP 4: W 1+- W1_1 n {wE R"': (w, g1

) *0}. 
STEP 5: If the radius of W1, r1 ~0, then stop. Otherwise determine 

d1= -(w1
, g1)/[(11i, g1)-(w1

, g1)], where w1 is a solution of (L'). 
STEP 6: w1+1+--(1-c;) w1+c1w1, where c1=(1-d;) (1-8). 
STEP 7: i+-i+ 1. Go to Step 1. 

Clearly at each iteration W1 has the form required for the statement of (L') and 
cc; is a lower bound for Ji. In Step 1 the surrogate relaxation (S) is solved for a current 
vector w1

• If the stop test in Step 3 is satisfied, then x 1 is also a solution for (P) and 
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the duality gap equals zero (a1=h=j). In Step 4 the new cutting plane implied by 
the sub-problem solution is added to the set defining W1• If the stop test in Step 5 
is satisfied, then int W1=f/J, hence int R* (a;)=I/J (because R* (oc;) C W1), which 
implies oc1=h. Figure 1 shows the geometrical interpretation of the choice of w1+1. 

I(' 

Fig. 1. 

The main convergence result proved in [3] is 

PROPOSITION 7. If (S) is feasible then Algorithm A terminates in Step 3 or 5 with 
Cl..;=h. 
The result strongly depends on the fact that the feasible set in (P) is finite and the 
number of its elements bounds the number of iterations. 

4. Quasi-subgradient algorithms 

It has been proved [7] that g (x) for xEQ (w) defines a linear functional strongly 
supporting the interior of the upper level set of h in w (if it is nonempty): (w, g(x)) < 
<(u, g (x)) for all u such that h (u)>h (w). Any vector possessing this property 
was christened a quasi-subgradient as a notion corresponding to a subgradient of 
a concave function. Remember that h is only quasiconcave so in general a sub­
gradient does not exist at each point of the domain. In both quasi-subgradient 
algorithms presented here g (x) is used for the construction of a search direction 

'" and both use the L 2 normalisation: Y 2 w~= 1. Hence (SD) can be stated in the form 
l;l 

(SD") 
l;l 

The feasible set K" = {wER:: (w, w)= 1} is compact and spherically convex. A con­
vex hull of the form C=co{gi:jEJ}={yERm:y= 2 [Jigi, ([J,e)=l, [3~0} is used 

jEJ 

as an inner approximation of co R (oc). Although the convergence of the algorithms 
is independent of C the measurement of a distance between C and R'':_ serves as a rea-
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sonable stop test. The following lim:ar program is proposed as a way to measure 
such distance. 

(L") p=min~; ). pig{ -~~0 (!=1, ... ,m), (/3, e)=l, /3"?;:0. 
~ 
} E J 

Number p will be called the distance between C and R".:.. and it is clear that C 11 R":_ =0 
if and only if p>O. New vectors are successively added to the set defining C and the 
number a is enlarged in a similar way in both quasi-subgradient algorithms. Thus 
a sequence of convex hulls and a sequence of lower bounds for fi are calculated 
analogously to Algorithm A. ' 

Algorithm B 

STEP 0: Set y>O, w1 EK", Do<--0, o:1 <---oo. Choose a positive sequence {t,}~ 
00 

such that t,-+0 and .2; t,=oo. 
i::::: 1 

STEP 1 : Determine any x' E Q ( w1
). Let gi = g (xi). 

STEP 2: If f(xi)>o:i> et.i+-f(xi). 
STEP 3: If gi ~0, then stop. 
STEP 4: Di+-Di_ 1 u{g'} , Ci<--co Di. 
STEP 5: If the distance between ci and R"!_, Pi~O, then stop. 
STEP 6: Determine di<--gi-(wi, gi) wi and di<--Ji /ii d-ii i-

STEP 7: Jii'<--w'+yti d' , iv'+-w1+q', where q' = 1 1
. 

. . . . . . {-biii if Jiii <0 
1 0, otr_erwJse. 

STEP 8: wi + 1 <--tiii/ll >vi ll. 
STEP 9: i+- i+ l. Go to Step 1. 

Since Steps 1-3 are the same as in Algorithm A all comments relating to them 
are still valid. In Step 4 the new vector spanning the convex hull Ci is added and 
then in Step 5 the linear program (L") is solved. If this stop test is satisfied then 
eo R (ai) 11 R"!_ ~ 0 because CiCco R (et.i). Hence ai =li. In Step 6 the normalized 
projection of g', orthogonal to wi, is calculated. On Figure 2 the geometrical inter­
pretation of Steps 6-8 is sketched. 

Fig. 2 
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The basic result relating to the convergence of Algorithm B was proved in [3]. 

PROPOSITION 8. If wEK", then lim inf (w, g 1)~0, where g 1 are generated in Algo-
i->oo 

rithm B. 
The above property implie8 

PROPOSITION 9. Algorithm B generates a sequence {pt} such that either i0 exists': 
p10 ~0, or p1->0. 

Proof. If for any i 0 :p10 ~0 then coR (ex 1) n R': #0. This means a10 =hand a solu1ion 
of (SD") has been found . 
Suppose now that p1 > 0 for all i. Since the sequence {p1} is nonincreasing and boun­
ded from below by zero it has as its limit ft ~ 0. Suppose ft~O. The obvious property: 
Ci CC, for all j ~ i, implies that C1 and R': can be strictly separated by a hyperplane. 
Hence, for some p'v exists such that (v, w) ~p>O for all wEC, and (v, w)~O for all 
wER':. This means wEK" exists such that (w, g;)~p for all i, which contradicts 
Proposition 8. Thus p=O. Ill 
This result validates the main stop test in Step 5 but also implies the main com·er­
gence result. 

PROPOSITION 10. Even if all p1>0, lim a 1=h. 
i -+':0 

Proof. Since {ex1} is nondecreasing and bounded from above it possesses a limit Ci.. 
Suppose that Ci.<h. This means that coR(Ci.)nR':=0. On the other hand ex 1 ~Ci. 
for all i impl ies C;Cco R (a). Thus j5>0 exists such thatp 1 ~j5 for all i. This means 
lim p1 ~ft>0, which contradicts Proposition 9. Thus Ci.=h. g 

The algorithm described below is also designed to obtain a solution of (SD"). 
The same linear program (L") is solved as a stop test. Thus all notations remain 
the same. 

Algorithm C 

STEP 0 - 5: as in Algorithm B. 
,_f -g; if g;<o and w;=o. 

STEP 6: Determine g1<-g1+q1
, where q 1 1- 10 otherwise 

STEP 7: Determine d1<-g1-(w1
, g') w' and d 1<-a'flla 1ll . 

STEP 8: r 1 <-min { -w;!d;: l EL 1} where L,={l: dt<O} 
(if L,=0 then r,.- +oo). 

STEP 9: lii1<-w1+ min (yt1, r;) d 1
, w'+ 1 <-lii'/lllii1ll. 

STEP 10 : i+--i+l. Go to Step l. 

When r 1 ~ yt1 and g'=g1 both quasi-subgradient algorithms yield the same 
point as a new approximation. The difference appears when a face of the positive 
orthant becomes "acitve" i.e. for some i w;+yt1 d; < 0. Uhile Algorithm B jumps 
back from such constraint: w; + 1 > 0, Algorithm C puts the new approximation 
exactly on this hyperplane: w; +1 =0. The latter allows also searching along such 
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"active" hyperplane, due to Step 6. The comparison of Figure 2 and Figure 3 points 
out the difference. 
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/ 
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/ 
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/ 

/ 

Fig. 3 

Thus in Algorithm C another step siz sequence {min (yt;, rJ} is use instead of {yt1} . 

Since R'~ has obviously only a finite number of faces this modification can ravely 
affect the property that 1h ~ step size series diverges. Hence the main convergence 
result for Algorithm B is usually valid for Algorithm C. Moreover the vector d' 
generated in each iteration of Algorithm C has the same property of supporting 
level of h as g' itself. 

PROPOSITION 11. d' determined in Step 7 is a quasi-subgradient of hat w1
• 

Proof. Take any uE {uER'~: h (u)>h (w')}#0. Denote ,u=l/!id1il, ,u>O. (u, d 1)= 

=,u [(u, g1
)- (w1

, g') (u, w')] ~,u [u, g1
)- (w', g') (u, w') ~ ,u (u, g1

)]. On the other hand 
h(u)>h(w') means h(u)>.f(x1), where x 1 EQ(w'). This implies x 1 EX(u) i.e. 
(u, g')>O, so (u, d')>O is a comequence. But Step 7 yields (w', d')=O. As a result 
the desired inequality (u, d') > (w', d') is obtained. Ill 

5. Sub-problem solution 

The solution of program (S) is required in each iteration of all described algof 
rithms. This minimization problem with one surrogate constraint in the case a­

linear primal constraints and separable objective function takes the form of a knap­
sack problem. The program is represented in "max" notation in conformity with 
common notation in integer programming. 

11 11 

(S') maxl.; <J>k (xk); }; akxk::fi:v, O:fi:xk::fi:uk and integer (k=l, ... , n) 
k= 1 k= 1 

According to the primal problem: <l>k= -.fb [ak]k =1, ... ,=a=wA and o=(w, b). 
Some additional assumptions are required for the algorithm presented below 

- - · ·---------------------------



Three algorithms 383 

t:Pk (0)=0, ak>O and o~O are integer. They are not restrictive since any problem 
(S') can be transformed to an equivaler.t one satisfyir g thtm. The algcritJ-.m propost:d 
to solve (S') is a modification cf the firE-l dynamic programming S(hcme presented 
in [4], Chapter 6. A short introduction is necessary before its preser..tztion. By 
definition, 

!. 

Q;_ (z)=rnax.}; t:Pk (xk); .}; ak xk~z, O~xk~uk and integer, 
k~l k=l 

x (k= I, ... , }.) for }.=2, ... , n ar.d z=O, l , ... , o. 
Isolating X;. gives the recursive equation 

(R) Q;. (z)= max (t:P;. (x;.)+Q;.- 1 (z-a;.x;)) 

X, o 1 · ([ -~-] ) .-. = , , ... , mtn a;. , u;. 

Adding the initial ccr:.dition Q 0 (z)=O for z=O, 1, .. . , o allows us to extend (R) 
for A=1, ... , n. Ddl.r:.e ah:o tableau 'P;. (z): 

'P;. (z)= f~ if Q;. (z)=Q;._ 1 (z), _ . 
lx;. 1t Q;. (z) > QA_ 1 (z) where X;. denotes a solutiOn of the. 

maximization in (R). 

Algorithm S 

STEP 0: Set J..--0, Q 0 (z)+-0, z=O, l, .. . , o 
STEP 1: },.-).+ 1. For all z<a.\ set Q;. (z)-+Q;.- 1 (z) and 'P;. (z)<-0. Set z<-a1 .. 
STEP 2: Determine v=max (<P 1. (x;.)+Q;._ 1 (z-a.\ x;.)), 

x1.=0, 1, ... , min ([;
1

], U;.). 

If v>Q;.- 1 (z), then Q;. (z)<-v and '1'.\ (z)<-x1 .. Otherwise Q1. (z)<-Q;.- 1 (z) 

and 'P;. (z)<-0. 
STEP 3: If z<o, let z<-z+ l and nturn to Step 2. If z=o go to Step 4. 
STEP 4: If }.< n, return to Step 1. If ?.=n go to Step 5. 
STEP 5: x1.<-'1';. (z) and st:.t Z<-z-a;.i; .. 
STEP 6: If J.>l, then set },<-J.-1 and return to Step 5. If 2= 1, stop. 

\Vhen the algorithm terminates, Q, (3) is the optin:al vc.lue in program (S') and j; 
is an optimal solution. This mear,s Q, (3)= -h (w) . Jf (S') has multiple optimal 
solutions, only one of them will be obtained by Algorithm S. HoweYer this is enough 
to proceed with the computations in all the algorithms for calculating best surrogate 
constraints presented in this paper. 

6. Numerical experiments 

S·~V<:ral test problems wae so lved using Algorithms A, Band C. All of the test 
problems have the same form: 

n n 

rnin.}; h (xk); .}; a1kxk~b 1 , 1=1, ... ,m, O~x,~u" and integer (k=l, ... , n) 
k~ l k~ 1 
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Each obje;:tive function is represented by a table F= L.hJ :/,.i=h (j) j= 1 ... , uk 

(fk (0)=0). Elements of these tables arc numbers randomly chosen from the interval 
[ -9.9; 0.0]. Integer elements of mat:ix A were randomly chosen from the set 
{0, I, ... , 9}. Vector b was determined in a such way that the unrestricted minjma 
of the objective function are in fea~ible. All numerical data are included in an Ap­
pendix. Each test p10bkm was solved using each algorithm for five different values 
of the parameters e and y: 0=0.2, 0.4, 0.6, 0.8, 1.0 and )'=0.25, 0.5, 1.0, 2.0, 4.0. 
For finiteness of the algorithms in practice, the converger.ce criteria gi ~0, r; ~0. 
p; ~0 were replaced by g; < t: 1 , r;, Pi < t: 2 , respectively. The values c:1 = 10- 4

, <2 =I o-s 
were used for all nms during the experiments. Calculations were continued until 
the 75th iteration if an r,[gorithm did not terminate with its stop test. In what follows 
the results of four p:·oblems are presented. 

Test 1 (n=5, m=3) This problem is small and simple, blJt is a good example 
to show differences among the algorithms. Figure 4 shows a part of set K' (or rather 

/ 
/ I<' 

Fig. 4, 5, 6 
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its certain projection) with points w' generated by Algorithm A for 8=0.2 and 1.0, 
Figure 5 - points w' normalized with L1 norm, which have been generated by 
Algorithm B for y= 0.25, 1.0 and 2.0, Figure 6- the same for Algorithm C (y=0.25, 
1.0 and 2.0). The interior of the dashed set is the optimal set for (SD'). The small 
number beside each point is an iteration number i. 

Table 1 gives more details about the best runs. 

Table 1 
-

! I I I Alg. I 1 2 3 I 4 I 5 6 

I i 

• 

A 0= 1.0 -33.0 2 0.0 1 0.22 
--- ---- -- --

B y= 1.0 - 33.0 4 0.0 2 0.48 
--- --- --

c y =l.O I - 33.0 I 2 0.0 I 1 I 0.24 I 
1 - value of 0 or y in the best run (sole criterion to compare runs is 

their number of iterations) 
2 - maximal value of a, achieved in the run 
3 - number of iterations 
4- minimal value of stop test parameter r1 or p , (the case r, p 1 <e2 

is expressed by 0.0) 
5 - total number of simplex iterations in all stop test problems 
6 - CPU time in seconds 

Table 2 contains vectors w' corresponding to the greatest values of a,=h (w'). For 
Algorithm 2 and 3 also L 1 normalisations of w' are determined. Table 3 gives the 
solution of sub-problem (S) for these w' . 

Table 2 

---------------------
Alg. I 1 

A 1.0 
- ----

B 

* --- -
c 
* 

Alg. 

A , B, C 

0.8922 
0.6404 

0.7719 
0.5484 

1-1 
I 0 
I 

w, 

I 2 I 
0.0 

0.4486 

o.3221 I 
~----

0.6357 
0.4516 

Table 3 

2 

3 

x. 

3 

3 

0.0 

0.0523 
0.0375 

0.0 
0.0 

-

-----
4 5 

3 , feasible in (P). 

Thus program (SD) was solved with zeto duality gap by all algorithms. 
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--------------------------------------------------------
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Fig. 8 

Test 2 (n= 10, m= 7) This problem has moderate size, comparing with the 
tests in [I I]. Figure 7 shows the values of h (w') generated in the best runs of the 
algorithms. Figure 8 presents the sequences {rJ, {pJ from these runs. 
Table 4 compares results in an analogous way to Tab. 1. Tables 5 and 6 contain 
vectors w' and x' corresponding to the maximal value of h (w') . 



Three algorithm~ 387 

Table 4 

AI g. 1 2 3 4 5 6 

~_!_!=0.6 - 68.6 __ 4_ 1 0.0 I I 2.07 

B I y=4.0 - 68.6 24 
---: 

0.0 8 I 12.1 5 
~-- ~ ·---

. c I y=4.0 I -68.6 1-13-1 0.0 I 7 I 6.70 I 
I 

Table 5 

I Alg. I 1 I 2 I 3 I :
0 

I 5 i 6 I 7 

i __ A_ _ 0.0041_1 0.00~ 0.8698 I 0.0040 I 0.0040 I o.-11_0_ "1_--_o-.o=04=0= 

B 0.0872 I 0.0062 0.9945 I 0.0148 I 0.0002 I 0.0486 I 0.0272 
* _o_.o_7_4~ _ o_.o_os_3_

1
_ o._s4_3_7_ o.0126_ ~.ooo1 j_0.0412 l_o._o2_3_1 _

1 

c 1~ o.o o.o 0.9972 I o.o o.o 

1

1 0.0708 ~1 0.0237 
* 0.0 ! 0.0 0.9134 0.0 ' 0.0 0.0649 0.0217 

Table 6 

AI g. 
I x. I 
[1 ! 2 I 3 1 4 I s ! 6 I 1 1 s I 9 j 1o 

1

1 i 0. i 311 11 11 1211 11 i 1 13 
1 

, feasible in (P). A,B,C 

Program (SD) was solved with zero duality gap by all algorithms. 

Test 3 (n=15, m=JO) Figure 9 presents the sequences {h (wi)} from the best runs, 
while Figure 10- the sequences {r;} and {p;}. 

h(wi) 

Fig. 9 

I 
I 
I 
I 
I 

I...._L_L __ ,... 

~ ·1 t 
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Fig. 10 

Tables 7, 8 and 9 are analogous to Tables I, 2 and 3, respectively. 

Table 7 

I Alg. I 1 I 2 I 3 I 4 I 5 I 6 

A I 0= 0.6 I -89.4 5 0.0 2 5.48 ---,-------- - --

B I y = 1.0 - 89.4 14 0.0 10 15.31 

c y= 1.0 I -89.4 l 11 I 0.0 11 I 12.02 

Table 8 

~ ~--~--2-~--3~~-4-~--5 __ w7'--6-~-7--.--8-~-9-~-10-

A 0.433 4 

B 0.499 
* 0.342 

3 
2 

9 -

7 1 /~ ~-~~ 
* 0.314 

0.0025 
---

0.0006 
0.0004 

- ---
0.0 
0.0 

- - -----

0.0025 
---

0.0154 
0.0105 
---

[ o.o · 
0.0 

0.0025 1 
' 

0.0025 0.0025 0.0025 0.0025 0.0250 0.5466 
- - - - -- ----- -- --- - - -

0.0157 0.0091 0.0182 0.0082 0.0045 0.0227 0.8656 
0.0108 0.0062 1 0.0125 0.0056 0.0031 0.0155 0.5932 
---

--;;:-0- -~ ~ ,~ 0.10931 0.8833 0.0 
0.0 o.o 1 o.o 

1 
o.o o.o o:o755 o.6o98 

Table 9 

Program (SD) was solved with zero duality gap by all algorithms. 

- -------------------------------------- ---------
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Test 4 (n=20, m=15) The problem is the biggest one in the experiment but is still 
relatively small compared with real-life problems. The presentation of results is the 
same as in Test 3: Fig~ res 11, i2 and Tables 10, 11, 1 i give details of the best runs. 

~m·.~F===-=====::>-=t===-~==- -:;::.::.~-+'~-=="1 ... -1 ~--, 
C l" " ................. I 

34.3 

I / .: · .. 8 / 1 I 

!'- -. •••• · · ···· · ·~-~~,_..,,.::-.;-::::-:{ ..................... • •· ....... · ! i 
/ ....--V I I 

·. ,.:r- : : 
:' ··. : I I I 
_:,.._~ I I 

~, I I 
.... I I 

I ! 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I I 

I 
I 
I 

~~~~_L_LJ_~g~_L_L_LJ_~L_~_J~_L_L~23~~·_L· ~,~~ 

Fig. 11 

0.6692 I P; 

96.0 " 
f. 
1: 
1: 
1': 
I~ 
1: 
1: 
I .... ~ 
I : 
I 
I 
I 
I 
I 
l..~ ·: 

c '~...._ ..... \ 
-.. \ 

···.:..-:::-.~.:::-"""', 
·.. \ 

A 

0.01 -----:-'»" 
9 I 

· ... . .. ,....,..., .... ~·-··-:.:·"0····· · ·····•····· 
~~112~~~±=±=±=~==~~~=±=±=~~±=~~~-~··=·~-·=·~·~ .. ~~:=·~··=· ~±=· ±· = .. ·~·. -~ 

Fig. 12 
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Table 10 

A! g. I 1 I 2 I 3 1 4 I 5 I 6 

I 
I 

A 0=0.4 -113.8 9 0.0 !~ 18.39 

B y=2.0 -113.9 75 1.3112 187.38 

I I 
-·--- -- I~ c y=2.0 -113.8 23 0.0 28 47.28 

I I 

Progran (SD) was solved with a non-zero duality gap by Algorithm A and Algo­

rithm C. The sequence {aJ did not reach fz in Algorithm B before the 75th 
iteration . 

A few words should perhaps be said about starting points and linear programming 

for solving (L') and (L"). In all runs of Algorithm A w~ = lfm, l= 1, ... ,m was used. 
wi=l f m , 1=1, ... , m was set for Algorithm B and C. These starting points are 
neutral and they do not prefer any primal constraints. If some information about 
"activity" of constraints is available before initiation of the algorithm then some of 

them can be neglected by setting wi=O for all coordinates corresponding to the 
"non-binding" ones. This can be especially valuable for Algorithm C because it 
leads to a searching in a subset of the dual feasible set having smaller dimension. 
If a starting point is chosen closer to the dual optimal set then probably smaller 

values for y will work better. In general Algorithm A is less sensitive to the choice 
of starting point than Algorithms B and C. 

Programs (L') and (L") have been solved in all algorithms by the simplex pro­
cedure taking advantage of the fact that in the subsequent iteration only one cons­
traint or one variable is added. Thus the optimal simplex tableau from the preceding 
iteratio.n can be used to construct an initial tableau for the next one. Then sometimes 
it is not necessary to do any simplex iterations because the proceeding solution is 

still optimal. Moreover in the first iteration of all presented algorithms only one 
vector g 1 generates the linear program so the optimal simplex tableau can be defined 
directly without any computations. 

The numerical experiments were done at the Computer Center of University 
of Hiroshima using HITAC M 200-H. 

7. Conclusions 

Taking all our results into account the presented algorithms proved their use­
fulness as a tool for solving the surrogate dual program, which may be considered 
a difficult one, since it involves maximizing a quasiconcave, often discontinuous, 



w 

"' ~ '-' 

I 

- _ A lg. - J-1-- -~---2-~\ - 3 I 4 I 

. .. A I 0.0009 I 0.0009 1 0.00091 0.7038 1 0.0009 
I 

0,03~1------ --- --- ----------. . . ·- . 
B 0.0013 0.0061 0.0024 0.9361 0.0009 0.0367 1 

• 0.0009 0.0045 0.0018 0. 6868 0.0006 -0.0269 I 
--------- --- ---- --- . 

c 0.01 95 0.0 0.0 0.9332 0.0 0.0939 I 

• o.o14o 1 o.o o.o o.6699 o.o ! o.o674 1 
·--·------·----

Table 11 

---------
w, 

-7 --1 - 8-T-9 1 10 1 11 I 12 I 13 I 14 1 1s 

0.2 

0.3 
0.2 

0.3 
0.2 

4_~_'; ',_o_.o_o_9o_l_o_.o_o_o9_! _ o_.o_oo_9 J_o_.o_o_o_9 
1

_o __ o_o_o9 __ o_.o_oo_9 __ o_.oo_o9_ ~-_oo_o9_ 
494 I 0.0051 0.0004 0.0012 I 0.0105 0.0020 0.0064 0.0020 0.0024 

5641 ~-?03! 0.0003 - 0.0009 1 0.0077_ 0.0015 0.0047 1 0.001~ ~0018 
462 I 0.0 0.0 I 0.0 I 0.0 0.0 0.0 0.0 I 0.0 
487 0.0 0.0 ' 0.0 0.0 0.0 0.0 0.0 0.0 



Table 12 

I 
xk 

AI g. 
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 1 10 1 11 I 12 1 13 1 14 I 15 1 16 1 11 1 18 1 19 1 20 

~ .... A,C 0 3 1 1 1 2 0 1 0 1 1 1 
----------- ·~ --------------

B 0 3 1 1 1 2 1 1 1 ! 1 1 1 

. I . I 1 1 i 2 1 · · 1 o .

1 

o 
-------- ---- --

1 1 .: o 1 1 0 o o 
- ------ - - ----- --- - ---- -----

, both vectors are in feasible in (SP). 
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function . The algorithms are based two on fundamentally different methods. The 

first originates from generalised programming while the another imitates sub gradient 

~etho'ds·.· Algoritlu1~ A~ ripi:esenting thefirst approach, se~~~ to be better organik~1d 
but needs more calculations because the linear program is its im.rnanent element. 

. , · . I ; , . · • ' : ~ ' : _; . : ' ' . ! .' i : i J :-; • ' • • • 

Algor~thms B. and C use a l_t);lt::!r program as a stop test which is more effective then, 

})ut could be replaced b~, if the problem is too large a simpler heuristic. te:;~. H~w­
ever .Qoth are,,m<;>,re I()caljn their )lature. Since only local information ap0ut h is 

, . • - . , . ' , . . . ' • . , . . ' , . : •' ' . . I ~ • ' ' 

applied in th~ form of a quasi-subgradient, it is very difficult to avoid zigzagging 
. ' ; . . '; . ; . ' . . , ~ ·- . : . . . .. ' , ' , . . - ' I . , ; 

and t11is und~rsirable feature appears in Algorithm B and C. Additionally the step 
~i~e s~queri.~e. is . cl~~s~n a~bitra~iiy and can 'not '(theoretically) be modifred d~tring 
calculations. In fact, it is changed in Algorithm C but in very rough way. Thus the 

. , _. t; . ·. . . . ) '1 

simplicity of these algorithms remains their most important advantage for large 

real life problems. Algorithm A collectsth() information in the form of ;;t .polyt?pe 
which is usedc:to'derive the· next approx,imation of the solution. Moreover the upper 
level sets of the <surrogate: dua:I funchon are also polytopes in the case• of lin.ear 
primal constraints so the form of appr'o'xin1ation used is more adequate irithiscase. 
These two facts may hil.'ve Cati"seci t'he·slip~doi·ity of Algorithm A in the ,nurrie'rkal 
exp::riments. The relatively small size of all test problems may have also affected 
the corrip:t:isbri'. The results: of the exp;;;ri merttsirtdicate the following hierarchy amcm:g 
the algorithms: Algorithm C is b ;ttcr than Algorithm B but both are .dominated 

by Algo;·ithm A. In the latter a moderate choice of parameter e i.e. arpu;nd 0.5, 
seems to be appropriate. Either choosing () too small or too close to one causes 
a slower convergence process. The choice of () near one even leads sometimes to 
behaviour similar to zigzagging. Nevertheless this algorithm is less sensitive to in 

appropriate choice of 0 than are Algorithm is less scsnitive to inappropriate choito 
of() than are Algorithms B and C to choice of y. Also, properties of the problem are 
more important for a proper sel<":ction of y in quasi-subgradient schemes. If zigzagging 
dominates during searching, then bigger values for y work better, but when the 
approximations approach the optimal set, diminishing of y seems to be necessary. 

Unfortunately there is no way to do this in these algorithms. However y= I or 2 are 
not bad choices in many of the test problems. Thus the decaying polytope algorithm 
is recomended when the size of the prb?lem allows us to store all the vectors g' and 
proceed with solving the linear program at each iteration. If this is not possible, 
the quasi-subgradient algorithm remains as an alternative. The second version 
(Algorithm C) is more effective when the dual optimal set lies close to the boundary 

of K", which means that a group of primal constraints can, in fact, be omitted. 
Since such a situation is common in real life problems, Algorithm C may be pre­
ferable. 
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9. Appendix 

Test 1 

u,= 5, k= 1, .. . , 5 

f•J 1 - - -- -- - --- --- - - ~ -- - - --- ---- -- ---- -- · 
1 2 3 4 5 

:1 
:2 

k :3 

;4 
;5 

0.0 -6.3 -8.9 
- 1.1 -2.8 -7.5 
-7.5 -2.7 - 4.1 
- 8.0 -1.7 -8.9 
-9.1 -7.3 - 2.3 

9 5 7 2 6 
7 2 4 0 5 

4 8 5 1 1 

-5.7 -7.3 
- 5.6 -1.2 
- 6.4 -7.5 
-5.8 - 1.1 
-8.5 - 6.6 

:F 

:A 

b, 

41 
29 
38 

:b 
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Test 2 

Test 3 

u.=5, k=1, .. . , 10 

t., 1···· ·· ··· ······ ·· ··· ! ···· ··- ---- --- --- ---
1 2 3 4 5 

1- 5 like in Test 1 
: 6 -0.1 -8.1 -2.7 -0.8 - 4.8 
: 7 -5.2 -0.1 -4.6 -4.3 -8.8 

k; 8 - 9.4 -2.0 -3.4 -2.3 - 7.5 :F 

: 9 -6.3 -5.9 -8.4 -5.8 -3.6 
)0 -4.5 - 3.3 -7.5 -6.0 -7.5 

a,. l· i·--2 ·· :;··4·- -/-6···7 --8--9- -io---
-;_1_11- 2 3 7 3 9 3 0 

:2 9 6 4 6 4 8 0 6 4 
:3 6 2 3 3 7 6 2 9 5 3 

1:4 0 1 5 4 4 4 6 5 0 8 : A 
:s 5 0 9 0 2 I 0 8 5 0 
!6 0 4 2 8 9 8 6 I 0 7 
:7 9 4 3 0 6 3 4 4 7 

u.= 5, k= I, . .. , 15 

t., 1-- ---- ---- ------- -- / -·-- -- ---- --- --- . 
I 2 3 4 5 

---'-----

1:/10 I 
:12 

k :l3 
:14 
:ts 

like in Test 2 
-8.7 -6.3 -9.1 - 1.9 -7.4 
-~0 -~5 -22 - 1.9 - 1.5 
-8.2 -5.8 -2.9 -2.4 -4.4 : F 

-~4 -1.9 -~6 - 9.3 - 9.8 
-~1 -~6 -23 -~7 -7.7 

6 2 2 5 7 3 8 4 7 3 4 5 6 5 7 
2 364864635693722 
3 3 I 6 5 9 8 5 9 9 6 4 6 
4 002719 1092584 
5 2 7 8 9 6 8 3 0 2 7 3 2 0 0 
6 I 2 6 9 4 8 7 4 6 5 I 5 9 0 7 0 
7 I I 9 9 5 7 2 5 8 6 9 I 9 0 3 6 

8 I 587 2 8 0 I I 6 9 8 6 9 9 0 I 
9 4 8 2 4 4 6 7 3 9 5 5 0 3 4 

10 8 4 3 7 9 4 6 0 3 5 9 3 5 2 

b, 

61 
82 
58 
71 
51 
75 
68 

:A 

:b 

b, I 

69 
88 
93 
68 
85 
86 
83 
74 
71 
51 

395 

:b 
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Test 4 

1-15 
:16 
:17 

k:18 

:19 
:20 

u•= 5, k= 1, ... , 20 

1

-- --- --- ------- !- - ----.- - . 'c .. -. 

1 2 3 4 5 

like in test 3 
-0.9 -7.0 -0.8 -8.2 -7.5 

:F 
- 8.9 -4.1 -9.6 - 0.7 -1.3 
-4.4 -1.0 -0.2 -9.7 -3.0 
-1.4 -7.6 -7.7 - 6.7 -3.3 
-~3 -3.3 -~3 -5.7 -~5 

a,. 1- ----- --- --- -- -------- .. --.. ~-- -· ... .. ... -..... ... .. ... ...... ... -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 2 8 9 2 0 7 6 8 4 8 3 7 3 4 4 4 3 0 
2 3 5 2 4 8 8 8 2 3 2 8 7 9 8 0 9 8 5 9 
3 2 3 0 3 l 8 5 6 0 7 9 3 5 6 9 0 5 0 0 
4 9 5 6 2 8 7 9 7 9 5 2 7 8 2 2 3 7 5 8 2 
5 8 8 2 6 2 1 0 9 5 6 9 8 1 4 9 3 1 2 8 8 
6 0 7 5 8 6 9 6 2 7 7 4 9 9 2 0 3 8 9 8 

7 I 4~ o 9 4 6 2 5 4 8 7 7 8 6 5 9 9 4 8 
z: 8 6 4 2 8 8 7 8 0 8 4 1 6 2 2 4 7 0 8 
:9 8370869745936202030 
;10 2 9 7 7 7 2 0 1 8 3 1 3 6 2 2 6 2 
:n 2 o 2 3 4 8 2 5 s 8 o 2 o 1 3 7 2 3 
;12 7 7 3 9 9 7 2 5 1 9 7 0 7 .. 2 3 4 5 J 2 
:13 2 9 0 2 3 8 4 2 5 7 4 0 1 5 0 0 4 1 5 0 
:14 5 4 7 3 7 8 7 8 7 7 3 2 0 8 2 3 5 9 
:15 I 4 2 7 5 5 1 6 7 9 3 9 3 2 0 5 2 6 2 7 

Trzy algorytmy wyznaczania ograniczeii zast~pczych 

w zadaniach programowania calkowitoliczbowego 

:A 

91 
110 
108 
96 

105 
103 
99 
97 

100 
93 

101 
92 
97 

108 
95 

: b 

Dualne zadanie· wyznaczania ograniczenia zast~pczego pozwala zazwyczaj uzyskac odst~;p 

dualnosci mniejszy niz dla zadania dualnego Lagrange'a .Oferuje ono zatem mozliwosc otrzymania 

iepszego oszacowania wartosci optymalnej w metodach podziahi i oszacowat\.. 

Przedstawiono trzy a\gorytmy rozwi&zywania zadania wyznaczania ograniczenia zast~pczego. 

Jeden oparty jest na schemacie wykorzystuj&cym ci&g aproksymacji wielo:lciennych, kt6ry zostal 

zaproponowariy w [3]. Dwa pozostale .Sq wariantami metody poszukiwan w kierunku z usta.lonym 

ci&giem wsp6kzynnik6w kroku. W obu wykorzystano sprawny test stopu oparty na pewn~j charak­

terystyce dualp.ej wartosci optymalnej. 

Zadanie zaladunku z jednym ograniczeniem rozwi<tzywane jest w kazdej iteracji w wszystkich 

trzech algorytmach. Przedstawiono wyniki testu obliczeniowego. 
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Tpu anropiiTMa ,IJ;JISI BhPIIICJieHHH 3aMecnueJihHhiX orpaHH'IeHHH 

B 3a,IJ;a'laX JleJIO'IHCJieHHOfO nporpaMMHpOBaHHll 
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JJ:aol1cTBeHHal! 3a.n;na Bhi'IRCJielillll 3aMecnueJIHoro orpaHJ.P!eHHll npe.n;JioraeT 6oJiee :~llJilJeK­

TllBHYJO Ol(eHKy .l(llil OTITJIMaJIHOfO 3Ha'!eHHll B MeTO,LiaX BeTsei{ H rpaHJIL(, IIOTOMy '!TO paCCTO­

liHHe .l(BOHCTBeHHOCTH .l(llil 3TOH 3a,Lia'!H 06hl'!HO MeHbUie '!eM ,l!Jlll 3a,Lia'!H JiarpaHJKa. 

Tpu amopHTMa npeJJ:CTaBJleHbi ,LIJill pa3Pernemm npo6JleMbi. BLI'!HCIIHTeiihHbiH 3Kcrrepi!MeHT 

CJIYlKllT OpasHeHH!O HX CBOHCTB. JJ:sa aJifOpHTMa IIOJ!b3YIOCb KBa3H-Cy6rpa,LI!IeHTOM B IIPOl.leCce 

CTpOeHHJI HarrpaaJieHHll IIOHCKa. 0.l(HH II3 HHX 6b!Jl OIIHCaii B (3] HO 6e3 TIOI!e3HOH KpHTepbH OCTO­

HOBJieHllll KOTOpal! 3.l(eCb rrpe.l(CTaBJieHa. TpeT!![[ B03HHKaeT OT H.l(eHit o6o6ll..(eHHOf0 nporpaMMH­

p OBaHllll H OH OCHOBaH Ha CXeMe OIIf!CaHOil: B (3]. 

Bo scex rrpe.n;cTaarreHbix 3.l(ecb arrropHTMax B KaJK.n;oil: HTepal(HH Han;o pewaTh Ja.n;aqy ,p!OK-

3aKa" C 0!.\HOM orpaHH'!eHHeM. 




