Control
and Cybernetics

VOL. 13 (1984) No. 4

Three algorithms for calculating surrogate
constraints in integer programming problems

by
KOICHI MIZUKAMI

University of Hiroshima
Faculty of Integrated Arts and Sciences
Hiroshima, Japan

JAROSEAW SIKORSKI*

Polish Academy of Sciences
Systems Research Institute
Warszawa, Poland

The surrogate dual program offers a more effective bound than the Lagrangean dual on the
primal optimal value in branch-and-bound methods since it yields usually a tighter duality gap.

Three algorithms for solving the surrogate dual program are presented and compared experi-
mentally. Two of them are based on a quasi-subgradient search method. One has been presented
in [3], while another is a new proposal. Both are endowed with a new effective stop test. The remain-
ing one originates from generalised programming and follows the scheme discussed in [3]. All of
them require solution of a knapsack problem in each iteration.

1. Introduction

The surrogate constraint, as a single constraint which can substitute for a whole
set of constraints, was introduced into mathematical programming by Glover [5],
for binary integer-programming problems. Since Luenberger [10] used a similar
approach in duality for quasiconvex programs a more theoretical siream of work
was initiated, e.g. [7], [6], [8]. On the other hand, surrogate constraints have demons-
trated their utility as a part of branch-and-bound methods in integer programming,
e.g. [1], [9].

Two methods for calculating surrogate constraints are described in this paper
from a more practical than theoretical point of view. They are discussed and com-
pared in their algorithmic forms suitable for implementation. Obviously some parts
of the presented algorithms can take different forms while being still based on the
same method, so it is not claimed here that these representations are unique or even
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best. They are described as examples in order to show how each of these two
methods proceeds and what its most important features are. Finally a comparison
is done by a numerical expzriment using integer test problems with a nonlinear
objective function and linear constraints.

Briefly, the first method consists in constructing a sequence of nested sets such
that the ““volume” tends to zero and unsatisfactory points are rejected in each step.
It will be called the decaying polytope algorithm, and is based on the first scheme
proposed by Dyer [3]. The other method is an application of a search direction
scheme with an a priori stated step size sequence. A linear functional strongly sup-
porting the interior of the upper level set of a certain function is used for construction
of a search direction. Two algorithms were developed using such vectors, named
quasisubgradients [7], which define such a functional. The quasi-subgradient Algo-
rithm B is based on the second of Dyer’s schemes [3] but is endowed with a new
effective stop test. Algorithm C is a new proposal which exploits the same ideas
as Algorithm B.

In the next section of the papsr only those parts of the general theory appear
which are necessary for the presentation of the algorithms.

2. Preliminaries

Consider the following integer program
P f=min {{(x): xe X, g (x)<0, x integer} ,
where f: R">R, g: R"—R" and X={xe R 0&x,<u, k=1, ..., n}.

It is not necessary heve to assume lower semicontinuity of f and continuity of g
in view of the fact that the x’s are integer although the results cited hereafter were
proved in a more general case under these assumptions.

When f is separable i.e. can be represented as a sum ka (x), and constraints
k=1

are linear: g (x)=Ax—b, where matrix 4 and vector b are both intsger, the problem
is often called the multidimensional knapsack problem (nonlinear if £ are nonlinear).
All test problems in the numerical expsriments are exactly of this form but these
particular assumptions are not necessary for the presentation of all algorithms.
Thus for (P) with only the initial assumptions, for any weR™, wz=0 the following
relaxation is defined [6].

(S) h (w)y=min {f(x): xeX (w), x integer},
where X (w)={xeX: (w, g (x))€0}. Then
(SD) h=sup {h (w): we R", w20}

is the surrogate dual program for (P). h: R"— R is called the surrogate dual function
and the constraint defining X (w) a surrogate constraint. Program (SD) is aimed
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at finding the best surrogate constraint, if it exists. The two properties of the set

X (w): X (0)=2X and X (sw)=X (w) for s>0, yield respectively two features of the

surrogate dual function : h(0)<h(w) for all w=0 and A (sw)=h (w). Thus zero

may be excluded from the feasible set and an arbitrary normalization of the vectors

w is possible, which allows us to restrict the feasible set in (SD) to a compact one.
The following results state the basic properties of the problem.

ProposiTion / [7] (Weak Duality Theorem) A< f

PrOPOSITION 2 [3] hi=f and } iz achieved if and onmly if & (w)=f(x) for some
wz0 and x feasible in (P). Tiien x solves (P) and w solves (SD).

If the equality does not hold the quantity ( f—#) is called the duality gap. The smaller
the duality gap, the more valuable is the problem (SD).

Prorosition 3 [7] A (w) is a lower semicontinuous, quasiconcave function on
R"={weR":wz0}.

ProposiTION 4 [3] £ is attained on a relatively open convex cone contained
in R™.

As a result of the last proposition “sup” in the statement of (SD) can be replaced
by “max”. It should be stressed however that this is possible only because all x
belong to the integer lattice. Then the feasible set in (P) has no cluster point; if it
has, i may not be equal to any A (w) (see example 1 in [3]). Proposition 3 indicates
that (SD) is rather a difficult problem from the operative point of view for it in-
volves maximizing a function which can be discontinuous. Thus some additional
characterization of the value / can be helpful. In order to achieve a more geometrical
characterization, a concise notation for cesrtain familics of sets is convenient. Let
T («)={xeX: f(x)S«, x integer }, for every «eR, be a lower level set of the function f.
Then the inequality b (w) <« is equivalent to the condition 7' () n X (w) #0. Denote
the optimal set of (S), i.e. {xeX (w): h (w)=f(x), x integer}, by Q (w). Then clearly
the set O (w) can be expressed as T (& (w)) N X (w). Let R («)=g (7 («)) denote the
1mage of a level set under the constraint function g. Also dencte by R* (x) the set
{fweR™: (w,v)20 for all ve R («)}.

PrOPOSITION 5 [3] The value /i can be determined by the program

min {e:int R* («)=0}.

Plainly Oeco R («) implies int R* («)=0 where “‘co’ means convex hull and “int”* —
interior relative to R'.

ProPOSITION 6 [3] int R* (¢)=0 if and only if co R («)nR™ #0 (R™=—R")

CorOLLARY 1. The value h can be determined by the program
min {&: co R () N R™ #0}.
Since } is attained for some w obviously
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COROLLARY 2. h(w)=h if and only if co R (h(w)) n R™ 0.

The first characterization (Proposition 5) is essential in the decaying polytope algo-
rithm while the result of Corollary 1 serves as a reasonable stop test in both quasi-
subgradient algotrihms.

3. Decaying polytope algorithm

The algorithm described in this section uses the arbitrary normalisation: ||w]l= 1.

m
The L, norm is chosen: [|w||= _}_‘: [w,. Hence (SD) can be rewritten in the form
I=1

(SD) h=max {h (w): we R", 2w,=1}.

i=1
Define the feasible set K'={we R" : (w, e)=1} where e=][l, ..., 1]. Then X’ is com-~
pact and convex.

A polytope of the form W= {weK’: (w, g/) =0, jeJ}, where J is a finite index set
of vectors g7, is used as an outer approximation of R* (2). The convergence of the
algorithm depends on finding an interior point (relative to K’) of such a polytope
in each iteration. A measure of “volume™ of the polytope interior is also required.
Dyer [3] proposed the following linear program as a solution for both tasks.
(L) r=max n; (w,g")—an20(jeJ), (w, e)=1, w20,

where 7;=v [(g7, g7)— (e, g’)*[m]
Number r will be called the radius of W and it is not difficult to see that int W+ 0
if and only if r>0. When r>0, the program (L’) yields one interior point of ¥ which
is used to permit a wider choice depending on a scalar parameter. New vectors are
successively added to the set defining W and the lower bound o on / is enlarged, whe-

never possible, during the calculations. Thus a sequence of polytopes and a sequence
of lower bounds for / are generated.

Algorithm A

Step 0: Set 0<0<1, w'eK', Wo+K', aye——a0, i1,

Step 1: Determine any x'€Q (w). Let gl=g (x%.

Step 2: If f(x)>ey, o « f(x7).

Step 3: If ¢g'<0, then stop.

SteEP 4: WieW,_ n{weR": (w, g"=0}.

Step 5: If the radius of W, r, <0, then stop. Otherwise determine
di=—(w', g)/[(#, g")— (W', g")], where % is a solution of (L’).

STEP 6: witle(l—c,) witew!, where ¢;=(1—d;) (1-0).

Step 7: i«i+1. Go to Step 1.

Clearly at each iteration W, has the form required for the statement of (L’) and
e, is a lower bound for A. In Step 1 the surrogate relaxation (S) is solved for a current
vector w'. If the stop test in Step 3 is satisfied, then x' is also a solution for (P) and
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the duality gap equals zero (¢;=hA=f). In Step 4 the new cutting plane implied by
the sub-problem solution is added to the set defining W;. If the stop test in Step 5
is satisfied, then int W;=0, hence int R* («;)=0 (because R* (z;)C W,), which
implies «;=#h. Figure 1 shows the geometrical interpretation of the choice of wi*1,

Wy

(W "

Fig. 1.
The main convergence result proved in [3] is

ProrosiTioN 7. If (S) is feasible then Algorithm A terminates in Step 3 or 5 with
oy =h.

The result strongly depends on the fact that the feasible set in (P) is finite and the
number of its elements bounds the number of iterations.

4. Quasi-subgradient algorithms

It has been proved [7] that g (x) for xeQ (w) defines a linear functional strongly
supporting the interior of the upper level set of 4 in w (if it is nonempty): (w, g(x)) <
<(u, g (x)) for all u such that ki (u)>h (w). Any vector possessing this property
was christened a quasi-subgradient as a notion corresponding to a subgradient of
a concave function. Remember that £ is only quasiconcave so in general a sub-
gradient does not exist at each point of the domain. In both quasi-subgradient
algorithms presented here g (x) is used for the construction of a search direction

and both use the L, normalisation :» }' wj=1.Hence (SD) can be stated in the form
i=1

(SD") h=max {h (w): weR™, wa:]}.

1=1
The feasible set K''={weR"} : (w, w)=1} is compact and spherically convex. A con-
vex hull of the form C=co {g’: jeJ}={yeR™: y= >' B;8’, (f, e)=1, fz=0} is used

Jjed
as an inner approximation of co R («). Although the convergence of the algorithms

is independent of C the measurement of a distance between C and R™ serves as a rea-
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sonable stop test. The following linear program is proposed as a way to measure
such distance.

(L p=miné; ' figl—¢<0(=1,..m), (8,e)=1,520.

jea
Number p will be called the distance between C and R™ and it is clear that C n R™ =0
if and only if p>0. New vectors are successively added to the set defining C and the
number « is enlarged in a similar way in both quasi-subgradient algorithms. Thus
a sequence of convex hulls and a sequence of lower bounds for A are calculated
analogously to Algorithm A. '

Algorithm B

STep 0: Set y>0, w'eK”, Do, a+ —o00. Choose a positive sequence {,}
ag
such that 7,0 and ) t;=o0.
i=1

Step 1: Determine any x'eQ (w'). Let g'=g (x%).
Step 2: If (X)) >ay, a;«f(x).
SteP 3: If g'<0, then stop.
Step 4: D;«D,_,u{g'}, Ci«<coD,. -
Step 5: If the distance between C; and R™, p;<0, then stop.
STEP 6: Determine diegi—(wi, g') w' and d'«d'[||d-]|.

ol ie i
StEP 7: W w4yt di, W ew4-g', where qi:l é:v{;ti;:‘I;O
STeP 8: witlewl/|w].
Step 9: i—it1. Go to Step 1.

Since Steps 1—3 are the same asin Algorithm A all comments relating to them
are still valid. In Step 4 the new vector spanning the convex hull C; is added and
then in Step 5 the linear program (L’’) is solved. If this stop test is satisfied then
co R () N R™ # () because C,Cco R («;). Hence «, =h. In Step 6 the normalized
projection of g', orthogonal to w', is calculated. On Figure 2 the geometrical inter-
pretation of Steps 6—8 is sketched.

'L_"‘““—-.__Kl'r

“'-"W‘[:U
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The basic result relating to the convergence of Algorithm B was proved in [3].

ProrosiTioN 8. If weK”’, then lim inf (w, g")<0, where g' are generated in Algo-
=y

rithm B.
The above property implies

ProrosiTioN 9. Algorithm B generates a sequence {p,} such that either i, exists:
7,0, or p;—0.

Proof. If for any io: p; 0 thenco R (¢ ) N R™ #0. This means oc,nzﬁ and a solution
of (SD*’) has been found.

Suppose now that p,>0 for all /. Since the sequence {p,} is nonincreasing and boun-
ded from below by zero it has as its limit 52 0. Suppose p7£0. The obvious property:
C,;CC, for all j<i, implies that C; and R™ can be strictly separated by a hyperplane.
Hence, for some p’v exists such that (v, w)Zp>0 for all weC, and (v, w)<0 for all
weR™. This means weK’’ exists such that (w, g,)=Zp for all i, which contradicts
Proposition 8. Thus p=0. ]
This result validates the main stop test in Step 5 but also implies the main conver-
gence result.

ProposiTioN 0. Even if all p,>0, lim o,=/h.

i—»w0
Proof. Since {«;} is nondecreasing and bounded from above it possesses a limit &.
Suppose that g<h. This means that co R (@ n R"=0. On the other hand «, &
for all i implies C;Cco R (). Thus p=0 exists such that p,=p for all i. This means

lim p,zp>0, which contradicts Proposition 9. Thus &=h. 5]
i—w

The algorithm described below is also designed to obtain a solution of (SD).
The same linear program (L’’) is solved as a stop test. Thus all notations remain
the same.

Algorithm C

Step 0 — 5: as in Algorithm B.
—gl if gi<0 and wi{=0.
_ 0 otherwise
Step 7: Determine d'«g'—(w', §") w' and d*«d/||d||.
STeP 8: 7;<-min {—wj/di: 1 €L,} where L,={1:d;<0}
(if L;=0 then 7;--c0).
StEP 9: Wie—wi+min (y1;, 7;) di, wt T —w!/||w]].
Step 10: i«i+1. Go to Step 1.

Step 6: Determine g'«g'+¢', where gi=

When 7,Zyt; and g'=g' both quasi-subgradient algorithms yield the same
point as a new approximation. The difference appears when a face of the positive
orthant becomes “acitve” i.e. for some i wi—+yt, di<0. Uhile Algorithm B jumps
back from such constraint: wi*!1>0, Algorithm C puts the new approximation
exactly on this hyperplane: wj*'=0. The latter allows also searching along such
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“active’ hyperplane, due to Step 6. The comparison of Figure 2 and Figure 3 points
out the difference.

Thus in Algorithm C another step siz sequence {min (y#;, 7,)} is use instead of {yt,}.
Since R' has obviously only a finite number of faces this modification can ravely
affect the property that th> step size series diverges. Hence the main convergence
result for Algorithm B is usually valid for Algorithm C. Moreover the vector d*
generated in each iteration of Algorithm C has the same property of supporting
level of h as gf itself.

Proposition 11. d* determined in Step 7 is a quasi-subgradient of / at w'.

Proof. Take any ue{ueR% : h(u)>h (w)}#£0. Denote u=1/|ld"||, u>0. (u, d")=
= [(u, g)—(w', 2% (u, w)]Z p [u, g)— (W', g9 (u, w) Zp (, gY)]. On the other hand
h (u)>h (w') means h(u)>f(x'), where x'eQ (w'). This implies x'eX () ie.
(1, g)>0, 50 (u,d")>0 is a consequence. But Step 7 yields (w', d9)=0. As a result
the desired inequality (u, d*)>(w', d') is obtained. B3

5. Sub-problem solution

The solution of program (S) is required in each iteration of all described algof
rithms. This minimization problem with one surrogate constraint in the case o-
linear primal constraints and separable objective function takes the form of a knap-
sack problem. The program is represented in “max’ notation in conformity with
common notation in integer programming.

(8" mmczl1 @ (x,); Za,_. x50, 0<x, <y, and integer (k=1,...,n)
k=1 k=1
According to the primal problem: &= —f, [a)i—y, ... \=a=wd and d=(w, b).

Some additional assumptions are required for the algorithm presented below
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@, (0)=0, a,>0 and 6=0 are integer. They are not restrictive since any problem
(S”) can be transformed to an equivalert one satisfyir g them. The algerittm proposcd
to solve (87) is a modification cf the first dynamic programming scheme presented
in [4], Chapter 6. A short introducticn is necessary before its presertation. By
definition, '
i i
Q, (=max >' & (x); Z 4 xSz, 0<x,<u, and integer,
k=1 k=1

wifk=1;..; %) for A=2, .., n and 2=0,1,.., 6.
Isolating x; gives the recursive equation
(R) L 2,06)= max (@1 () 4251 (z—a; x,)

Xgmo s i ([] 0

Adding the initial cordition Q,(z)=0 for z=0, 1, ..., 4 allows us to extend (R)

for 1=1, ..., n. Defire also tableau ¥, (z):

0if 2, (3)293—1 (z),

X%, it Q,(2)>0Q,_, (z) where ¥, denotes a solution of the
maximization in (R).

¥ (z)=

Algorithm S

Step 0: Set A+0, Q;(z)«0, z=0,1, ..., ¢
StEp 1: A+ Ai+1. For all z<a; set @, (z2)—=2;_; (2) and ¥, (2)«0. Set z«a,.
STep 2: Determine v=max (@, (x,)+2,_; (z—a, x,)),

: z
x,=0, 1, ..., min ([_é-i‘_l’ “a).
Al

Ito>0Q, | (2),then 2, (z)«~v and ¥, (z)+x,. Otherwise 2, ()2, _, (2)
and ¥, (z)«0.

Step 3: If z<d, let z+z-+1 and return to Step 2. If z=4 go to Step 4.

Step 4: If 2<n, return to Step 1. If Z=#n go to Step 3.

STEP 5: %,« ¥, (2) and sct zez—aqa,x;.

SteEP 6: If 1>1, then set 1« A—1 and return to Step 5. If 1=1, stop.

When the algorithm terminates, €2, (é) is the optimal value in program (S) and *
is an optimal solution. This means Q, (§)=—h (w). If (S’) has multiple optimal
solutions, only one of them will be cbtaired by Algorithm S. However this is enough
to procced with the computations in all the algorithms for calculating best surrogate
constraints presented in this paper.

6. Numerical experiments

Szveral test problems were solved using Algorithms A, B and C. All of the test
problems have the same form:

n n
R 7 | & ;
min 2 Jo (s E ap x5, =1, .., m, 05 x, <y, and integer (k=1, ..., n)
k=1 k=1
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Each objective function is represented by a table F=[f;]: fi;=f () j=1 .., u
( fx (0)=0). Elements of these tables arc numbers randomly chosen from the interval
[—9.9; 0.0]. Integer elements of matrsix A were randomly chosen from the set
{0, 1, ..., 9}. Vector b was detsrmined in a such way that the unrestricted minima
of the objective function are in feasible. All numerical data are included in an Ap-
pendix. Each test problem was solved using each algorithm for five different values
of the parameters @ ard y: #=0.2, 0.4, 0.6, 0.8, 1.0 and y=0.25, 0.5, 1.0, 2.0, 4.0.
For finiteness of the algorithms in practicc, the convergerce criteria g'<0, »,<0.
P S0 were replaced by g' <e,, 1y, p; <e,, respectively. The values &, =10"%, &,=10"3
were used for all runs during the experiments. Calculations were continued until
the 75th iteration if an algorithm did not terminate with its stop test. In what follows
the results of four problems are presented.

Test 1 (n=35, m=3) This problem is small and simple, but is a good example
to show differences among the algorithms. Figure 4 shows a part of set K’ (or rather

D

|
|
e

e 20 IR P T U

{1}

¥

A v

i y o2 2 o (wz—wn)
. o
,'r'. Wy
i L 1
7Y
.‘/
/ . 2
A7
§=0.25 ¢/
e =y __.ﬁaf/:’-_ﬁ a,20
i , P o (wp-vy)
= | 2 G

Fig. 4, 5, 6
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its certain projection) with points w' generated by Algoritkm A for #=0.2 and 1.0,
Figure 5 — points w' normalized with L; norm, which have been generated by
Algorithm B for y=0.25, 1.0 and 2.0, Figure 6 — the same for Algorithm C (y=0.25,
1.0 and 2.0). The interior of the dashed set is the optimal set for (SD’). The small
number beside each point is an iteration number 7.

Table 1 gives more details about the best runs.

Table 1
Ale. | 1 | 2 | 3| 4 | s | e
l
A | 0=10 | =330 | 2 0.0 1 0.22
B } y=10 | —330 | 4 0.0 ‘ 2 0.48
¢ l y=1.0 | —330 | 2 00 | 1 0.24

1 — value of & or y in the best run (sole criterion to compare runs is
their number of iterations)

2 — maximal value of «; achieved in the run

3 — number of iterations

4 — minimal value of stop test parameter r; or p; (the case r;, pi<e,
is expressed by 0.0)

5 — total number of simplex iterations in all stop test problems

6 — CPU time in seconds

Table 2 contains vectors w' corresponding to the greatest values of «;=#h (w'). For
Algorithm 2 and 3 also L; normalisations of w' are determined. Table 3 gives the
solution of sub-problem (S) for these w'.

Table 2
Wy
Alg. E
- 1 | 2 3
A 1.0 0.0 0.0
B 0.8922 0.4486 0.0523
* 0.6404 0.3221 [ 0.0375 "
_— | — wf |iw[|Lt
C 0.7719 0.6357 0.0
. 0.5484 0.4516 0.0
Table 3
r‘ z "
Alg. = f
5 1| 2] 3] 4] s
i o] : - oo
A, B, C I 0 ‘ 3 ‘ 1 ! 3 ’ 1 [ feasible in (P).

Thus program (SD) was solved with zero duality gap by all algorithms.
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Test 2 (n=10, m=7) This problem has moderate size, comparing with the
tests in [11]. Figure 7 shows the values of & (w') generated in the best runs of the
algorithms. Figure 8 presents the sequences {r;}, {p;} from these runs.
Table 4 compares results in an analogous way to Tab. 1. Tables 5 and 6 contain
vectors w' and x' corresponding to the maximal value of & (wf).
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Table 4
Alg. | 1 2 | 3| 4 | 5| 6 l
A | 0=06 | —68.6 4 0.0 1 ‘ 2.07 ‘ ——
B y=40 | —68.6 | 24 0.0 8 | 1215
e y=40 | —686 | 13 l 0.0 70 670 | .
|
Table 5
Wo
e 1| 2 3 4 | s | 6 | 7
0.0041 L 0.0040 | 0.8698 | 0.0040 | 0.0040 I 0.110 l 0.0040
| .
B 00872 | 00062 | 09945 | 0.0148 | 0.0002 | 0.0486 | 0.0272
* 0.0740 | 0.0053 | 0.8437 \ 0.0126 | 00001 | 0.0412 | 0.0231
c 0.0 0.0 09972 | 0.0 0.0 0.0708 | 0.0237
- 0.0 0.0 0.9134 1 0.0 0.0 0.0649 ‘ 0.0217
Table 6
| = |
Alg. =
& J1l2]3]a|s|e|7]8]9]10
' [ |
A, B, C 10.1311 1 1‘2 1 III‘S,feasib[ein(P).
] I

Program (SD) was solved with zero duality gap by all algorithms.

Test 3 (n=15, m=10) Figure 9 presents the sequences {k (w')} from the best runs,
while Figure 10 — the sequences {r;} and {p;}.

A

-834

=104.3

W s S e e e L B SO
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Tables 7, 8 and 9 are analogous to Tables 1, 2 and 3, cespectively.

Table 7

Alg. 1 | 2 | 3] 4 | 5| s ’

A 6=0.6 ) —89.4 5 0.0 2 5.48 ———

B y=10 | —89.4 | 14 0.0 10 15.31 I ............. .

c y=10 | —89.4 [ 11 0.0 11 12.02 ’ _______

Table 8
& - -
</ 1 | 2 | 3] 4] 5| 6| 7 | 8 | 9 | 10
]
A | 0.4334| 0.0025| 0.0025 o.oozs‘ 0.0025 | 0.0025 0.0025‘ 0.0025 | 0.0250| 0.5466
B | 0.4993| 0.0006 | 0.0154 | 0.0157 | 0.0091 | 0.0182 | 0.0082 | 0.0045 | 0.0227 | 0.8656
* | 0.3422 | 0.0004 0.0105 | 0.0108 | 0.0062 | 0.0125 | 0.0056| 0.0031 0.0155 | 0.5932
=L & t . [
c| 04ss9! 0.0 00 | 00 0.0 0.0 0.0 0.0 0.1093 | 0.8833
. 0.3147\ 0.0 0.0 0.0 0.0 |00 |00 0.0 0.0755 | 0.6098
Table 9
X
Alg. ' - ; X - |
t]2]314|5{6]|7]8]|9|10|11]12]13|14]15
|
A, B, C 00111'10}1I.l’lllll]lll‘l.fcasib!ein(P).

Program (SD) was solved with zero duality gap by all algorithms.
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Test 4 (n=20, m=15) The problem is the biggest one in the experiment but is still
relatively small compared with__ real-life problems. The presentation of results is the
same as in Test 3: Figures 11, 12 and Tables 10, 11, 12 give details of the best runs.
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Table 10

A | 1 | 2 | 3] 4 | s | 6 |

0=0.4 ‘ —113.8 9 0.0 12 18.39 ——

y=20 | —113.9 | 75 1.3112 29 187.38

y=20 | —113.8 | 23 0.0 28 ’ 4728 | eeeee-

O |wW|»>

Progran (SD) was solved with a non-zero duality gap by Algorithm A and Algo-
rithm C. The sequence {«;} did not reach A in Algorithm B before the 75th
iteration.

A few words should perhaps be said about starting points and linear programming
for solving (L’) and (L”’). In all runs of Algorithm A w}=1/m, I=1, ..., m was used.
wi=1/ m, I=1, ..., m was set for Algorithm B and C. These starting points are
neutral and they do not prefer any primal constraints. If some information about
“activity’ of constraints is available before initiation of the algorithm then some of
them can be neglected by setting w}=0 for all coordinates corresponding to the
“non-binding” ones. This can be especially valuable for Algorithm C because it
leads to a searching in a subset of the dual feasible set having smaller dimension.
If a starting point is chosen closer to the dual optimal set then probably smaller
values for y will work better. In general Algorithm A is less sensitive to the choice
of starting point than Algorithms B and C.

Programs (L) and (L’’) have been solved in all algorithms by the simplex pro-
cedure taking advantage of the fact that in the subsequent iteration only one cons-
traint or one variable is added. Thus the optimal simplex tableau from the preceding
iteration can be used to construct an initial tableau for the next one. Then sometimes
it is not necessary to do any simplex iterations because the proceeding solution is
still optimal. Moreover in the first iteration of all presented algorithms only one
vector g! generates the linear program so the optimal simplex tableau can be defined
directly without any computations.

The numerical experiments were done at the Computer Center of University
of Hiroshima using HITAC M 200-H.

7. Conclusions

Taking all our results into account the presented algorithms proved their use-
fulness as a tool for solving the surrogate dual program, which may be considered
a difficult one, since it involves maximizing a quasiconcave, often discontinuous,
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Table 11

Wi
‘ Alg. : .
e 1 | % | s 4 s | 6 | 7] 8 | 9 i1 | u | 12| 13| 14 ] 15
I o ol n [
A 0,0009 | 0.0009 | 0.0009 0.7033! 0.0009 | 0,0395 \ 0. 2461 0.0090 [ 0.0009 | 0.0009 | 0.0009 | 0.0009 [ 0.0009 l 0.0009 | 0.0009
B 0.0013 | 0.0061 ] 0.0024 | 0.9361 | 0.0009 | 0.0367 I 0.3494 | 0,0051 | 0.0004 c.nmzi 00105 | 0.0020 | 0.0064 | 0.0020 | 0.0024
. 0.0009 | 0.0045 | 0.0018 | 0.6868 | 0.0006 |-0.0269 | 0.2564 | 0.0037 | 0.0003 | 0.0009 | 0.0077| 0.0015 | 0.0047 | 0.0015 | 0.0018
c 0.0195 | 0.0 0.0 0.9332 | 0.0 0,093 | 0.3462 | 0.0 0.0 00 |00 0.0 0.0 0.0 0.0
* 0.0140 | 0.0 0.0 0.6699 | 0.0 | 0.0674 | 0.2487 oo |00 00 |00 0.0 0.0 0.0 0.0
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Table 12

Xy
il RN | 3| 4| s | 6| 7| 8| 9 1|1 |12]13]14]15s]|16]17]18]19] 20
Ac| o | 3 [ t | 1| 1| 2| 0|1 ‘ 0o 1 [ 1 1 ‘ 1 i 2 0l o
B olo | a1 1|12t 1] 1 I 1 1 l 10 0| o

, both vectors are in feasible in (SP).
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function. The algorithms are based two on fundamentally different methods. The
first ongmates from generahsed programmmg while the another imitates subgradlcnt
methods. Algorl,thm A representing the ﬁrst approach, seems to be better organlzcd
but needs more calculatmns because the linear program is its immanent element
Algorlthms B and C use a lmear program as a stop test which is more effective then,
but could be replaced by, if the problem is too large a simpler heuristic test. How-
ever both are.more local in their pature. Since only local information about h xs
applied in thz form of a, quas;-subﬂTadlenI it is very difficult to avoid ngzaggmg
cr.l'ld this undemrable featulc appears in A[gorlthm B and C. Additionally the step
size sr:quence is chosen albltranly and can not (theoretically) be modified durmg
calculations. In fact, it is changed in Algorithm C but in very rough way. Thus the
simplicity of these algorithms remains their most important advantage for large
real life problems. Algorithm A collects the information in the form of a polytope
which is usedto'derive the next approximation of the solution. Moreover the upper
levél sets of the surrogate dual function are also polytopes in the case of linear
primal constraints so the form of approximation used is more adequate in"this case.
These two facts’ may hdve ¢aused the supstiority of Algorithm A in the numerical
e‘{p=r|ments The relatively small size of all test problems may have also affected
the comparison. The results of the ckpdrimentsindicate the following hleraréhyamong
the algorithms: Algorithm C is bsttar than Algorithm B but both are dominated
by Algorithm A. In the latter a moderate choice of parameter 8 i.e. around 0.5,
seems to be appropriate. Either choosing # too small or too close to one causes
a slower convergence process. The choice of @ near one even leads sometimes to
behaviour similar to zigzagging. Nevertheless this algorithm is less sensitive to in
appropriate choice of O than are Algorithm is less szsnitive to inappropriate choito
of f than are Algorithms B and C to choice of . Also, properties of the problem are
more important for a proper selzction of y in quasi-subgradient schemes. If zigzagging
dominates during searching, then bigger Vvalues for y work better, but when the
approximations approach the optimal set, diminishing of y seems to be necessary.
Unfortunately there is no way to do thisin these algorithms. However y=1 or 2 are
not bad choices in many of the test problems. Thus the decaying polytope algorithm
is recomended when the size of the problem allows us to store all the vectors g and
proceed with solving the linear program at each iteration. If this is not possible,
the quasi-subgradient algorithm remains as an alternative. The second version
(Algorithm C) is more effective when the dual optimal set lies close to the boundary
of K", which mecans that a group of primal constraints can, in fact, be omitted.
Since such a situation is common in real life problems, Algorithm C may be pre-
ferable.
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9. Appendix

Test 1

i

T 1 2 3 4 5

1 00 —63 —89 —57 —73

3 | LT =08 =15 =56 =12

ki3 | =75 —27 —41 —64 —15 F

4 | —80 —17 —89 —58 —1.1

5 | =91 g8 =aF —gs =gk

k

BT b,
195726 4l
12172405 29
3|4 8 5 1 38
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Test 2

like in Test 1
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—0.1

—346
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—7.5 —6.0

—33

—6.3
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by

I 2 3- 4 5 _g“? _é_ 9 lt:J- -

Jig

10 | —4.5

Ay

61

23739310

1

96 46 48106 4
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0154446508

71

51

509 02108350
0428986107

9 4306 3 4

75

68
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1

Test 3

w15

Hk=5, k= 1, =

like in Test 2

—6.3

—7.4

~=1.9

—9.1

—8.7

—56 —93 -—9.38
—6.6 —23 —47 7.7
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fiy
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Test 4

i—15 like in test 3
16 | —0.9 —7.0 —0.8 —82 —7.5
17 | —89 —4.1 —96 —07 —1.3

kijg | —44 —10 —02 —97 —30 T
19 | —14 —7.6 —7.7 —67 —33
a0 | ~03 ~38 ~1F —57 23

k
ﬂu: ................................................................ b‘

1 23 456 7 8 910111213 14151617 18 19 20

‘112 8920761848373 414430 91
52352488323128?9809859 110
3123031856017 9356090500 108
':495628?97952782237582 96
v5 018 8 2 621 0609 56981493128 8: 105
el s 36 96 277 489 201 3898 103
IET40946125487T86599418 B B
i Bl264288781 0% 16224708 97 |
1905837086 9745936202030 100 |
MO8 9 774 7210183113622 62 93
1112 023 4821588021013723 101
1217 739 917251970723 45172 92
1312 9 0 23842574015004150 97
1411 5147378787732 08723359 108
15(4 275516 1793932052¢627 95’

Trzy algorytmy wyznaczania egraniczen zastepczych

w zadaniach programowania calkowitoliczbowego

Dualne zadanie' wyznaczania ograniczenia zastgpczego pozwala zazwyczaj uzyskac odstep
dualnosci mniejszy niz dla zadania dualnego Lagrange’a .Oferuje ono zatem mozliwos¢ otrzymania
lepszego oszacowania wartoSci optymalnej w metodach podziatu i oszacowan.

Przedstawiono trzy algorytmy rozwigzywania zadania wyznaczania ograniczenia zastgpczego.
Jeden oparty jest na schemacie wykorzystujacym ciag aproksymacji wielosciennych, ktory zostal
zaproponowany w [3]. Dwa pozostale sa wariantami metody poszukiwan w kierunku z ustalonym
ciggiemn wspolczynnikéw kroku. W obu wykorzystano sprawny test stopu oparty na pewn@zj charak-
terystyce dualnej wartosci optymalnej. :

Zadanie zatadunku z jednym ograniczeniem rozwiazywane jest w kazdej iteracji w wszystkich
trzech algorytmach, Przedstawiono wyniki testu obliczeniowego.
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Tp]{ AIropHTMA I8 BBMMHCIEHHA 3aMeCTHTe/IbHBIX OrpaHHYeHHH

B 3aJa4yax [eJO4YHC/IeHHOT'0 NporpaMMHpOBAHHA

JpoiicTeeHHAA 3348 BEYACISHHA 3aMeCTATEIHOr0 OrpaHnyends npejyoraet Gonee addex-
THBHYH) OLEHKY NIMH ONTHMAJHOIO 3HAYEHHI B METOMAX BETBel M rpasul, MOTOMY YTO Daccro-
AHHE MBOMCTBEHHOCTH IJIs 3TOH 3amavyw oOBMHO MEHBLIE YeM A 3amadd Jlarpamxa.

Tpr anropur™Ma IpeacTaBiledsl A4 pajpemenus Mpobnessl. BLIMHCTHTENBHBI JKCIEPHMENT
CIIYAHT OPABHEHHIO MX CBOiCTB. [[3a anroputMa HOMB3IYIOCH KBA3M-CyOrpamMeHTOM B HpOLEcce
CTPOSHHS HAMPABMeHHs moucka. Onan w3 Hux 6suT omucan B [3] HO Ge3 mone3Hoil KDMTEPBHE OCTO-
HOBJIEHAA KOTOpas 37eCs Mpeicrapieda. TpeTwil BOIHHKAET OT HIein 000BiLIEHHOTO MpOTrpaMMI-
poBaHHA W OH OCHOBAH HA cXeMe omucanol s [3]

Bo Brex mpeacTaBmeHBIX 3leCh ANCOPHTMAX B KAXIOH HIEPAlUMH Halo peluaTh 3amady ,,prok-
3aka’ ¢ OJHOM OTDAHHYECHHEM.







