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In this paper an imﬁlgmcntable algorithm using the operation of space dilation for finding the
minimum of a convex, not necessarily differentiable function f is investigated. The method is based
on combining, modifying and extending the nonsmooth optimization works of Shor [15] and Wolfe
[16]. Global convergence of the algorithm is established. the algorithm is conceptually simple and
easy to implement. ’

1. Introduction

In what follows, we shall be concerned with an algorithm for solving the following
optimization problem

min f(x), O
x€ER"

where f'is a real-valued function defined on R". It is assumed throughout this paper
that the function f is continuous, convex and

lim f(x)=-+oc0. 2

15} +oa
This problem is “nonsmooth’ in the sense that the function f need not be differen-
tiable everywhere.

The difficulties in minimizing a nonsmooth function are well discussed in [16],
where an implementable descent algorithm for a convex function is given. This
algorithm for a quadratic function coincides with the conjugate gradient method
[6] and, hence, has finite termination in this case, as do algorithms of Lemarechal
[10] or of Shor [14].

The descent approach for convex function of Bertsekas and Mitter [1] has been



400 PHAM TRONG QUAT

Lipschnitz function by Goldstein [5]. Descent algorithms for min-max objectives,
which are also diffeult to implement, are given in Demjanov [2] and Goldstein [4].
The readily implementable algorithms of Kiwiel [7], [8] calculate stationary points
for nonsmooth minimization problems. These methods generalize several efficient
algorithms for simpler problems due to Pshenichny and Danilin [13] and Lemare-
chal [11]. Owing to suitable strategies for selecting and aggregating the past sub-
gradient information, Kiwiel’s algorithms have flexible storage requirements and
work per iteration that can be controlled by the user.

Shor’s algorithms [14] are nondescent methods, Shor suggested to transform
the space metric at each iteration so as to accelerate convergence of the subgradient
method. He used opzrators of space dilation of the following typz. Let seR", ||s||=
=1, «>0. Then a linear operator R, (s) such that

R, (s) x=x+(e—1) ssT x

is referred to as the space-dilation opzrator acting in the direction s with the coeffi-
cient . )

Our algorithm combines, extends and modifies ideas of Wolfe [16] and Shor [15].
‘We use the opzrator of space dilation for finding direction at each iteration and our
choice of step size is based on Woliw’s idza. Global convergznce of the algorithm
is established. The algorithm is conceptually simple-and easy to implement. In parti-
cular, it does not require the solution of an auxiliary problem for generating search
directions as in [7], [9], [16]. Hanca it can be used for solving large-scale problems.

In Section 2 wa present the algorithm, while its convergence is discussed in
Section 3. In Section 4 we present a simple numerical example.

2. Algorithm

The algorithm uses positive parameters 8, m,, m., f, f. <.l satisfying -
My -'cm-1_<0.5 ) (3)
myf(l—m)<f, <1 RN C))
and a sequence of positive numbers {d,} satisfying .
8,0 as ko400 . 5)

Initially we have a starting point x° and some goed /(x°), where @ f(x) denotes
the set of all subgradients of f at x. Suppose a point x* is known. To find the next
point x**! the algorithm realizes the following iterative process.

Step 0: Set x, o=x%, S 0=8 0, Where g €0 [ (x o), and g=max

{VFGF1=f (x5, &}. Set i=0.

Step 1: If ||s, (|l <&, set x*T'=2x, ,, increase k by 1 and go to Step 0; otherwise,
go to Step 2.
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Step'2: (Line search: sce below for details). Finfd 7, ;>0 and some g; ;4160 f (x; ;—
—Ty ; S, ;) such that

SOt =7k 86 < S (e, i)‘;mz T, 1) 18k, ol ? (6)
and
Gk, i 1s Sk, 1) S0y ||Sk.i||z . @)

Sel xp, ;+1=Xy ;— 7 ; S ; and go to Step 3.

STEP 3: If [|x*—x, ;44ll=> 8 or F(xX¥)—f(xe, 1o 0) >0, set x**1=x, ,4,, increase k
by 1 and go to Step 0; orhetwise, go to Step 4.

StEP 4: If (g4 1oy, 5k, 1 — 8k, 1412 =0 go to Stecp 3, otherwise, go to Step 6.

StEP 5: Set
S e 1 =8k 101 =Sk &k i1 =504l
Sk, i+l=Rﬂi (k. t41) Sk s

increase { by 1 and go to Step 1.

StepP 6: Set
Ce,iv1 =05 1= 8k, 1+ /IS, e =8k, 1411l 5
Go=8ki+1 and j=0.
i) Set
gie1=Ry, (€ 141) 45 -
i) If

(Bi=D(1=2m)) &
):}'k: (8)

s ol17 < sy, |[2(1+ 5
e 5. |5k.i_3k.i+1|{2

set 8, ;11=¢,+1,increase { by 1 and goto Step 1; otherwise, increase; by I and gotoi).
Condition (7) can be ve-ified by the following lemma.

Lemma 1 (see [3]). Let [ be a convex function on R", and s a fixed vector of R" satisfy-
ing the inequality
S =) 2f(x)—my = [|s||* ()
for some m; >0, v>0. Then we have .
(g, s)<my |Is|]?

Jor any ged f(x—rs).
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LINE sEARCH: For given x; ; and s, ;, with jis., ;||5£0, suppose that the directional
derivative

S’ (. =Sk, )=max {<g, —,.>:8€0 f (1)}
and the vector g’eArgmax {{g, —s;, > g€d f(xx, )} are computed. Now let us
consider the following two cases.

FIRST CASE: f'(xp ;0 —5k )= —n1y I8k :l|?

Then the vector g’ satisfizs inequality (7). In this case we set 7, ;=0.

SECOND CASE: f' (Xp, 12 — 8, )< —my |5 4|2
By (2) and (3), there exists v>0 satisfying conditions (6) and (7°). Then we can
find 7, ; as follows.
Define
L={z>0:f (xx, ;= 78, ) <f (e, ) =17 |l il 1%}
={v>0: f (X s =8 ) =S (X ) — 1m0 7 |5k li%) -
Choose t>0. Set 7,,=0, 1,,=0.
(a) If te L\\R go to (b).
If teLNR go to (d).
If te RN L go to (c).

(b) If vy, =0, replace 7,,by T and = by 27; otherwise, replace 7, by rand t by (v, —1,,)/2;
and go to (a).
(c) Replace 7, by 7 and 7 by (7\—7,)/2, and go to (a).
(d) Sct 7, ;=7 and stop.

Using the proof of Lemma 1 in [16] Il is easy to see that the above process is
finite.

The following results show that the algorithm is well-defined.

Lemma 2. If 5,g6 R, {=(s—g)/lls—gll, {g,5—g><0 and {5,g—s5><0 then
(R (8) 8, 5— Ry (£) ) <0 for any pe(0,1).
Proof. Denote i=(f—1) (g, s—g)/lls—gl||>. From the assumption it follows that
4A>0 and (s,g>—<s,5)<0. Thus (g, g>—<g, 5><{g &> —2s, g+<s 5>, so+
—{g,s—g><|ls—gl||?, and finally —{g,s—g)/lls—g||*<1. Hence ZI<1. From the
definition of the operator of space dilation we obtain

s=Ry (§) g=(s—g)—[(F—1) g, s—&>/lls—gll*] s—g)=(1— 1) (s—g)
and Rz () g=(1—1)g+2s. Then we have

(R (&) g, s—Ry (O) > =A(1—=2) g+1s,(1-2) (s—gP=

=(1-2) {2 (s—g)+g s—g>=(1-2) Kg,s—g>+2lls—gll’]=

=(1-1) [Kg. s—g>)+(f—-1) (g, s—g>]=F(1-2) {g,5—g><0.
This completes the proof. - B
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LemMA 3. The algorithm executes Step 6 in a finite number of operations.
Proof. From the algorithm’s rules we get
$Stts B 141 =8k, 0 Sy |54l P =lse. il 2= —(1=my) |Isi, :]1* <0.

Consider Fig. 1. Denote by h=Nr {8, i, &, ¢+1} the point of minimal Euclidean
norm in the convex hull of {s;, (, g, ;+1}-

&i .
kyt h qj gk,[a—i

Fig. 1

Then £ lies between s, ; and gy ;44, and
Al =llgk, i41)12 =18k 14+.4]12 coOS* a=

=||gx, [+11|2'_‘<gk. f+1; Sk, i 8k, t+1>2f]|5k, 8k, ;+1Hz' .

From Lemma 2 it is easy to sce that g, lies between A and g, ;.,. We have
G’J=R;J, (Civn) Gior=Rp (e 141) Ry, (Ceiv1) gjo2=

=Ryz (& 141) 91—2=---=Rp£ Criv1) Broier -
This implies

> =llgy. 141112 +B =1 {8141, Ci 14107 =
=|lgu 141 Hz‘f‘{ﬁfj_ 1) <8k, 1415 Se, 1 — 8, f+1>2f||3k..1_8k. i+ P
1|h!|2+ﬁ§j (Eriv1s Sk =8k 1410 M8k, i — 8k 14111
which yields
g;—h as j—-+oo, )
Let us denote &' =(gy, 1+1 — S )/l1g. 141 =Sl 5"=Ry (&) 5e.:.
Then
112 =lse. ] 1*+(BF —1) {50, €D =
'_—”45}.3”:"‘03?_ 1) (Sk.ts 8r i 41— S, e)zﬂlgk. i+1 5, i”2=
=]]8, s“z'f"[(ﬁf —1)/llgk. i+1 —Sk.inz] (”-5';:, i“z _<Sk,x‘: gk,i+1>2):
=I5, | P+1B7 = D118k, 141 = ki, 1171 (Ul ol 14+ (10)
=2 |lsk,ol1? <8 i 415 S D+ 8 i 415 St 10D S
<8641 [14(p2—1) (1=2m,) |18k, 12/11ge, 41 =8k 4l121<
<lse, o2 [1—5—{;3%—1) (1—2m,) s:”igk,(+1_sk.i”2]=?k .




404 PHAM.TRONG QUAT

From Lemma 1 it follows that s lies between s, ; and g, ;4. Therefore:
A2 <1812 <4 - ' (1)
From inequalities (11) and (9) we see that there exists j such that

Hasll® <y -

This completes the procf. [ ]

LEMMA 4. 5, ,; is a convex combination of two points g, ,_, and g, ;, for any k and
i=1,2, .. 1t(k).

Proof. From the proofs of Lemmas 2 and 3 it is evident that in the case when
Step 6 is performed, s, ; is always a convex combination of 5, ;_; and g, ;. It remains
to consider the case where Step 5 of the algorithm is cairied out. In this case we have

Sk, i=RﬁL (Ce.1) Ski-1»

where
& =8k 1=k - /|18 i — Sk, 1-1ll -
From the definition of the operator of space dilation we obtain
Sk, 1=8k, i~1H(F1 —1) G i=15 Eo i) Ei=
=5y, i—1 1B —1) Sk, =15 &hv— 5k, 1= 1€k, ¢ =5k, 1~ 11171 (8k, 1 —
_Sk.i_—l)=(l'";'} S, i—1+ A8k, iy
where
A=(f;—1) Sk i-15 8k i~k i =10/ 185, 0 — Sk, i—l_“! .

We shall show that 2€[0, 1]. We have

CStri—10 8 i =Sk, =10 Sy I8, = a|lP =8, - 1P= =1 —my) [Ise, -]+
Thus
A2(1=B1) (L=my) lse,i-1 11*/11gk, e =86, i-111>>0..
Besides
Sk =10 8t =Sk, 1=10= =18, 1= | 1*+<Sk, 1-15 10 =
= =I5, 1=l 1P 42 (St i- 15 8, 0> =1 Ik, 11l P =
= — {18, 11— & il 12—y [Isg, = 2|1 1l o1
Thus

A(1=py) [140n, ”35;.i-1”2‘“||81,(|E2)r‘r”5k.i—1—8k,(|fz]€
<(1-g) 01 +.m,_ {156, ¢ - 1|[2m~'fn. - |
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On the other hand
185, 1-1 =8 il 1> =Il8%, s=2l12F1lgx ol1* =2 (S 1-15 &, D=
=(1=2my) I8k, 1= 11124118k, 1> = A = 2my) Ik, 1l
Hence
A<(1=$y) [14+my (1 =2m)]=(1=F,) (L =m,){(1-2m,) .

From the assumption that m; (1—m;)<f, <1 it follows that

A< [1=myf(1=my)] 1 =m)[(1-2m)=1.
This completes the proof,

LEMMA 5. The process of finding x**1 is finite for any k.
Proof. It is easy to observe that the process of calculating x**! could be stopped
- with the equality x*+*=x, ., as soon as we have one of the following three cases:
a) ||x*—xg el >4,
b) f () —f (xx, eay)> 6,
©) I8k, syl S
Let us assume that for some fixed k and all i cases a) and b) do not occur. Then we
shall prove that there exists some finite # (k) sufficiently large such that ||sy, ;|| < &
Combining (2), Lemma 4 and the local boundeness of the subdifferentials, it is easily
seen that there exists b>0 such that

ligr.:ll<b for all 7,

[Isg, || <& for all i.

Assume, for contradiction purposes, that |[s; ;||>¢ for all i. Step 6 yields
I8, z+1“2$~ |15, in [[ ‘f’(ﬂf —1) (1 —=2m,) Gf.l"HSk. 1~ 8k i+ 1”2] (12)

for all i.
In Step 5 we have

H*—‘ﬁc,iﬂ”zanﬁl (& 141) S il P =18k, 12487 — 1) it beiv)?

and from inequality (10) it follows that in this case we also have (12). From inequality
(12) one obtains

(Bi=1) (1-2my) &; ]{
|18k, 41112 =2 €8, 141> Sk, )+ 118, 4l .
<18, ol [14(B2 = 1) (1 —2m,) £2/40%]

186, 14 12 < s ol 12 I:I "

for all i. This yields
s ol | <118k, ol [14+(BF —1) (1 —2m,) 2 4b*]'12 <

<b[1-H(B2—1) (1—2my) 2/4b2]/2 .
If
i>2 (1n g—1nb){1n [1 — (1 —B7) (1—2m,) &} [4b?]

then 1z ||sy, ;|| < 1n &, ie. ||s, || <& This completes our proof. B
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The above lemmas show that our algorithm generates an infinite sequence of
points {x*}. In the next section we shall prove that this sequence minimizes f.

3. Convergence of the algorithm

THEOREM. Assume that Conditions (2) — (5) are satisfied and let {x*}7_, be the
sequence generated by the algorithm. Then
lim f(x")=/*=min f(x).
k= 400 XERM
Proof. From the description of the algorithm and Condition (2) it is evident that
the sequence {f(x*)}*, is nonincreasing and bounded from below, therefore
there exists

lim f(x*)=f =/ *=min f(x), (13)
k-+20 XERT
Then
sk=max{}/j'(x*")—j'(x*), 6,"}—»0 as k—oo . (14)

Let us now prove that there exists an infinite subset of indices KCN such that
gf=max {||x*—x ||:i=1,2, .., 1(k)}=0, (15)
as k—oo, kek.
Let us observe that there must exist an infinite subset K C N such that
JOER) =)< f () —f(x9) for all ke K. (16)

Indeed, if this was not true one would have f(x*)— — o0, a contradiction. We shall
establish (15) for ke X.

From the description of the algorithm we have

i—-1 i-1 -1
0<[x*—x, iH=H E(«"k. TNk 1)” = ‘i 2 Tt Sk, ri; s ‘_: et |15, 1=
- i=0 =0 =0
-1 1 i-1 1 Py
= Tedlsn s diS— ) mhdlsw P <o B [£ ()=
it=0 t=0 t=0
1
—f(x .r+1)1= [f(-\'k. o) —J (x¢. :)] s

m, &
for i=1,2, ..., 1 (k).
Thus

1
0<||x*—x,4ll - [FO*=f )], (17

for i=1,2, ..., 1 (k). From (16) and (17) we get for keK and i=1, ..., 7 (k)

1
0| ak =y, l][gm [F (Y =/ (9] .
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By the definition of ¢, since f(x*~")—f (x*)—=0 as k—co, the right-hand side of
the above inequality tends to 0, as k— +-oo. This establishes (15).

From the description of the algorithm it is clear that g, € f(x*; :;k),gfo,
ooy t (k), where n*—0, as k—-+o0, kek, from (15). Here 8 (x,#) denotes the set
of all y-subgradients of f at x defined by

O f (x,my=conv | J {af(): lly—x|I<n}.

On the basis of Lemma 4 it follows that s, ;€@ f (x*, #*) for keK. From Assumption (2)
it is easy to see that there exist x” and an infinite subset K'C K such that x*—x’
as k—--oo and keK’. By (14) and (15), we have

Se.y—0 as k—-oo, ke K,
where Sy, .y € 0 f (x¥, #*). We know that the map (x, #)-3f(x,7) is upper semi-

continuous on R" (see [12]). Therefore 0ed [ (x, 0)=4a f (x*); which means that x’
is a minimum point of /" and -

lim f(x8=f(x)=/*. (18)
k—++00
keEK'

From (13) and (18) we obtain
lim f(x*)=/*= min f(x).

k=400 XERP
The theorem is proved.

From the proof of the above theorem we have the following.
CoROLLARY. In addition to the assumptions of the above theorem, suppose that [ is

strongly convex on R". Then the sequence {x*};2, converges fo the minimum point
x* of f on R

4. Example

The objective function to be minimized is

f@)=max {f"(x), /" (%)},

where xeR?, 7 (x)=4x}+(x,—4)%, /' (x)=(2x, —4)*+xZ. For this problem, the
optimal solution is x*=(1, 2) with f (x*)=8. Let LF denote the number of calculat-
ions of the function values and LG that of the function subgradients.

Our algorithm used the starting point x°=(2, 0) with /' (x*)=32. For ff, =f,=0.3,

1
m; =023, m,=0.17, 13,;'_——4;,1“ , we obtained
l_. i

18
k=18, Zr(k):ﬁ’?, £ (x'8)=8.,0001309 ,

k=0
x17=1.0020049, x!%=2.0039851,
LF=673, LG=155.
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Subgradientowa metoda z rozciaganiem przestrzeni
dla minimizacji wypuklych funkcji

W artykule rozpatrywana jest subgradientowa metoda z rozciaganiem przestrzeni dla mini-
mizacji wypuklych funkcji. Przedstawiono model algorytmu oraz udowodniono zbieinosé przy
ogolnych zalozeniach dotyczacych funkcji 1 parametréw opisujacych metode. Metoda daje sig latwo
zaprogramowaé. Zamieszczono wyniki obliczen prostego przykladu numerycznego,

CyGrpaauenTanlii METOI € pPAaCTSLKENHEM NPOCTPAHCTRA
JUISE MUHHMH3AIHE BRIMYKIBIX QyHKiui

B cTatee paccMaTpuBaeTcs CyGrpaaMeHTHbIT METO C PACTSKEHHEM MPOCTPAHCTBA [TA MEHH-
MU3AUMH BRITYKABIX QyHKuit, TIpencTasieFa MOJEMs ANTOPHTMA M OOKA3AHA CXOJHMOCTE TIDH
OBLIMX TIPeANOCEUIKAX, KACAIOUMXeS QYHKUNI M MapaMeTpOs, OMUCHIBATONIMK MeTom. s Meroma
HECTOXHO pa3paboTaTe iporpamMmMel. [IpuBeIeHB! PE3YMBTATHl BHIYACIACHHAI JUTH NPOCTOTO YHCIIEH-
HOTO TpHMepa.



