
Control 
and Cybernetics 
VOL. 13 (1984) No. 4 

A subgradient method with space dilation 
for minimizing convex functions 

by 

PHAM TRONG QUAT 

Automatic Control Institute 
Technological University of Warsaw 
Nowowiejska 15/19 
00-665 Warszawa, Poland 

In this paper an impltmentable algorithm· using the operation of space dilation for finding the 
minimum of a convex, not necessarily differentiable function f is investigated. The method is based 
on combining, modifying and extending the nonsmooth optimization works of Shor [15] and Wolfe 
[16]. Global ·convergence of the algorithm is established. the algorithm is conceptually simple and 
easy to implement. 

1. Introduction 

In what follows, we shall be concerned with an algorithm for solving the following 
optimization problem 

minf(x), (1) 
X ER" 

where/is a real-valued function defined on R". It is assumed throughout this paper 
tb.at the function f is continuous, convex and 

lim f(x)=+co. 
llxll- +oo 

(2) 

This problem is "nonsmooth" in the sense that the function/need not be differen­
tiable everywhere. 

The difficulties in minimizing a nonsmooth function are well discussed in [16], 
where an implementable descent algorithm for a convex function is given. This 
algorithm for a quadratic function coincides with the conjugate gradient method 
[6] and, hence, has finite termination in this case, as do algorithms of Lemarechal 
[10] or of Shor [14]. 

The descent approach for convex function of Bertsekas and. Mitter [1] has been 
made implementable by Lemarechal [9], and has been extended in theory to locally 
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Lipschnitz function by Goldstein [5]. Descent algorithms for min-max objectives, 
which are also diffcult to implement, are given in Demjanov [2] and Goldstein [4]. 

The readily implementable algorithms of Kiwiel [7], [8] calculate stationary points 
for nonsmooth minimization problems. These methods generalize several efficient 
algorithms for simpler problems due to Pshenichny and Danilin [13] and Lemare­
chal [ 11]. Owing to suitable strategies for selecting and aggregating the past sub­
gradient information, Kiwiel's algorithms have flexible storage requirements and 
work per iteration that can be controlled by the m er. 

Shor's algorithms [14] are nondescent methods. Shor suggested to · tFansform 
the space metric at each iteration so as to accekrate convergence of the subgradient 
method. He used op~rators of space dilation of the following type. Let sER", llsll = 
=1, o:> O. Then a linear operator R. (s) such that 

R, (s) x= x +(a - 1) ssT x 

is referred to as the space-dilation op~rator acti ng in the directions with the coeffi­
cient a. 

Our algorithm combines, extends and modifies ideas of Wolfe [16] and Shor [15]. 

We use the operator of space dilation for finding direction at each iteration and our 
choice of step size is based on Wo!Us idea. Global convergwce of the algorithm 
is established. The algorithm is conceptually simple and easy to implement. Xn parti­
cular, if does not require the solution of an auxiliary problem for generating search 
directions as in [7], [9], [16]. Henc·:: it can be used 'for solving large-scale prbblems. 

In Scction 2 we p;-esent the algorithm, while its convergence is d'iscuss~d in 
Section 3. In Section 4 we present a simple numerical example. 

2. Algorithm 

The algorithm uses positive parameters o, mt> m 2 , f] 1 , f]2 <I satisfying" ··· 

m2<m1< 0.5, 

and a sequence of positive numbers { od satisfying 

(3) 

(4) 

(5) 

Initially we have a starting point x 0 and some g0Ea f(x0), where a f(x) d~notes 
the set of all subgradients off at x. Suppose a point xk is known. To find the next 
point xk+ 1 the algorithm realizes the following iterative process . 

STEP 0: Set xk. o=Xk, sk, o=g;-, 0> where gk. 0 Ea f (xk, o), and . c:k =max 

{IIJ(xk-l)-f(xk), otr}. Set i=O. 

STEP 1: If llsk, , 11 ~c:1, , set xk+ 1 =xk, 1, increase k by 1 and go to Step 0; otherwise, 
go to Step 2. 
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STEP . :2: (l1ine search: see below for details). Finfd rk, 1 ~0 and. some gk, 1+ 1Ei7 f(xk, 1 -

- rk, 1 sk, ;) such that 

(6) 

and 

(7) 

STEP 3: If llxk-xk. ;+ 1 ll>o or f(xk)-f(xk. 1+1)>o, set xk+ 1 =xk.l+l• increase k 
by 1 and go to Step 0; orhctwise, go to Step 4. 

STEP 4: If (gk, £+1> sk. 1 - &. 1 + 1 )~0 go to Step 5, otherwise, go to Step 6. 

STEP 5: Set 

increase i by and go to Step 1. 

STEP 6: Set 

i) Set 

ii) If 

(8) 

set sk. 1 + 1 =qi+ 1> increase i by 1 and go to Step 1; otherwise, increase; by 1 and go to i). 

Condition (7) can be ve ·ified by the following lemma. 

LEMMA 1 (see [3]). Let f be a convex function on R", and sa fixed vector of R" satisfy­
ing the inequality 

f(x - rs)~f(x)-ml r llsW (7') 

for some m1 >0, T>O. Then we have 

for any geof(x-rs). 
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LINE SEARCH: For given xk, 1 and s,, i> with iisk, 1ll:;e0, suppose that the directional 
derivative 

f' (xk, 1 -sk, 1)=max {(g, -su): ge8f(xk.J} 

and the vector g' eArgmax {(g, -sk. 1): gea f(xk. 1)} are computed. Now let us 
consider the following two cases. 

FIRST CASE: f'(xk.i' - sk.J;;:;, -ml iisk.iw. 

Then the vector g' satidi;s inequality (7). In this case we set rk, 1 =0. 

SECOND CASE:j'(xk,i' -Sk, ;)<-ml jjsk,iw. 

By (2) and (3), there exists r>O satisfying conditions (6) and (7'). Then we can 
find rk., as follows. 
Define 

L={r> O:f(xk.i-Tsk.i)~f(xk.i)-m2r iisk,iW}, 

R= {r>O:f(xk. i -rsk. ,) ;;:;. j(xk. J -ml r llsk, 1W}. 

Choose r>O. Set r,=O, •M=O. 

(a) If reL""'R go to (b). 
If reLnR go to (d). 

If reR""'L go to (c). 

(b) If •M=O, replace r, by rand r by 2-r ; otherwise, replace r, by rand r by (rAt-•m)/2; 
and go to (a). 

(c) Replace 'M by rand r by (rM-rm)/2, and go to (a) . 
(d) Set rk. , = r and stop. 

Using the proof of Lemma I in [16] it is easy to see that the above process i's 
finite . 

The following results show that the algorithm is well-defined. 

LEMMA 2. {f s,ge.R", c;=(s-g)/lls - gll, (g,s-g)<O and (s,g-s)<O then 
(R0 (c;)g,s-Rp(()g) < 0 for any f3e(O, 1). 

Proof. Denote }.=(/3-1) (g, s-g) fiis-gW . From the assumption it follows that 
},>0 and (s,g)-(s,s)<O. Thus (g,g) -(g,s) <(g,g) -2(s,g)+(s,s), so+ 
- (g,s-g)~l ls-gW, and fina lly -(g,s-g)/lls-gW<l. Hence X<l. From the 
definition of the operator of space dilation we obtain 

s=Rp (c;) g=(s-g) - [(/3-1) (g, s-g)/ lls-gW] (s-g)=(l- J:) (s-g) 

and Rp(~)g=(l-}.)g+ls. Then we have 

(Rp (l,) g, s- Rp (c;) g) =((1- J,) g+ Xs, (1- X) (s- g))= 

=(1 -/,) (2 (s-g)-f-g , s -g)=(l-J,) [(g, s-g)+X lls-gi[l]= 

=(1-X) [(g, s-g)+(/3 -1) (g, s-g)]=/3 (1-J,) (g, s-g)<O. 

This completes the proof. 
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LEMMA 3. The algorithm executes Step 6 in a finite number of operations. 

Proof. From the algorithm's rules we get 

(sk. ;, gk, i+1 -sk, ;) ~m1 llsk, ;W - l lsk. ;W= -(1-m1) llsk, .11 2 <0. 
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Consider Fig. 1. Denote by h=Nr {sk, 1, gk, i+d the point of minimal Euclidean 
norm in the convex hull of {sk, ~o gk, ;+I}· 

Fig. 1 

Then h lies between sk. 1 and gk, i+b and 

llhW =I Igk,i+1W - IIgk. i+lW cos2 ;= 

= llgk, i+tW-(gk, i+1; sk. ;-gk, i+1) 2 / llsk.; -g;;, i+lll 2
• 

From Lemma 2 it is easy to see that qj lies between hand g1 , 1+ 1 • We have 

qj=Ro, (( •. i+l) qi-1 =Ro
2 

<(k, i+ 1) Ro, (~k. i+ 1) qi - 2 = 

=Rp~ (~k. i+1) qj-z= ... =Rp; (,;k, i+l) gk, i+1. 

This implies 

llqjW= llg!, 1-i-1 W+UW -1) (gk. i +b ,;k, i+ ,) 2 = 

which yields 

= llgk,; + 1 W+(fJ~j -1) (gk, i+" sk.;-ik.; + t) 2 /llsk.;- gk, i+ 1 W '= 
llhW+fJij (gk, i+b sk, i- gk, i+1)2 /llsk, ;-gk, L-Hw 

qr"'h as j->+oo . 

Let us denote ,;' =(gk, i+ 1 -si{. 1)/llgk, i+ 1 -sk. d I, s' =Rp, (,;') sk. 1 • 

Then 

lls'W=llsk.;W+UJ~-1) (sk.;, ,;y= 
= llsk.iW+Cfli -1) (sk. ;, gk, i+1 -sk. ) 2 /llgk, i+l -sk. ~W= 
~ llsk . ~W+ [tP~ -1)/llgk. ;u -sk. ~ W J (llsk. ~W -<sk. ;, gk. i+ t) 2)= 

(9) 

= llsk. ;W+[(Pi -1)/llgk, i+1 -ski. WJ (llsk. ,W+ (10) 

-2llsk.iw (gk,i+l• sk,i>+<&.i+b sk,;) 2)~ 

~llsk.;W [l+(fJ~-1) (I'-2ml) llsk.tW!llgk,;+l-'sk,iWJ~ 

~ llsk.£11 2 [1+CPi -1) (1-2ml) s;/llgk, t+ 1 -sk. ;W]=yk. 
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From Lemrna·. 1 itfollows that s' lies be~ween sk, 1 and gk, i+ 1 . Therefore · 

(11) 

From inequalities (11) and (9) we see that there exists j such that 

This completes the proof. • 
LEMMA 4. sk. 1 is a convex combination of two points sk, 1 _ 1 and gk, ,, for any k and 
i=J, 2, ... , t (k) . 

Proof. From the p·;·oofs of Lemmas 2 and 3 it is evident that in the case when 
Step 6 is performed, sk. 1 is always a convex corn bination of sk. 1 _ 1 and gk, 1• It remains 
to consider the case where Step 5 of the algorithm is ca1 ried out. In this case we have 

where 

From the definition of the operator of space dilation we obtain 

where 

sk.; =sk. 1-1 +(P1 -1) <sk.i-1> C:k.;) C:k. t = 
=sk. 1-1 +[(pl -1) <sk.; -1• gk,; -sk, t-t>l!!gk, t -sk, t-1 ll 2 l (gk, t­

- sk. t- 1)=(1- J.) sk. 1-1 + ).gk,;, 

A=(Pt -1) <sk. ,_ 1> gk,; -sk. t-1)/!!gk,; -sk. 1-1ll2 
• 

We shall show that 2E[0, 1]. We have 

<sk. i-1> gk. ;-sk. i-1>~m1 l!sk. t-1W-11sk,t-1W= -(1-m1) llsk.i-tW. 

Thus 

Besides 

Thus 

<sk. t-1• gk,, -sk. ;-1>= -llsk.i - 1 W+<sk. i-1• gk,;) ~ 

~-!Is,, i-111 2 +2 <sk, t-1• gk, ;) -m1 llsk, ;-1W= 

= - l! sk. 1-1-gk, tl !2 -ml !Is., t-1ll 2 +llgk, dl 2
. 

).~(1- Pt) [l+(m1 !lsk,; -1W -!lg,, tW)/I!sk. t-1 -gk, ,11 2
] ~ 

~(1-Pl) [l+mlllsk.i-lW/IIsk.i-1-gk,,WJ. 
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On the other hand 

llsk, 1-1-gk, ~W= llsk. 1-1W+ ilgk .1W -2 <sk. 1-1> gk, ,) ~ 

~(1-2ml) llsk,t-1W+ iigk. tW ~ (1-2ml) lisk. t-lW . 
Hence 

2~ (1-P1) [1+mtf(1-2m1)]=(1-P1) (l-ml)/(1-2m 1). 

From the assumption that m1 (1-m1 ) <P1 < 1 it follows that 

}. ~ [1-m1/(1-m1)] (1-m1)/(l-2m 1)=1. 

This completes the proof. 

LEMMA 5. The process of finding xk+l is finite for any k. 
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Proof. It is easy to observe that the process of calculating xk +l could be stopped 
with the equality xk+l = xk. t!k) as soon as we have one of the following three cases: 

a) llxk-xk.r(k)li>o, 
b) f (xk) -f_(xk, t(k)) > o, 
c) llsk.r(k)l l ~ek. 
Let us assume that for some fixed k and all i cases a) and b) do not occur. Then we 
shall prove that there exists some finite t (k) sufficiently large such that llsk, t(k)i l ~ ek· 
Combining (2), Lemma 4 and the local boundeness of the subdifferentials, it is easily 
seen that there exists b > 0 such that 

ii gk , tl i~ b for all i , 

l lsk,tll ~ b for all i. 

Assume, for contradiction purposes, that ll sk 111 > ek for all i. Step 6 yields 

llsk, t+ 1W ~ llsd l2 [1 + CP; -1) (l-2mt) e;/ llsk, t -gk, 1+1W] (12) 

fo r all i. 
In Step 5 we have 

li sk. i+lW = IIRp, C~k . i+l) sk,,W= II sk. t W+CP~-1) <sk,.;, ~k.i+ t > 2 

and from inequality (10) it follows that in this case we also have (12). From inequality 
(12) one obtains 

[ 
(Pi - 1) (l-2m1) c:; ] 

ll sk.t +lW~I I sk. iW 1 + 11 . . 11 2_ 2< . s ·>+lis. 
11

z ~ 
gl<,lTl gk.t+l> k.l k.f 

~l l sk.dl 2 [l + CPi-1) (l-2m1) si f4b2
] 

for all i. This yields 

ll sk. ,11 ~ ll sk, oil [1 + CPi -1) (1-2m1) ~:if4b2 ] 1 ' 2 ~ 

~ b [1 + (Pi -1) (1- 2m1) ~:; J4b 2 ) 1 12 • 

If 
i>2 (In ek-lnb)fln [I-(1-/Ji) (l-2m1) ~:;/4b 2] 

then 1n li sk. d I~ In ek, i .e. li sk,~ 11 ~ ek· This completes our proof. • 
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The above lemmas show that our algorithm generates an infinite sequence of 
points {xk}. In the next section we shall prove that this sequence minimizes f 

3. Convergence of the algorithm 

THEOREM. Assume that Conditions (2)- (5) are satisfied and let {xk}~~ o be the 
sequence generated by the algorithm. Then 

lim .f(xk)=.f*=min .f(x). 
k--++00 xE R'' 

Proof. From the description of the algorithm and Condition (2) it is evident tbat 
the sequence {.f(xk)}:'=o is nonincreasing and bounded from below; therefore 
there exists 

lim .f(xk)=/00 ?:/*=min .f(x), 
k -i- 00 

Then 

Let us now prove that there exists an infinite subset of indices KC N such that 

as k-.oo, keK. 

Let us observe that there must exist an infinite subset KC N such that 

f(xk)-f(xk+l) ::;;_.f(xk-l)-f(xk) for all kEK. 

(13) 

(14) 

(15) 

(16) 

Indeed, if this was not true one would have f(xk)-.- oo, a contradiction. We shall 
establish (I5) for kEK. 

From the description of the algorithm we have 
i-1 i-1 i-1 

0:::;; IJxk-xk.tll= [l zcxk. ,-xk. r+t) ll = li 2.>k.t Sk, ,[ [:::;;_ z Tk r Jlsk.rll= 
r=O r~o r ~ o 

1-1 I 1-1 l t-t · 

= 2Jrk,rllsk.rl l2/l lsk,rl !::;;- Z rk,rllsk,rl l2
::;;-- Z [.f(xk.r)-

t=O Ek t =O nl 2 fk t=O 

for i= I, 2, ... , t (k). 

Thus 

1 
Q::;;_ llxk-Xk, tll :::;;_-- [.f(xk-j(xk+ 1)], (17) 

m2 sk 

for i=l, 2, ... , t (k). From (16) and (J?) we get for kEK and i=I, .. . , t (k) 

1 
Q::;;_ JJxk- Xk, ,JJ :::;;_-- [/ (xk- 1) - .f(xk)]. 

m2 sk 
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By the definition of ek, sincef(xk- 1)-f(xk)--..O as k-++co, the right-hand side of 
the above inequality tends to 0, as k-> +eo. This establishes (15). 

From the description of the algorithm it is clear that gk, i Ea f(xk; 1Jk),J.=0, 1' ... 
... , t (k), where 1J k-+ O, as k-++co, kEK, from (15). Here aj(x, 1J) denotes-the set 
of all 1y-subgradients off at x defined by 

Dj(x, 'l})=conv U {aj(y): lly - :ri l<17} . 

On the basis of Lemma 4 it follows that sk. i Ea f (x\ 1Jk) for kEK. From Assumpti on (2) 
it is easy to see that there exist x' and an infinite subset K' C K such that xk -+x' 
as k-+ +eo and kEK'. By (14) and (15), we have 

sk. r(kJ-"0 as k-+ + co, kEK', 

where sk, t(k) Ea f(x\ 1Jk). We know that the map (x, 1J)-+a f(x, 1]) is upper semi­
continuous on R" (see [12]). Therefore 0Eoj(x', O)= of(x ') ; which means that x ' 
is a minimum point off and 

lim f(xk)=f(x')=f *. (18) 
k·-+ +00 
k E K' 

From (13) and (18) we obtain 

lim f(xk)=f*= min f(x) . 
xER 11 

The theorem is proved. 

From the proof of the above theorem we have the following. 

CoROLLARY. In addition to the assumptions of the abot1e theorem, suppose that f i s 

strongly convex on R" . Then the sequence {xk};;"~o converges to the minimum point 
x* off on R". 

4. Example 

The objective function to be minimized is 

.f(x)=max {!' (x) ,f" (x)}, 

where xER2 ,f' (x) =4xi + (x2 - 4) 2,f" (x)=(2x1 -4)2 +x~. For this problem, the 
optimal solution is x* =(I, 2) with.f(x*)=8. Let LF denote the number of calculat­
ions of the function values and LG that of the function subgradients. 

Our algorithm used the start ing point x 0 =(2, 0) with / (x0)=32. For {J1 = {J2 =0.3, 
1 

ml=0.23, m2 = 0.17, ,Sk= 4r- , we obtained 
jik 

18 

k =18, _2; t (k) = 67 , f(x18)=8.0001309, 
k~O 

x~ 8 =1.0020049, x~ 8 =2.003985 1, 

LF=673, LG=l55 . 
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Subgradientowa metoda z rozcil!ganiem przestrzeni 

dla minimizacji wypuklych funkcji 

W artykule rozpatrywana jest subgradientowa metoda z rozciqgaoiem przestrzeni dla mini­
mizacji wypuklych fLmkcji. Przedstawiono model algorytmu oraz udowodniono zbie±nosc przy 
og6lnych zalo:i:eniach dotyczqcych funkcji i parametr6w opisujqcych metodc; . Metoda daje si~ la two 
zaprogramowac. Zamieszczono wyniki obliczen prostego przykladu n umerycznego. 

Cy6rpa!1,HC'ITHhlii MCTOA c pacnimenneM npoerpaiiCTBa 

)J,JI51 Ml!HIIMJI33J.IHU Bhin)'H:JibJX cjlyHJ\:l~lfH 

B narbe paccMaTpHsaercH cy6rpa,D.HeHTHbTn MeTO)J. c pacnnKeHI!eM rrpocrpaHCTBa )J.JHI MI!HH­

MH3auH.<r Bbll1YKJlbJX ljlyHKl\Hn. flpe)J.CTaBJieHa MO)J.CJib arrrOpHTMa H )J.OKa3aHa CXO,!(HMOCTb IlpR 
o6u.r11x rrpe,11rrOchiJ1Kax, KacaiOll]HXCH ljlyHKuHn u rrapaMerpoa, ormc&raaiOil(Hx Merol(. ,D;mr Mero,n:a 
HecnmKHO pa3pa6oraTh rrporpaMMbJ. ITpHae,n:eHhi pe3yJ1bTaTbi Dhr<mcrreaal1 ,n:rrH npocroro 'IHcneH­
Horo npHMepa. 


