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Sequentially one dimensional methods have been suggested repeatedly 
for the numerical solution of free boundary problems for an elliptic (or time 
discretized parabolic) equation in Rn. If the elliptic equation is approximated 
with the method of lines, and a sweep method is used in a line SOR 
iteration, then a numerical method is obtained which is conceptually simple, 
easy to program and robust in its numerical performance. Moreover, for 
model problems with the right variational structure the algorithm is known 
to converge [5]. 

We now would like to consider nonlinearly coupled elliptic equations 
with multiple free boundaries. They may arise, for example, after reaction
-diffusion equations are time discretized. While fixed boundary problems for 
such systems have received some attention in the numerical analysis litera
ture [2], [3], their free boundary analogs are only now beginning to appear, 
primarily in connection with heat and mass transport [1]. 

It is the purpose of this contribution to indicate that with virtually 
no increase in conceptual or programming complexity the common line 
SOR-sweep method can be used to solve systems of elliptic free boundary 
problems. In this initial research only problems with a rigidly prescribed 
structure are considered for which the free boundary problem is well posed 
and for which the iteration required to solve the discretized problem will 
converge monotonically. The convergence of the solution of the discrete 
problem to that of the continuous problem is proved in [5] for a single 
nonlin.ear elliptic problem but unresolved for systems. 
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To give an idea of the numerical performance of this method two 
reaction-diffusion problems with multiple free boundaries are solved. The 
examples indicate that the numerical method will perform reliably well 
outside the conditions for- which its validity can be proved at this time. 
This research was supported by NSF Grant MCS 8302548. 

2. Statement of the Problem 

We shall consider the computation of non-negative solutions ui for the 
following nonlinear elliptic system 

Li ui = fi. (ji, x, y), 0 < x < 1 , 0 < y < si (x), i = 1 , ... , m 

ui (x, 0) = gi (x) (2.1) 

au au 
an (O, y) = an (1, y) = 0 

where Li is a linear elliptic operator on (0, 1) x (0, 1) and where ji stands 
for the vector (u1 , ... , um). In (2.1) si (x) denotes the free boundary correspon
ding to the component ui. It is to be determined from the Cauchy condi
tions 

au. 
ui (x, si (x)) = a~ (x, si (x)) = 0. (2.2) 

We shall assume that si is constrained to lie in the interval (0, 1]. If 
si (x) = 1 then the free boundary condition (2.2). is replaced by the Dirichlet 
condition 

ui (x, si (x)) = 0, si (x) = 1. (2.3) 

Thus our formulation includes nonlinear systems on the fixed domain 
(0, 1) X (0, 1). 

While the algorithm proposed below applies to more general problems 
than (2.1, 2), its analysis is usually intractible unless the problem has a well 
defined structure. In particular, we shall assume that the question of existence 
of a solution ji* = (ut, ... , u~) for (2.1, 2) can be answered with the theory 
of variational inequalities. To discuss whether (2.1, 2) is well posed the 
following notation is employed. 

D = (0, 1) x (0, 1) c R2 

(f, g)= ffg dx dy, <J, g) and 11!11 are the inner product and norm 
D 

on H 1 (D). 
H = closure in H 1 (D) of coo functions with compact support on 
[0, 1] X [0, 1). 
H= {ii:ii=(ul, ... ,um),ui eH for each i}. 

~ ~ - - - ------------ - --- -
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au. au. 
a~ (o, y) = a~ (1, y) = o 

au. 
u; (x, s; (x)) =-a ' (x, s; (x)) = 0. . n 
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(3.2) 

The reason for this change of (2.1) is to insure that the derivatives of the 
right hand side of (3.1) with respect to u;, i = 1, ... ; m are non-positive which 
will allow the repeated application of the maximum principle. 

For ease of exposition only we shall assume from now on that L; u; = 
= D; L1u; where D; > 0 for i = 1, .. . , m. The system (3.1, 2) will be approxi
mated with the method of lines by discretizing the x-variable. For given 
N > 0 let x1 = j/N, j = 0, ... , N denote N + 1 lines. Then (3.1, 2) is replaced 
along the line x = x1 by 

1; U;, 1 = u;:1-[ L1~2 +K J ~i,J = G;,1 (ii1, x1, y) 

where L1x = 1/N and 

G;,1 (ii1,x1,y)=- L1~2 (ui,J+1+u;,J-1)+ 

+!; (u 1,1, ... , Um,J> x1, y)-Kui,J· 

(3.3) 

The boundary conditions at x = 0 and x = 1 are accounted for by setting 

U;,- 1 = U;, 1 and U;,N+ 1 = U;,N- 1 . 

The function u;,1 is subject to the boundary conditions 

U· . (0) =g. (x·) U· . (s· 1) = 0 1,) I ) ' 1,) 1, (3.4) 

and 

u~ . (s. ·) = 0 when S· . < L l,J 1,) l,J 

~We remark that the sub~equent analysis requires that a convection term 
in (3.1) involving 8uJ8x be discretized with a one sided difference quotient 
which assures that 8G;j8u;,/± 1 ~ 0. However, in actual calculations a central 
difference quotient can usually be used. A convection term like 8uJ8y enters 
the differential equation (3.3) as u;). 

The multi-point problem (3.3, 4) is solved iteratively in line SOR fashion. 
We make an initial quess {s~ 1 ,u?.J} fori= 1, .. . ,M andj=O, ... ,N. We then 
compute for k = 1, 2, ... along successive lines th_e new boundaries {sL} and 
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funCtions {uL} by solving for fixed j 

1-iJ. . = G~ . (y) ' <,} <,} i= 1, .. . ,M 

ii;,j (0) = 9; (xi) 

fi .. (1: ·) = ii~ . (s~ ·) = 0 l,J l,J l,] l,j 

and setting 
k k-1 (- k-1) U· · = U· · +w U· ·-U· · l , j J,,j l,j 1,J . 

G. H. MEYER 

(3.5) 

Here wE (0 , 2) is a relaxation factor which is generally chosen on the basjs, 
of experience. For w = 1 the SOR iteration is called a line Gauss-Seidel 
method. 

The source term Gi.i (y) in (3.5) is given by 

Gk ( ) 1 ( k-1 k ) 
i,j Y =- L1xz ui,j+1+u; , j-1 + 

f( k k-1 k-1 ) K k-1 + U1,j, ... , U;,j , ... , Um,j , Xj, y - U;,j 

and incorporates the newest available data. After {u7,J is known we advance 
to the next line xi+ 1 · After running through the lines from j = 0 to j = N 
we begin iteration k + 1 on line j = 0. 

(3.5) describes a scalar second order free boundary problem. Its solution 
{sL fi;,j} is found with the sweep method described in [5]. In summary, 
we use the Riccati transformation 

fi. · = R- (y) ii~ · +w~. (y) 
l,j ' l,J 1,) (3.6) 

where R; and wL are solutions of 

Ri = 1-[ L1~ 2 +K J ~;, R; (0) = 0 (3.7) - -

The integration of (3.7) is called the forward sweep. The free boundary 
sL is the smallest root on (0, 1) of 

(3.8) 
-

If there is no such root we set s~. i = 1. The solution ii;,j is completed by ·-' 



. 
On the numerical solution 121 

solving the initial value problem 

a::j ={ L1~2 +K J ER; (y) a;,j~wf.J+Gf.i (y) 
(3.9) 

a~ . (i ·) = - wL (sL) 
'·I <,J R · (s~ ·) I I l,J 

and substituting u;,j into (3.6). The solution of (3.9) is the reverse sweep. 
We remark that this particular sweep method for the solution of (3.5) has 

proven to be convenient for both the analysis and numerical solution of (3.5), 
but other one-dimensional free boundary solvers might equally well be used. 
In particular, if the two point free boundary problem (3.5) exhibits boundary 
or internal transition layers then such high order sweep methods as conti~ 
nuous orthonormalization may be necessary. (For an application of this 
method to an obstacle problem for a highly loaded beam see [6]). 

It is our goal to establish that this sequentially one dimensional method 
will converge as k-+ oo. We shall assume that w = 1 so that u;,i = u~.i· 

LEMMA 3.1. If u?,i = 0 and s?,i = 0 for i = 1, ... ,m and j = 0, ... , N then 

0 ~ u~:; 1 ~ u~.i ~ G and 0 < ~.} 1 ~ sL ~ 1. 

Proof. We shall use induction. By hypothesis wL0 (0) > 0 so that sLo > 0. 
Assume now that ui, 0 has a negative minimum at y* E(O, sL0 ) then uto (y*) = 0 
a1ld- wL 0(_?) < 0 - by -(3.6) which contradicts that sLo is the smallest root 
of wLo (y) = 0 on (0, 1]. Hence uLo ~ 0 on (0, sL0 ). Finally, we observe that 
l1 uLo = f 1 (0, ... , 0, 0, y) ~ 0 rules out an interior maximum for uL0 so that 
uLo (y) ~G. Let us assume next that Lemma 3.1 holds for all u and s prior 
to the calculation of uL and sL. The mean value theorem and the 
hypothesis vi) show that 

GL (y) - Gf,j 1 (y) ~ 0 

which implies that wL (y) ~ w~.} 1 (y) and hence that sf.i ~ sf.j 1. The positivity 
of uL follows as above and uf.j 1 ~ uL is guaranteed by the maximum 
principle for 

l; (uL-ut} 1
) ~ 0 on (0, sf.j 1

) . 

Finally, we observe that 

[. (G-u~ ·) ~ 0 L t,J 

so that also G ~ uf.i· • We can now argue as in [5] to establish 

THEOREM 3.1. The sequence {uL, sL} converges monotonely to a solution 
{uL, sti} of the _multi-pO.int free boundary problem (3.1, 2). 
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For details of the proof we refer to the discussion in [5] for m= 1 which 
carries over without change since only the number but not the type of 
equations has changed. 

It may be noted that we can equally well begin our iteration from 
an initial guess of sL = 1 and u?,i = G. In this case a monotone decreasing 
sequence is obtained which converges to a solution {Uti> Sti} of the discrete 
free boundary problem (3.1, 2). However, without further assumptions one 
cannot generally conclude that the solution of (3.1, 2) is unique (see [5]). 

Finally, we remark that the above sequentially one-dimensional algorithm 
may describe an excessive decoupling of the components of i1J along each 
line. An alternative but more complicated method may treat (3.5) as a system 
-in which case the scalar Riccati transformation (3.6) will be replaced by the 
affine transformation 

where R is an m x m matrix. This approach may be particularly useful 
if L; u; is replaced by a linear operator L; (ii) involving several components 
of ji. 

4. Numerical Examples 

The research code used for the numerical examples of [5] was modified 
to solve the system (3.1, 2). Schematically, we can illustrate the program 
with the simple DO LOOPS 

10 CONTINUE 
K=K+1 
DO 20 J = 0 , N 
DO 20 I= 1, M 
CALL THE FORWARD SWEEP (3.7) 
CALL THE FREE BOUNDARY PLACEMENT (3.8) 

20 CALL THE REVERSE SWEEP (3.9) 
IF NO CONVERGENCE GO TO 10. 

The forward and backward sweep are carried out with the trapezoidal rule. 
The free boundary is found by linear interpolation between mesh points 
where wL changes sign. The iteration is terminated when maximum absolute 
changes in { u~.J and { I;,J fall below 10- 6 from one iteration to the next. 
As usual, the monotone convergence guaranteed by Theorem 3.1 is sacrificed 
to the improved convergence rate achieved with overrelaxation. Unless indi
cated otherwise the results shown are no longer sensitive to changes in the 

,, mesh sizes. 
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Proof. By hypothesis iii) j; EH c Lq for 2:::;; q < oo . Since ut satisfies the 
variational inequality 

( -L; U;, V; - U;)+(j; (u*, X, y), V; - U;))! 0 

for all v;)! 0 the regularity theorem of [4, p. 108] may be used to conclude 

that U; E C 1·'- (15) for A= 1- 2. • 
q 

The 'regularity of s; (x) remains an open question. However, if the 
boundary of {x : u; (x), y > 0} is smooth then the free boundary condition (2.2) 
applies in the classical sense because u; is continuously differentiable on 15. 

3. The Algorithm 

A natural extension of the method given in [5] will be applied to the 
system (2.1, 2). Three steps are involved. First, the partial differential equa
tions are approximated by a system of ordinary differential equations (method 
of lines approximation). Then an iteration is defined which solves the system 
as a sequence of free boundary problems for a single second order ordinary 
differential equation (continuous line SOR method). Finally, the solution 
of the scalar free boundary problem is carried out with a sweep method. 

The hypotheses of the preceding section guarantee the existence of a solu
tion fi* . We shall compute its approximation as a limit of monotone sequences 
for which we need to impose an additional condition on the data. · 

Hypothesis vi) ::: :::;; 0, i =I= j, iiEK and (x, ,y)ED. This requirement is 
J 

quite restrictive in applications and will receive attention in future research 
(see also Example 4.2). Next, let the constant G be defined by 

G = max max g; (x) 
l ~ i~m O~x~ 1 

and let K' denote the closed bounded set {fi: 0 :::;; u; :::;; G} c Rm. Then choose 
a constant K such that 

K 
a~; (~ ) .~' . l . . 

)! ~~~~" IJ!~~ OU· tJ, x, y, un11orm y m D. 
' 

Since ~j; )! 0 by hypothesis v) we see that K is non-negative. The numerical 
uU; 

method will now be applied to the following modification of (2.1, 2). 

L; u;-Ku; = j; (ii, x, y) - Ku; 

u; (x, 0) = g; (x) 
(3.1) 

------------------~~---~-- -
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m m 

((~, P)} == I (u;, v;), < (~, p)) = I (u;, v;). 
i= 1 i= 1 

. K = {~EH:u;;;::: 0 a.e. for i = 1, ... , m} . . . 
We note that H is a Hilbert space with inner product «,)) and that K 
is a closed convex subset of H. 

In order to associate (2.1, 2) with a variational inequality we shall impose 
the following hypotheses 
j) (L; U;, U;);;::: C iluill, C > 0, UiEH 
ii) gi is continuous and positive on [0, 1] for i = 1, .. . , m 

iii) fi:K ~ H 
iv) fi;;::: 0 for ~EK 
v) If F = (f1 , ... Jm) then the derivative F' with respect to f.l exists for 
~EK and 

((F' (~, x, y) p, P)) ~ 0 for all ~ E K and ,v EH. 

Under these assumptions the above problem is well posed in the following 
sense. If ui is a solution of (2.1, 2) which is extended as the zero function 
beyond the free boundary then (2.1, 2) can be written in complementarity 

· form 

-L;u;+Ji(~,x,y);;:::O on D 

( -L; U;+ fi (ii, X, y)) U; = 0. 
(2.4) 

As is well known (2.4) is formally equivalent to the variational inequality 

(-L; U;, V;-u;)+(fi (~,X, y), V;-u;);;::: 0, i = 1, ... , m. (2.5) 

The solvability of these inequalities follows from an application of · the 
results of [4]. 

THEOREM 2.1. There exists a unique function t7* EH whose components satisfy 
(2.5). 

Proof Let Lt7~ (L 1 u1 , ... , Lm um) then (2.5) can be written as the inequality 

((- Lt7, p-t7)) +((F (~, x, y), p- a));;::: 0 (2.6) 

for t7, pEK. The operator Au = -L~;+-F (t7, x, y) maps K into Hand satisfies 
((At7-A.V, t7-P)};;::: c «17-.V, t7-P>) +((F' (w) (t7- ,V), t7-P)) for some )VEK 

between t7 and ,v. The hypothesis v) assures that A is strongly monotone 
so that (2.6) has a unique solution u* E K by [ 4, p. 94]. • 
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ExAMPLE 4.1. Michaelis-Menten reaction. Consider the reaction problem for 
two components u1 = u and u2 = v 

u ~ 

Llu = f 1 (u, v, x, y) = 
1 

+ f 1 (x, y) 
+u+v 

(4.1) 
V -

Llv = f 2 (u, v, x, y) = 1 +u+v + !2 (x, y), 

where J;. ,h ~ 0. These equations model a "symbiotic interaction" between 
two species with population densities u and v [7, p. 221]. If J;. and h 
are differentiable thenf1 :K~H andfi:K~H. We also verify that ofdou~O, 
ofdov, of2/ou ~ 0 and of2/ov ~ 0. Moreover, if 0 ~ gi (x) ~ 1 then it is 
straightforward to verify that the matrix (o/;/ou) is positive definite (although 
not symmetric). Hence the system (4.1) satisfies all the conditions of 
Theorem 3.1 and can be solved monotonically with a line Gauss-Seidel 
method. 

1.20 

1.00 

U=V=0 

0.80 

0.60 

Y-AXIS 

0.40 

y = s 2(x) 

0.20 

u > 0 

V > 0 

0.00 
0.00 0.20 0.40 0.60 0.80 1.00 1.20 

X-AXIS 

Fig. 4.1. Free boundaries for the Michaelis-Menten reaction system (4.1). L1x = 1/20, L1y = 1/100, 
w = 1.7. Convergence to 10- 6 in 45 iterations. Maximum absolute error in the position of the 

free boundary is 0.0032 for s1 (x) and 0.014 for s2 (x). Cyber 855 execution time 160 sec. 
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Fig. 4.1 shows the computed solution which is obtained when h. and h 
and 91 and 92 are determined such that 

( ) ( 
2+cos (nx) \)2 

U X, y = y -
4 

and 

( ) ( 
2+cos(2nx)\)2 

V X, y = y -
4 

are the analytic solutions. As already observed in [5], Michaelis-Menten 
reaction problems with or without free boundaries appear bengin for numeri

' cal methods. . 

ExAMPLE 4.2. The nonlinear system 

where 

LJu = f (v) 

LJv = f (u) 

f (w) = {.1 ~f w > 0 
Otfw~O 

(4.2) 

subject to the boundary conditions (2.1, 2) has formally a close connection 
with the example used in [8] to illustrate the existence of a "dead core" 
in nonlinear reaction problems. The discontinuity off precludes an application 
of the , above monotone convergence theory. On the other hand, if the 
boundary data at y = 0 are positive and we begin the iteration with an 
initial guess of uJ = 0, s1 ,_; = 0 and vJ = G, s2 ,_; = 1 for j =:= 0, ... , N then 
the arguments of the proof of Lemma 3.1 can be applied in order to 
conclude that {u,, sL} is monotone increasing and (v1, s~.J is monotone 
decreasing for each j as k- oo. Hence the above algorithm for this nonlinear 
problem is convergent. We remark that numerical experiments actually 
indicate global convergence for any non-negative initial gues-s.-- - _ 

Fig. 4.2 shows the computed free boundaries when- the- same boundary 
data are chosen on y = 0 as in Example 4.1. One may note that the free 
boundaries show qualitatively the correct behavior. In particular, if the 
solutions of the free boundary problem (4.2) are in fact the non-negative 
H 1 (D) solutions of (4.2) (which is not proven because Theorem 2.2 does 
not appear to apply to (4.2)) then y = s1 (x) and y = s2 (x) may not cross 
in (0, 1) X (0, 1) because U := 0 cannot be a solution- of (4.2) Oll -0 <X < ] 

and s1 (x) < y < 1. The numerical free boundaries indeea do-- not cross. 
Finally, we remark that the discontinuity of f at 0 may cause difficulties 

when the sweep equations are solved with the trapezoidal rule on a fixed 
mesh. Ideally the points s~ . ..i should be added to the ~esh when C?mputing 
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Fig. 4.2. Free boundaries for the reaction-diffusion system (4.2). L1x = 1/20, L1y = 1/100, w = 1.7. 
The computation was terminated after 200 iterations when the results oscillated slightly about 
a common value. The numerical free boundaries cross because of linear interpolation between 

computed points. Cyber 855 execution time 400 sec. 

the next iterate. In the research code used here this modification was not 
incorporated. For monotone convergence no difficulties were observed, but 
arbitrary initial conditions and overrelaxation on occasion produced a cycling 
of the computed results from one iteration to the next. However, the change 
in the location of the free boundary always was too small to be noted 
in the computer plot. An additional complication arises in this example 
because the numerical results indicate that the free boundaries become 
tangent to the lines of computation where the free boundaries depart from 
y = 1. . This behavior is reflected in changes of the free boundary on the 
line next to the contact point on y = 1 when the mesh width is changed. 
The remaining free. boundary points do not move perceptibly. 
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Rozwi:tzanie numeryczne zagadnien 
ze swobodnq granicq dla ukladow rownan reakcji-dyfuzji 

W pracy zaproponowano sekwencyjnie jednowymiarowe metody numerycznego rozwi~zy
wania zagadnien ze swobodn~ granic~ dla r6wnan eliptycznych (lub parabolicznych- zdy
skretyzowanych w czasie) w R •. Rozwai.a sill= nieliniowe sprf\:i.one uklady r6wnan eliptycznych 
z wieloma swobodnymi granicami. UkJady takie odpowiadaj~ zdyskretyzowanym w czasie 
r6wnaniom reakcji - dyfuzji. Celem pracy jest pokazanie przydatnosci metody SOR do 
rozwi~zywania takich problem6w. Praca zawiera r6wniei. wyniki odpowiednich eksperyment6w 
numerycznych. 

~cJieuuoe perneuue npo6JieM 
CO CB06oAHOU rpanHQeU AJIH CHCTeM ypaBHeHHH peaKQHH-AU~YlHH 

B ~a6oTe rrpe.ncTaBJieHhi ceKseauuaJihHO o.naoMepHbie MeTO.L\hi 'IHCJieaaoro perneHH}[ 
rrpo6JieM CO CB060)J;HOH rpaHHUeH ,LIJI}I 3JIJIHIITH'!eCKHX (HJIH rrapa60JIH'!eCKHX ,LIHCKpeTH3HpO
BaHHb!X IIO BpeMeHH) ypaBHeHHH B Rn· PaccylK,LieHbl HeJIHHeHHbie COIIp}[lKeHHbie CHCTeMbi 
3JIJIHIITH'!eCKHX ypasHeHHH C MHOfHMH CB060)J;Hb!MH rpaHHUaMH. TaKHe CHCTeMbl COOTBeT
CTBYIOT ,LIHCKpeTH3HpOBaHHbiM IIO BpeMeHH ypaBHeHH}[M peaKUHH-.LIH4J<jly3HH. QeJib pa60Tbl 
cocTOHT s noKa3aHHH npuMeHl!eMoCTH MeTo.na SOR .!!Jlll 'IHCJieHHoro perneHHll TaKHx npo6JieM. 
B pa6oTe npe.ncTaBJieHbi TOlKe pe3yJihTaThi 'IHCJieHHhiX 3KcnepuMeHTOB. 


