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This paper is devoted to the study of optimal control problems of parabolic varia
tional inequalities. We emphasize, particularly, the existence of optimality conditions and the 
numerical aspects. Some numerical examples are presented. 

Introduction 

Variational inequalities are used for the mathematical formulation of 
many physical problems in fluid mechanics (filtration problems), heat transfer 
(solidification, freezing), structural mechanics (elastoplasticity), etc... Such 
problems have been studied by many authors (J. L. Lions- G. Stampacchia 
[16], C. Baiocchi [3], D. Kinderlehrer- G. Stampacchia [12], G. Duvaut
J. L. Lions [7], A Fasano- M. Primicerio [9], ... ). 

This paper is devoted to optimal control problems for such systems, 
more precisely, for systems governed by parabolic variational inequalities. 
The main difficulties appearing in the study of these problems consist in 
constructing optimality conditions and implementing efficient numerical 
methods. 

In the elliptic case some results have been obtained by V. Barbu [1] 
using a penalty method and by F. Mignot- J. P. Puel [19] using the 
conical derivative. 

In the parabolic case we consider in this paper, V. Barbu [2] and 
C. Saguez [23] have obtained optimality conditions by using a -penalty 
method. · 
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-

More recently, F. Mignot -l P. Puel [20] and A Bermudez- C. Saguez 
[ 4] have introduced a direct method which consists in transforming the 
control problem into a linear optimal control problem with nonconvex 
constraints on the state. 

. Numerical approximation of such problems have been studied by many 
__ authors (J. P. Yv~n [24], M. Niezg6dka- I. Pawlow [22], P. Neittaan

miiki- D. Tiba [21], C. Saguez [23]). M. Larrecq - C. Saguez [14] have 
considered the optimal control of the secondary cooling system in a cmifi
riuous casting process. 

In this paper, after presentation of some physical problems (mainly the 
one-phase Stefan problem), we consider, from a general view-point, some 
optimal control problems for a parabolic -variationai inequality. We succe
ssively study existence of solution, optimality conditions and numerical 

··-methods. For more details-·we refer to C. Saguez [23] and A Bermu
dez- C. Saguez [4]. 

1. Physical problems 

- 1.1. The one-phase Stefan problem 

An important class of problems the models of which are given by 
variational inequalities is constituted by those involving changes of phase 
of materials (solidification, freezing, .. . ). As an example let us conside~ the 
ice-water problem. 

Let Q be an open bounded subset of RN (N ~ 3). We assume that Q is 
given as in figure 1.1, i.e. aQ· = rl u r2 with rl n r2 = 9-

/ 

. J 

Fig. l.l. 

T he ·cromain Q is divided into two time dependent subdomains Q 1 and Q , 

corresponding to water and ice, respectively. 1 

___ Jhe temperature, which is one of the unknowns of the system, is sup
posed to be constant and equal to zero in ice. In water it is a solution 
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of the system: 

m .U (Q 1 (s) x {s}) 
se[O, T] 

elll', =V on El= ri X (O,T) 

e!Jl', = 0 on E2 = r2 X (0, T) 

el,S(t) = o 
ael I __ 
Tn s<t> = -L.v·rz 

el (x, 0) =eo (x) 

11 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

where L is the latent heat and ,v · ji is the normal velocity of the free 
boundary S (t). 

This formulation corresponds to the so-called one-phase Stefan problem. 
To transform this problem into a variational inequality we introduce 

a new unknown function y (x, t) given by (G. Duvaut [5]): 

t 

y(x,t)= J e(x,"C)d"C (1.7) 
0 

with e = el in Ql and e = e2 = 0 in Q2· 

Then y is a solution of the following parabolic variational inequality 

where 

I (~ ,cp-y)+a(y,cp-y);?;(f,cp-y) for all cpEK(t) 

y(·,t)EK(t);y(x,O)=O . 

. a 
yEL2 (0, T; V), :r EL2 (0, T; I3 (Q)) 

V= {cp:cpEH1 (Q), 1Pir2 = 0} 

K(t)= {cpEV:cplr 1 =w ,cp;?;O a.e. in Q} 

a (y, cp) = J V y · V cp dx 
Q 

t 

w (x, t) = J v (x, "C) d"C 
0 

f (x, t) =eo (x)- L (1- Xndo>). 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 
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REMARK 1.1. Similar methods can be used for the two-phase Stefan problems. 
We obtain a variational inequality of the following type (G. Duvaut [6]) : 

( ay ay) ( ay ) (ay) ( ay) - cp-- +a y cp - - +tjf (cp) - tjf - >- f cp - -at ' at ' at at ~ ' at 
' for all cp E K 

y (0) = 0 (1.15) 

ay . 
y(t)EH 1 (Q),at(t)EK = {cp EH 1 (Q):cplr 1 = v} 

where tjJ is a non-differentiable convex function. 

1.2. An industr!al example: the continuous casting 

The expansion of continuous casting processes has been very important 
in the last ten years, principally for two reasons: an economic motivation, 
(the production cost is lower than for classical methods) and a metallurgical 
motivation connec!fd to the quality of the steeL Due to these facts It Is 
very interesting to develop methods to optimize the productivity of such 
a system. 

The principle of the continuous casting process' is to cast the steel in 
a mould whose bottom is constituted by the solidified ingot which is conti
nuously extracted. A scheme is given in Figure 1.2. 

The steel is continuously casted in a copper mould through a nozzle. 
At the end of this mould a very thin crust is solidified which is sufficient 
to avoid break - out. · 

In a second part the steel is coolt~d by a spray system divided into 
several independent zones. At the end of this part the steel is cut by 
a cutting torch. 

We distinguish several types of products depending on their dimensions: 

slabs, blooms, billets. 

. ·~-. 

To modelize this system we have the following equations: 

Let T1 (resp. T2 ) be the temperature of the steel in the liquid (resp. 
solid) phase. Then T1 satisfies the heat equation 

ar1 
QVc 1 - - - k1 L1T1 = 0 (1.16) at 

where Q is the density, V the velocity of extraction, c1 the heat capacity 
of the liquid and k1 the thermal conductivity of the liquid. 

Similarly, in the solid phase we have the equation 

ar2 
QVC2 fit - k2 L1T2 = 0 (1.17) 
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Fig. 1.2. Continuous casting process 

13 

Speed of 
extraction 

where c2 is the heat capacity of the solid steel and k 2 its thermal con
ductivity. 

Along the front of solidification S (t) (the free boundary) we have the 
following two conditions 

TtiS<r> = Tzls<rl = Ts (temperature of solidification), 

k1 VT1 ·fi- k2 VT2 ·fi = -Lp·fi. 

(1.18) 

(1.19) . 

Finally we give boundary and initial conditions. To -simplify, we consider 
the unique boundary condition 

ar 
k on + h (T- Tw) = 0 (1.20) 
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with h an exchange coefficient between steel and water and Tw the tempera
ture of water. 

In practice, the heat flux k aT is given in the mould and for the spray an 
system we have similar conditions as above. As the initial condition we 
take 

T(x,O)= T0 (x). (1.21) 

The optimal control problem we study is to find h maximizing the 
velocity of extraction while respecting some structural and metallurgical 
constraints as for instance: 

i) the quantity of water we can use is bounded 
ii) the steel must be completely solidified before the cutting torch 

iii) at the unbending point temperature must fulfill a condition of the 
type Tr/:(8 1 , 82 ) 

iv) the gradient of temperature along the boundary must be bounded. 
More details on this problem can be found in M. Larrecq- C. Saguez [14], 
M. Larrecq - J. P. Birat- C. Saguez - J. Henry [13]. 

The results have been implement for several continuous casting processes 
in France. 

2. Some optimal control problems 

2.1. Distributed control with observation of the state 

We suppose that the state of the system is a solution of the following 
·parabolic variational inequality: 

where 

{
(ir ,cp - y)+a(y,cp-y)?=(J+u,cp - y) for all cpEK 

y (-, t)EK; y (x, 0) = 0 

yEU {0, T; H6 (Q)), ir EL2 {0, T; L2 (Q)) 

K = {cpEH6(Q) : cp ?:0 a.e. in Q} 

a (y, q>) = J (V'y V'cp+ ycp) dx. 
Q 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

If f and u belong to L2 (Q) (Q = Q x (0, T)) then there exists a umque 
yEH2

•
1 (Q) satisfying (2.1). 
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REMARK 2.1. (C. Saguez [23]) 
If fEH(Q) and uEH(Q) then yE ~2 • 1 (Q) and the estimate 

11YIIw~· 1 <Q>::;; C (llfllu<Q>+ llulb<Q>) (2.5) 

holds. • 
We are setting the following optimal control problem. Let u be the 

control, and y the observation. We introduce the cost function J as follows: 

(2.6) 

(v being a positive constant and zd a given function in L2 (Q)). 
Then the problem is to find iiEL2 (Q) such that: 

J (ii)::;; J (u) for all uEL2 (Q). (2.7) 

REMARK 2.2. In this paper we are considering the case without constraints 
on the control and the state. Problems with constraints can be studied by 
similar methods. • 

The existence of an optimal co~trol follo~s fr~m the result given here
after. · 

PROPOSITION 2.( Tlie solution of the variational inequality (2.1) is weakly 
continuously dependent on the control variable u from L2 (Q) into H 2

•
1 (Q). 

Proof. Let {un} be a sequence of controls such that {un}--+ u in L2 (Q) 
weakly. We denote by Yn the solution of the variational inequality (2.1) 
corresponding to u = un. If we take q> = 0 in (2.1 ), we get: 

(2.8) 

from which it follows that IIYniiL'(o, T;H6(0J) is bounded. 
On the other hand, there exists ~n such that: 

(2.9) 

and by using a penalty technique it can be shown that gn} is bounded 
in l!(Q) and thus: 

IIYniiH2,1(Q) :(; C · (2.10) 

We can now pass to the limit in (2.9) to obtain the result. • 
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2.2. Boundary control with observation of the contact set 

In this example we suppose that the state is a solution of the following 
problem: 

such that: 

Find yEL2 (0, T; V), ~ EL2 (Q), 

I( ir, q>- Y )+a (y, q>-y):;, (f, q>-y) for all q>EK (t) 

. y(·, t)EK(t),y(x,O)=O 

with V and K (t) given by: 

V= {q; EH1 (.Q): q;b = 0} 

(2.11) 

(2.12) 

· K (t) = { q; E V: q;lr
1 

= u, q; ;?: 0 a. e. in .Q}. (2.13) 
2-~. 1-~ 

If f is given in E'(Q)(p;?:2) and u is given in ~(1:' 1)= ~ P 
2P(Et) 

satisfying u (x, 0) = 0 and u;?: 0 a.e. on l', then the variational inequality 
(2.11) has a unique solution in W/· 1 (Q). Furthermore we have 

IIYIIw,''(Ql ~ C ( 11!11-L!'(Q)+ llull"/f,;(E,J · (2.14) 

We take p = 2 and consider u as the control. Then we have the control 
space U = H 3

'
2

• 
3

'
4 (l' 1). 

Let F (u) be the contact set (the region occupied by the ice in the 
example 1.1), defined by: 

F (u) = {(x, t):yu (x, t) = 0} (2.15) 

and J the cost function: 

(2.16) 

where v is a positive constant, XF(u) denotes the characteristic function of the 
set F (u) and XFd is the characteristic function of a given subset Fd -of Q. -
-- We set the following optimal control problem: 

{
Find ii E U such that: 

J(ii)~J(u) for all uEU . 
(2.17) 

REMARK 2.3. It is also possible to consider cost functions of the type 

(2.18) 

where b denotes the Hausdorff metric (se-e C. Saguez [23]). • 
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REMARK 2.4. With the same approach one can take into account constraints 
of the type: 

(2.19) 

with Fd a given subset of Q. • 

In order to study the problem (2.17) we need the following assumption: 

M ({(x, t):f (x, t) = 0}) = 0 (2.20) 

(M denotes the Lebesgue measure). 
The next proposition provides a continuity result . 

PROPOSITION 2.2. The mapping u--+ XF(u) is weakly-strongly continuous from 
U into L2 (Q). 

Proof. With the assumption (2.20) and the regularity of y, XF<u) is defined by: 

(2.21) 

' A similar method to that used in the proof of Proposition 1.1 shows that 
if {un}--+ u in U weakly then {Yn} (Yn = y (u.)) converges to y = y (u) in 
H 2

•
1 (Q) weakly. 
Let Fn denote the domain F (u.) . We have 

ay. 
fXF. = .f - Jt-LJy.. (2.22) 

Since {XFJ is a bounded sequence in L2 (Q), there exists a subsequence, 
still denoted {XFJ, such that: 

{XFJ--+ l in L2 (Q) weakly. (2.23) 

By passing to the limit in (2.22) we obtain 

.fl = .f- ~~ -L1y (2.24) 

and then l = XF· 
The strong convergence can also be proved because XF is a characteristic 

function. • 

REMARK 2.5. In the case of the Hausdorff metric it IS possible to prove 
that 

{F.}--+F with M(FLJF)=O, 

. ( N +2 ) 2 provided p >sup -
2
-,2 , pi= N + . • 

2 - Control and Cybernetics 
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From the Proposition 2.2 we· can deduce 

PROPOSITION 2.3. The optimal control problem (2.17) has at least one solution. 

Proof (see C. Saguez [23]). • 
3. Optimality conditions 

In this chapter we consider the case of distributed control variables but 
the results can be extended to many other situations including also boundary 
controls. We assume f = 0 for simplicity. 

The problem of obtaining optimality conditions is difficult because the 
mapping v ~ y (v) is not differentiable but only Lipschitz continuous. Several 
authors studied this problem. In the elliptic case two principal methods 
have been used. The first one consists on introducing a penalty problem 
and then passing to the limit (V. Barbu [2]). The second one introduces 
the conical derivative of the mapping v ~ y (v) (F. Mignot- J. P. Puel [19]). 

We present now two approaches for the parabolic case. 

3.1. Penalty method 

For this part, we do the following assumptions: 
(H1) U = I!'(Q)n V, Vc 1.?-(Q) with compact embedding and 

p > sup ( N; 2 
, 2), p =1- N + 2. 

(H2) The optimal control ii verifies 

M ({(x, t):ii(x, t) = 0}) = 0 

and the associated state y is such that, if q> E H6·0 (Q) with q> = 0 a.e. m 
F = {(x, t):y(x, t) = 0}, then q>EH6· 0 (Q - f). 

Let us consider the following penalty problem: 
- the state is solution of the nonlinear parabolic equation: 

{ 

ay, 1 _ 
---.dy - -Ye = U ot . e 8 

Yeii = 0 

y,(x,O)=O · 

- the cost function is defined by: 

(3.1) 

(3.2) 
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Then the relevant optimal control problem is; 

{
Find ue E U such that 

Je(u,)~J,(u) for all uEU. 

19 

(3.3) 

We prove that this problem has a solution u, and that every limit point 
of the sequence {u,}, as e ~ 0, is a solution of the optimal control 
problem (2.7). Then to obtain optimality conditions, we consider those cor
responding to (3.3) and next pass to the limit as e goes to zero. 

We give the main steps of the proof. 

STEP 1. A regularized penalty problem. 
To get differentiability we regularize the problem (3.1)-(3.3). Let y~ be 

defined by 

a '1 1 Jr" - Llyi +---e ({J~ (yi) = u 

Y71E = 0 

y~(x,O)=O 

where cp~ is a regularization of cp (x) = x- such that 

cp~EC 1 (R), cp~ (x) x ~ 0 

1
1 if X ,:::; 1J 

cp~(x)= E[0,1] if1J::::;x::::;O 

0 if X~ 0. 

Let J'}. denote the functional 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Then the associated optimal control problem has a solution u'}. which satisfies 
the following optimality conditions: 

oyi . 1 
Tt- Llyi +--;- CfJn (yi) = u'}. 

Yi1x = 0 (3.8) 

Yi(x,O)=O, 

op'1 1 
- a:--Llpi+--;- cp~ (yi) Pi= 2 (yi - zd) 

Pi1x = 0 (3.9) 
p'}.(x,T)=O, 

Pi+vu'}. = 0. (3.10) 
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STEP 2: Optimality conditions for the penalty problem: 
It can be shown that every limit point of the sequence {ui} is a solution 

of the problem (3.1}--{3.3). 
If u, is such a limit point then by passing to the limit in (3.8) the 

following optimality conditions are obtained: 

I ay'-Liy .- _!_y-=u at e e e e 

Yeii = 0 
y,(x,O)~O, 

{

- ap, -Lip +~x p = 2(y - z) at ' e e e e d 

Peii = 0 
p,(x,T)=O, 

p,+vu, = 0 

where x, = XF, arid . F, is defined by 

F, = {(x, t):y, (x, t) ~ 0}. 

STEP 3: Passing to the limit as e---+ 0. 
By using the assumptions (H1) and (H2) we first prove that 

XF,---+ X'F in L2 (Q) strongly 
and 

F,---+ F in the Hausdorff metric sense, 

where 

F = {(x, t):y(x, t) = 0} 

and F satisfies 

M (FLIP)= 0. 

(3.11) 

(3.12) 

(3.13) ' 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Then it is possible to pass to the limit m (3.11}--{3.13) and to obtain 
the following result: . 

PROPOSITION 3.1. If ii is a limit point of u, as a---+ 0 then ii is a solution 
of the optimal control probl~m (2.7) and satisfies the optimality conditions·: 

I ( i, , <P - Y-) +a (ji, <P - ji) ;;, (U, <P - ji) for all q> E K (t) 

y(x,O) = O, 
(3.19) 
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T T 

[ I { (p, "an +a (p, cp)} dt ~ 2 I (j-z,, cp) dt for all q>E~o (9) 

;E: H6·o (8) . o (3.20) 

where e = Q- P and f1JJ0 (e) is defined by: 

fl/jo (8) = { q>Eff (8): ~~ Eff (8), q> (x, 0) = 0}, ff (8) ,= {0 (e{·o(O)' 

p+vii = 0. 
(3.21) 

REMARK 3.1. For any solution u E U of the optimal control problem (2.17) 
we introduce the augmented cost function 

1(u)=J(u)+llu-iiii5. (3.22) , 

Then is clear that the unique solution of the optimal control problem 
associated with J is u and therefore we can deduce that every solution 
of the problem (2.7) satisfies the optimality conditions (3.19)-{3.21), by 
replacing J by J in the previous proof. • 

3.2. A direct method 

The idea is to transform the problem (2.7) into an optimal control 
problem for a linear parabolic state equation with state constraints. 

For that we write the variational inequality (2.1) as follows: 

ay 

[

- + Ay= u-~ at 
~EO!K(Y) 

y(x,O)=O. 

We recall that ~Eo!K (y) is equivalent to: 

y ~ 0, ~ ~ 0, (y, 0 = 0 

(see for instance D. Kinderlehrer, G. Stampacchia [12]). 

(3.23) 

(3.24) 

Therefore the optimal control problem (2.7) is equivalent to the following 
one: 
- state equation: 

{ 

ay . 
-+Ay=u-~ at 
y (x, 0) = 0 

(3.25) 
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- cost function: 

(3.26) 

- feasible set of controls: 

{(u, ~):uEU(Q), ~EL2 (0, T; H- 1 (Q))} (3.27) 

- constraints: 

~ ~ 0, y ~ 0, (y, 0 = 0. (3.28) 

By using the regularity of the optimal states (in particular, they belong 
to C0 (Q)) and classical results on the existence of Lagrange multipliers 

(D. Luenberger [12]) one can prove the following result. 

PROPOSITION 3.2. If u is an optimal control then there exist ~ E L2 (Q), 
a Borel measure J1 and two nonnegative real numbers f, X, such that: 

I 
ay -
Tt-L1y+~ = u 

_VIr = 0 
_f(x, 0) = 0, 

y ~ 0' ~ ~ 0' (y' ~> = 0' 

f oz f f -J- . pat- pL1z=f (y-za)z - Jc ~z+(ji,z) 

Q Q Q Q 

for all z E H 2
• 
1 (Q), with zlr = 0 and z (x, 0) = 0, 

ji~O, (ji,y) =0, 

rvu+p= 0, 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

• 
REMARK 3.2. To prove that f is different from zero is an open problem. 
Recently F. Mignot- J. P. Puel [20], using the same transformation have 
obtained the following optimality conditions: 

ay -
--L1y+~ = u at . 
Ylr = 0 
y(x, 0) = 0, 

y ~ o, ~ ~ o, <.v. ~> = o, 
if bEC-e; with (b, y) = 0 then (b, p) ~ 0 , 

(3.35) 

(3.36) 

(3.37) 
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I 
if q>EC-yn W0 (0, T) with (~, q>) == 0 then 

( ~~ - !J q>, p) -f (Y- zd) q> ~ 0, 
Q 

(3.38) 

p+vii = 0 (3.39) 

where 

Cy == {cpEL2 (0, T; H6 (Q)): 3t> 0 , y+tq>EK} (3.40) 

C,= {bEL2 (0, T;H- 1 (Q)):3t'>0,(+tb~O} (3.41) 

W0 (0, T) = {q> E L2 (0, T; H6 (Q)): oq> E L2 (0, T; H- 1 (Q)), q> (0) = o} (3.42) - - at 
If r is different from zero it can be proved that (3.29H3.34) imply 

(3.35H3.39). • 

4. Numerical methods 

In this chapter we give some numerical algorithms to solve optimal 
control problems for variational inequalities. More precisely we consider 
two methods, a penalty method and a Lagrangian method, corresponding 
to the two approaches used in the previous paragraph. 

4.1. Penalty method 

We transform the problem into a nonlinear optimal control problem 
by using a penalty technique. The variational inequality (2.1) is approximated 
by the non linear parabolic partial differential equation 

ay, 1 
1 Tt-!Jy,+-;,- q>, (y,) = u+ 

Yr.l.r = 0 (4.1) 

Ye (x, 0) == 0 

with q>, a C 1 regularization of the function x--+ - x- satisfying: 

q>, (0) = 0, q>, monotone. (4.2) 

Under these assumptions the problem (4.1) has a unique ' solution and 
the mapping assigning the state to the control is continuously differentiable. 
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Therefore, replacing (2.1) by (4.1) we get an approximate optimal control 
problem which is differentiable. Optimality conditions for it are the following: 

Jt-L1ye+B CfJe (ye) = f + ue I 
aye 1 

Yeii = 0 (4.3) 
y.(x,O) = O, 

I 
ape 1 , 
Jt - L1pe+B CfJe (Ye) Pe = Ye - Zd 

Peii = 0 
Pe(x, T) = O, 

(4.4) 

(4.5) 

From a numerical viewpoint it is very important to notice that the 
gradient of the cost function is given by 

(4.6)' . 

This fact allows us to use descent methods to compute an optimal 
control. As an example we give the scheme implementing classical gradient 
algorithm but many other variants could be considered. 

i) Initialization u0 , n = 0 
ii) Compute the state Yn = y (un) from (4.3) 

iii) Compute the corresponding adjoint state Pn from (4.4) 
iv) Compute the gradient of J by (4.6) 
V) Un+l = Un-QnJ'(un) . 

(Qn can be chosen by using, for example, a Wolfe-like method) 
vi) Test of convergence Yes~ stop 

No ~ n = n + 1, go to ii) 

REMARK 4.1. We do not study techniques of discretization (for example 
by finite element methods) for which we refer to R. Glowinski, J. L. Lions, 
R. Tremolieres [11], C. Elliott [8], P. Neittaanmaki, D. Tiba [21], 
R. Glowinski [10]. · 

On the other hand, for numerical implementation we consider the adjoint 
state for the discretized optimal control problem rather than the one obtained 
from a discrete version of (4.4). • 

4.2. Lagrangian methods 

We first notice that if r is different from zero then (3.29)-(3.34) are 
necessary conditions for (u, ~' ji, .X) to be a saddle point of the Lagrangian 
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function: 

· 1 V ' 
L(u, (, p,, A) =' 2IIY (u, ()-zdiiL2(QJ+211uiii2(QJ+(u-A(, y (u, ()) (4.7) 

in the set 

(L2 (Q) x c) x (D x R +) 

where C and D are given by: 

C = gEI!(Q):( ~ 0} 

D = {.U E C0 
( Q)' : .U ~ 0} . 

(4.8) 

(4.9) 

(4.10) 

This fact suggests to use Lagrangian algorithms to approximate an optimal 
controL Hereafter we recall the Uzawa's algorithm: 

i) .UoEC0 (Q)', A0 :;:?: 0, n = 0 
ii) For given .un and An, compute (un, (n) solution of the optimal control 

problem defined by: 
-,--- state equation: 

- cost function: 

- feasible control set: 

{ 

ay 
·--Lly+( =f+u at 
Ylx = 0 
y(x,O)=O 

(4.11) 

(4.13) 

(to solve this problem we can use, for instance, a classical gradient method, 
with projection on the constraint set C) 

iii) 

iv) 

v) test of convergence 

Yes- stop 
No-n= n+ 1, go to ii) 

(4J4) 

(4.15) 

REMARK 4.2. Many other methods may be used to solve the constrained 
optimization problem (3.25H3.28) as for example augmented Lagrangian 
methods. • 
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4.3. Examples 

i) Example 1 
Let us consider the following two-dimensional problem: 
- The domain Q is given as in figure 4.1, with R 1 = 0.37 and R 2 = 0.77 

Fig. 4.1. 

-The state y is the solution of the variational inequality (2.1) withf= -40 · 
- The cost function is defined by: 

J (u) = f (y-za? dx dt 
Q 

with z" being the solution of the variational inequality (2.1) corresponding to 

_ , _ jx4 + (R 1 - x)4 

f = -40 and u (x, t)- 8 Jt Rt 
This problem is approximated by using triangular finite elements of 

degree 1. The discretized domain is given in figure 4.2. 

Fig. 4.2. 728 triangles, 482 nodes 

-------· ------------------------ ----------
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The optimization problem is solved by a gradient method. Convergence 
1s obtained after 10 iterations as is shown in table 4.1. The computed 
control after 10 iterations is given in figure 4.3. 

ii) Example 2 

v(x, t) f=- 40 J 4 4
1 

x+IR-x) 
v(t) =SJt 

2 R 
. 1 

t = 0.2 
t = 0.1 

Fig. 4.3. Computed control along I 1 

The state equation is similar to that of example 1 with f = -80. 
The cost function is given by: 

J (u) = J (XF(uJ-XF) 2 dx dt 
Q 

t= 1.0 

Fig. 4.4. Desired free boundary 12" = R 1 + t (R 2 - Rd I cos Ill 



Table 4.1 

Iterations Cost function 

1 0.245 102 

2· 0.935 
4 0.110-J 
7 0.1610 - 2 

10 0.73 10- 3 

Fig. 4.5. Computed optimal free boundary 

r, 

Fig. 4.6. Computed optimal control along T1 

---------
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with 

Fd = {(Q, e):g ~ R 1 +t (R 2 -R 1) lcos 81}. 
In fact J is regularized as follows: 

J~(u) = f(1J:Y -xFdy dxdt, with 1]>0 . 

Q 

Convergence of a gradient method is obtained after 8 iterations. Results 
are presented in figures 4.4, 4.5 and 4.6. 

5. Conclusions 

In this paper we have offered a general insight into optimal control 
problems for systems governed by parabolic variational inequalities. The 
first experience we have got shows that it is possible to adapt the classical 
approach to solve this kind of problems, in particular, from a numerical 
viewpoint. 

Nevertheless, many theoretical and numerical problems are still open. 
This is the case, in particular, when the convex K given in (2.3) is replaced by 

K = {cpEH~ (Q): 1Vcpl 2 ~ 1 a.e. in Q}, 

for instance. Such problems are of a great industrial interest m the design 
of elastic-plastic structures. 
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Sterowanie optymalne nierownosci wariacyjnych 

Artykul jest poswit:;cony analizie zadan sterowania optymalnego stawianych dla parabo
licznych nier6wnosci wariacyjnych. Szczeg61ny nacisk kladzie sit:; na mo:i:liwosc sformulowania 
warunk6w optymalnosci oraz aspekty numeryczne zagadnien. Przedstawione s~ pewne przy
klady numeryczne. 

()nTHManhuoe ynpaBneuue Bapuauuouub~H uepaBencTBaMn 

B pa6o.Te paccMaTpHBaeTCll npo6neMhi onTHManhHoro ynpasneHHll rrapa6onHqecKHMH 
sapHaUHOHHhiMH nepaBeHCTBaMH. Oco6eHHOe BHHMaHHe y.uenlleTCll B03MOJKHOCTH <!JopMynH

poBKH ycnOBHH OnTHMaflhHOCTH, a TaKJKe qf!cneHHhiM acneKTaM rrpo6neM. Ilpe.UCTasneHhl 
HeKOTOpbie qf!cneHHhie npHMepb!. 


