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As it is well known, the motion equations of a continuum written as 
conservation laws of mass, momentum and energy have a divergent form. 
Thus a generalized motion can be defined which admits discontinuities 
of motion characteristics such as velocity, density, specific internal energy 
and stress. If the medium characteristics of the generalized motion exhibit 
discontinuity along some hypersurface rT and have a necessary number 
of derivatives everywhere beyond Fy, the generalized motion is called the 
strong discontinuity motion. 

As examples of such a motion one can take in particular shock waves 
in gas dynamics or phase transitions in a pure matter described by a classical 
solution of Stefan problem. 

The goal of this work is to construct simple closed mathematical models 
of phase transitions which take into account a medium motion. One­
-dimensional motions with plane waves are the simplest among them. 

Let Q be a domain in La grange variables (x, t) where functions J 
(specific volume), u (velocity), P (stress), V (specific internal energy) and e 
(temperature) to be determined satisfy the system of equations 

oJ ou ou oP 
ot ox 'Tt ox ' (l) 

J_ (_!_ u2 + v) = ~ (~. oe + Pu) (2) ot 2 ox J ox 
m the distribution sense. 
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·These equations are to be satisfied along with the following state equations 

11 ou 
P = -.f" ox -Po (8, J), 8 =X (V). (3) 

Let us assume from now on that the melting temperature of the medium 
is constant. Without loss of generality it can be assumed to be equal zero. If 
x(V)>O for V>O, x(V)=O for VE[-L,O], x(V)<O for V<-L and 
x' (V)> 0 ·for V f/: [ .:__ t, 0], then the second equation in (3) defines a liquid 
(V~O), solid (V~ -L) and mushy ( - L< V<O) region of the medium [1]. 

In the case of a strong discontinuity motion in the crystallization or 
melting problems, there exists a finite number of the smooth curves Tr = 
= {(x, t)lx = R (t), tE(O, T)} in Qr = Q x (0, T). Upon crossing them, the 
medium characteristics (maybe, not all of them) undergo discontinuities 
of the first kind, and everywhere beyond those curves they satisfy the 
differential equations (1), (2) in the classical sense. 

On the phase transition curves Tr the limit values of the unknown 
functions are not arbitrary but have to satisfy the conditions of the strong 
discontinuity: 

(4) 

-u2 + V ·--+ -·-+ Pu = 0. [ 
1 J · dR [ x ae J · 
2 ' dt J ox ' (5) 

Before embarking upon the analysis of (4), (5), it seems reasonable to 
introduce some simplifying assumptions. First, let us ignore the energy 
dissipation in the heat equation (2) and write it down as 

av a (x ae) ar=ax }'ax, 

This is related to the fact that even in the universally accepted Stefan 
problem for a nonhomogeneous heat equation the conditions under which 
the generalized solution is in the form of the strong discontinuity motion 
have not been clarified up to now. 

Provided the heat equation is homogeneous, there is no transient phase 
at an initial time moment, and the liquid and solid phases consist of a finite 
number of connected components, in the case of one space variable the 
generalized solution of the Stefan problem is the classical one, therefore it 
represents a strong discontinuity motion. An analogous structure is to be 
expected for the solution in more complicated situations. 

- - · -- --------- -
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According to the heat equation, the strong discontinuity condition takes 
the form: 

dR [" ae J · [V]·-+-·- =0. 
. dt J ax . (6) 

In tlie sequel we shall assume that in the domain QT there is only: 
one strong discontinuity interface Tr (free surface) between the liquid and 
solid phases, and one of the phases has temperature equal to the melting 
temperature. 

Let us consider two cases: 

(A) In liquid and sofid states the medium is viscous, i.e. 

J1. au 
p = J ax ' J1. = const > 0 for e > 0 ' 

Jl.s au j.' e 0 P = -p0 (8,J)+-·-a , Jl.s=const>O 10r < , 
J X 

the liquid phase occupies the domain Q:j = {(x, t)IO < x < R (t) , 0 < t < T} , 
the solid occupies Qi = {(x, t)lx > R (t), 0 < t < T} and has zero tempera­
ture; besides, on the boundary x = 0 the heat flow and stress are equal 
to zero. 

(B) In the solid state the medium has elastic properties, i.e. 

p = - y . e + (3 . J' (3 = const > 0 for e < 0; 

the solid phase occupies the domain Qi = {(x, t)IR (t) < x < 1, 0 < t < T}, 
on the boundary x = 1 the velocity and heat flow are equal to zero, and 
in the liquid phase which occupies the domain Q:j = {(x, t)ix < R (t), 
0 < t < T} the temperature is equal to that of melting. 

In the case (A), the first equation of (3) can be treated as the differential 
equation 

;~ = Jl.~e) ·(P+Po (8, J)) in Qr, 

which yields the strong discontinuity condition 

[u] = 0 On TT . 

This condition; together with (4), implies that the specific volume J and 
the stress P are continuous on the strong discontinuity line Fr. 

Generally speaking, stresses and displacements in the solid phase differ 
from zero and effect convection in the liquid phase. 

There are two ways of constructing the solutions to the above problem. 
The first one consists in_ solving the equations of motion over the domain 
Qi that is rather complicated procedure. The other one is to assume that 
the density of the solid phase is equal to a certain known constant and 
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therefore the equations of motion throughout a:;; can be neglected. However, 
in order to determine correctly the solution in a; and the proper domain 
a; itself, it is necessary to specify additionally either the velocity, stress 
or some value related to them on the free surface. Since it is definitely 
impossible to determine all these values, one should postulate that an addi­
tional information is available, e.g. the specific volume in the liquid phase 
is at the moment of complection of the process close to a known con­
stant JL. · 

Prior to giving an effective formulation of the problem (A), let us trans­
form it to a more convenient form. By differentiation of the equations (1) 
with the subsequent integration in time, one gets the following equation 
for the function w = ln J: 

w aw a2 w + 
e ·Tt=·axz +f(x),(x,t)Ear, (7) 

where f(x) = 0 at xE(O, R 0 ) and it is to be determined at x i~ R 0 . The 
function f (x) represents the influence of the solid phase onto liquid one 
and can be determined from an additional information by minimization 
of a relevant functional. Since the time derivative of the function w on the 
boundary x = 0 is equal to zero (by the equation and due to condition 
that the stress on the boundary x = 0 is equal to zero), w is constant 
on this boundary, also 

w (0, t) = w0 (t), tE(O, T) (8) 

P;oblem (A): Summing up, we have arrived at the following formulation. 
Deterinin.e the domain a; and functions w, (}, V, f which satisfy the system 
. consisting of_ (7),. (8) and 

a v a ( w ae ) ) a+ at = ax xe- · ax , (} = X (V), (x, t E r, 

ae 
ax = 0, X= 0, tE(O, T), 

(} = 0, (1) = w, X= R (t), tE(O, T}, 

dR -w ae 
Ldt= -xe · ax'x=R(t),tE(O,T), 

R=R0 , (}=(} 0 (x), w=w0 (x) at t=O, xE(O,R0 ), 

where L, w, f..l, x, R 0 = const > 0. 

(9) 

(10) 

(11) 

. (12) 

(13) 

The unknown function f (x) is to be determined by the minimization 
of the functional 

R(T) , 

'Po(f)= JIJ(x,T)-hl 2 dx. (14) 
0 
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In the case (B) the first equation in (3) is degenerate, i.e. the viscosity 
coefficient t-t equals zero in the solid phase. Consequently, the velocity, 

· density and stress can exhibit the first kind discontinuity on the free 
surface. 

By an analysis of the structure of the problem in the case (B), it 
follows that in order to determine the domain Qi and the characteristics 
of its motion without solving the corresponding equations of motion in the 
liqu.id phase, one needs to know either the velocity or specific volume along 
the free surface, together with the relevant initial conditions, the conditions 
on the fixed boundary x = 1: { 

oJ oe 
~ = 0' --:1 = 0' X = 1' t E (0' T)' 

('.'( (! .'( 
(15) ' 

as well as to prescribe the Stefan condition (6) and equality of the tempera­
ture on the free surface to zero. 

Just as in the case (A), it is impossible to determine directly the 
above-mentioned values, therefore they are to be found via a functional 
minimization analogous to (14). 

In Qi, the specific volume J satisfies the nonhomogeneous wave equation 

o2 J o2 J o2 e 
7Ji2 = {3 OX2 - y ox2 '(x, t)EQi. (16) 

If the velocity of the free boundary is small, only one family of chara­
cteristics originate from this line. In this case, an additional boundary 
condition may be prescribed on the known boundary x = 1: 

J = j (t), X = 1, t E(O, T). (17) 

Now we can give an accurate formulation in the case (B). 

Problem (B): Determine a function R (t) which defines the domain Qi and 
functions J, u, e, V satisfying in Qi equations (9), (16), boundary conditions 
(12), (15), (17) and the conditions 

e = o, x = R (t), tE(O , T), (18) 

oJ 
R = Ro , e =eo (x), J = Jo (x), at = 0, XE(Ro, 1). (19) 

The unknown function J (t) is to be determin~d by minimization of the 
functional 

1 

F0 (1) = J IJ (x, T)-J. I2 dx. (20) 
R(T) 

Using methods standard for the analysis of second-order parabolic equa­
tions, it can be shown that the set of those f (x) for which the problem 
(7H13) has a unique solution is not empty. 

• ; • ~ • : : 11: • r· 
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THEOREM 1. Let V= CL. e, CL= const > 0, L, X, f.l, w, Ra = const > 0, ea, 

1 Ro 

WaEC2 [0,Ra], fEL 2 [0,X], where X~Ra +LJ Ba(x)dx. Then the 

problem (7)--(13) has a unique solution R, w, V, e such that w, BE W{ 1 (Qi), 
REH 1 +y[O , T]. 

As it is well known, the less information is contained in the functional (14), 
the more difficult is to determine its minimum. For that reason in this work 
we will specify the function f (x) as a minimizer of the functional 

'I' (f) = 'I' a (f) + ex llfii.Lta,x], (21) 

where . ex> 0 1s a sufficiently small number. 

THEOREM 2. Under the assumptions of Theorem 1, there exists at least one 
element f of L 2 [0, X] which minimizes the functional (21). 

Analogous results are true for the problem (B), but in contrast to (A) we 
are unable to provide strict positivity of the specific volume J throughout 
the domain a:r . Thus in a proof of the assertion analogous to Theorem 1, 
it is necessary to demand a smallness of the initial temeprature Ba (x). 
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Sterowanie brzegowe ruchu osrodka 
w problemach krystalizacji i topnienia 

Praca dotyczy konstrukcji i analizy modeli matematycznych proces6w fazowych, sformulo­
wanych w terminach ruchu uog6lnionego. Ruch ten charakteryzuje si~ nieci~glosci~ charaktery­
styk takich jak szybkosc przeplywu, g\!stosc, energia wewn~trzna i napr~ienie. Rozwaiane s~ 

dwa modele odpowiadaj~ce zalozeniom o lepkosci lub elastycznosci osrodka. Proponowane 
modele maj~ postac zamknil!tego ukladu r6wnan r6zniczkowycli. c~stkowych zwi~zanego 

z pewnym zadaniem minimalizacji funkcjonalu. Podane s~ twierdzenia o istnieniu i jedno­
znacznosci rozwi~zan modeli. 

rpauuquoe ynpaB~euue B npo6~eMaX KpHCTa~~3aQHH 
H n~aB~eHHH OTHOCUTe~LHO ABH*eHHH cpeALI 

llpe)lMeTOM pa60Thl l!BJil!eTC.!I KOHCTpyKl\H.!I H aHaJIH3 MaTeMaTF!'IeCKHX MO)leJieH ilJI.!I 
npol(eCCOB <IJa30BhlX nepeXO)lOB OTHOCHTeJihHO 0606Il(eHHOro )lBMJKeHMll , KOTOpOe XapaKTepH-
3HpyeTCll HenpephiBHOCT.!IMH TaKHX xapaKTepHCTMK KaK CKOpOCTh, ITJIOTHOCTh, BHyTpeHH.!I.!I 
:.lHeprH.!I B Hanpl!lKeHHe. llpe):(JiaraiOTC.!I )lBe MO):(eJIH COOTBeTCTBY!Oll\Me npe):(ITOJIOJKeHHl!M 
0 Bll3KOCTH JIM60 ynpyrOCTH Cpe)lhl . Mo):(eJIH HMe!OT BM):( 3aMKHYTOH CMCTeMhl ilH<!J<!JepeHl\HaJih­
HhlX ypaBHeHHH B '!aCTHh!X npOH3BOil:Hh!X CBl!3aHHOH C HeKOTOpOH 3a):(a'!eH MaHHMH3aUHH 
<IJYHKl(HOHaJia. CtpopMyJIHpOBaHhl TeopeMhl 0 cymecTBOBaHJi!H H e):(HHCTBeHHOCTH pellleHHH. 


