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As it is well known, the motion equations of a continuum written as
conservation laws of mass, momentum and energy have a divergent form.
Thus a generalized motion can be defined which admits discontinuities
of motion characteristics such as velocity, density, specific internal energy
and stress. If the medium characteristics of the generalized motion exhibit
discontinuity along some hypersurface Iy and have a necessary number
of derivatives everywhere beyond Iy, the generalized motion is called the
strong discontinuity motion.

As examples of such a motion one can take in particular shock waves
in gas dynamics or phase transitions in a pure matter described by a classical
solution of Stefan problem.

The goal of this work is to construct simple closed mathematical models
of phase transitions which take into account a medium motion. One-
-dimensional motions with plane waves are the simplest among them.

Let @ be a domain in Lagrange variables (x.¢) where functions J
(specific volume), u (velocity), P (stress), V (specific internal energy) and 6
(temperature) to be determined satisfy the system of equations
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‘These equations are to be satisfied along with the following state equations

P=b. 2 p.0),6=10) ®)
X .

Let us assume from now on that the melting temperature of the medium
is constant. Without loss of generality it can be assumed to be equal zero. If
y(V)>0 for V>0, y(V)=0 for Ve[—-L,0], y(V)<0 for V< —L and
x'(V)>0 for V¢[—L,0], then the second equation in (3) defines a liquid
(V=0), solid (V= —L) and mushy (—L< V< 0) region of the medium [1].

In the case of a strong discontinuity motion in the crystallization or
melting problems, there exists a finite number of the smooth curves I'y =
={(x,t)|lx=R(t),te(0, T)} in Qr=Q2x(0,T) Upon crossing them, the
medium characteristics (maybe, not all of them) undergo discontinuities
of the first kind, and everywhere beyond those curves they satisfy the
differential equations (1), (2) in the classical sense.

On the phase transition curves I'y the limit values of the unknown
functions are not arbitrary but have to satisfy the conditions of the strong
discontinuity:

dR dR
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1 5 "dR x of "

Before embarking upon the analysis of (4), (5), it seems reasonable to
introduce some simplifying assumptions. First, let us ignore the energy
dissipation in the heat equation (2) and write it down as
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This is related to the fact that even in the universally accepted Stefan
problem for a nonhomogeneous heat equation the conditions under which
the generalized solution is in the form of the strong discontinuity motion
have not been clarified up to now.

Provided the heat equation is homogeneous, there is no transient phase
at an initial time moment, and the liquid and solid phases consist of a finite
number of connected components, in the case of one space variable the
generalized solution of the Stefan problem is the classical one, therefore it
represents a strong discontinuity motion. An analogous structure is to be
expected for the solution in more complicated situations.
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According to the heat equation, the strong discontinuity condition takes

the form:
dR x 00 |
m'?*[“fﬁ]‘“ ©)

In the sequel we shall assume that in the domain Q; there is only
one strong discontinuity interface I (free surface) between the liquid and
solid phases, and one of the phases has temperature equal to the melting
temperature.

Let us consider two cases:

(A) In liquid and solid states the medium is viscous, i.e.

ko
P—J ax,,u—c{)nst>{} for 6 >0,
P=—po(8,.f)+%-g—l;, ps = const > 0 for 6 <0,

the liquid phase occupies the domain Q7 = {(x,t)[0 <x <R (t), 0<t< T},
the solid occupies Q7 = {(x,t)|x > R(t), 0 <t < T} and has zero tempera-
ture; besides, on the boundary x =0 the heat flow and stress are equal
to zero.

(B) In the solid state the medium has elastic properties, i.e.
P=—y-0+B-J, f=const >0 for 0 <0;

the solid phase occupies the domain Q7 = {(x,t)|[R()<x<1, 0<t< T},
on the boundary x =1 the velocity and heat flow are equal to zero, and
in the liquid phase which occupies the domain QF = {(x,t)|x <R (¢t),
0 <t < T} the temperature is equal to that of melting.

In the case (A), the first equation of (3) can be treated as the differential
equation

du J :
'gx— = W(P-i-po {9., J)) mn QT,
which yields the strong discontinuity condition
[u]=0 on I.

This condition; together with (4), implies that the specific volume J and
the stress P are continuous on the strong discontinuity line I'y.

Generally speaking, stresses and displacements in the solid phase differ
from zero and effect convection in the liquid phase.

There are two ways of constructing the solutions to the above problem.
The first one consists in solving the equations of motion over the domain
Q7 that is rather complicated procedure. The other one is to assume that
the density of the solid phase is equal to a certain known constant and
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therefore the equations of motion throughout Q7 can be neglected. However,
in order to determine correctly the solution in Q7 and the proper domain
Qf itself, it is necessary to specify additionally either the velocity, stress
or some value related to them on the free surface. Since it is definitely
impossible to determine all these values, one should postulate that an addi-
tional information is available, e.g. the specific volume in the liquid phase
is at the moment of complection of the process close to a known con- -
stant Jp.

Prior to giving an effective formulation of the problem (4), let us trans-
form it to a more convenient form. By differentiation of the equations (1)
with the subsequent integration in time, one gets the following equation
for the function w=1nJ:

2
-%=2T"’;’+f(x),(x,r)eg;, (7)

where f(x)=0 at xe(0,R,) and it is to be determined at x:= R,. The
function f(x) represents the influence of the solid phase onto liquid one
and can be determined from an additional information by minimization
of a relevant functional. Since the time derivative of the function w on the
boundary x =0 is equal to zero (by the equation and due to condition
that the stress on the boundary x =0 is equal to zero), @ is constant
on this boundary, also

i)

@ (0,t)=wy (t), te(0, T) (8)

Problem (A): Summing up, we have arrived at the following formulation.
Determine the domain Q7 and functions w, 6, V, f which satisfy the system
‘consisting 0f_(7),_ (8_) and

v @ a0
S sy TR SR e = Q+ 9
at 6x (Xe 3x)’ 6 X(V)s (x!r)E T ( )
9 0, x=0, te,T), (10)
0x
0=0, w=0d, x=R(t), te0, T), (11)
dR s SO = 1
L—r=—ne™® 5= x=R(0),te0,T), (12)
R=R,, 0=0,(x), = (x) at t =0, xe(0, Ry), (13)

where L, @, pu, ¥, Ry = const > 0.
The unknown function f(x) is to be determined by the minimization
of the functional
R(T

A :
Fs{l)= g W (x, T)—Jy|* dx. (14)
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In the case (B) the first equation in (3) is degenerate, ie. the viscosity
coefficient p equals zero in the solid phase. Consequently, the velocity,
density and stress can exhibit the first kind discontinuity on the free
surface.

By an analysis of the structure of the problem in the case (B), it
follows that in order to determine the domain Q7 and the characteristics
of its motion without solving the corresponding equations of motion in the
liquid phase, one needs to know either the velocity or specific volume along
the free surface, together with the relevant initial conditions, the conditions
on the fixed boundary x = 1:

%:0,%:0, x=1, te(0, T), (15)
as well as to prescribe the Stefan condition (6) and equality of the tempera-
ture on the free surface to zero.

Just as in the case (A), it is impossible to determine directly the
above-mentioned values, therefore they are to be found via a functional
minimization analogous to (14).

In Q, the specific volume J satisfies the nonhomogeneous wave equation

0%J 0%J %0
P e T o
X

If the velocity of the free boundary is small, only one family of chara-
cteristics originate from this line. In this case, an additional boundary
condition may be prescribed on the known boundary x = 1:

J=J@), x=1, te©, T). (17)
Now we can give an accurate formulation in the case (B).

(x, )eQ7. (16)

Problem (B): Determine a function R () which defines the domain Q7 and
functions J, u, 6, V satisfying in Q7 equations (9), (16), boundary conditions
(12), (15), (17) and the conditions

=0, x=R(), te(0, T), (18)
R=Ro, 0=0,(x), J = Jo (x), —‘;%=0, xe(Ro, 1). (19)

The unknown function J (f) is to be determingd by minimization of the
functional
1
Fo(th= | W T)-J)dx. (20)
R(T)
Using methods standard for the analysis of second-order parabolic equa-
tions, it can be shown that the set of those f(x) for which the problem
(7)413) has a unique solution is not empty.

rer g s



36 N. A, KULAGINA, A, M. MEIRMANOV

TheoreM 1. Let V=1c.-0, ¢, =const >0, L, %, u, @, R, = const > 0, 6,
T 1 Ro

—Lbf 0o (x)dx. Then the
problem (7)<(13) has a unique solution R, w, V, 0 such that o, 0 W, (Q7),
ReH'™""[0,T].

As it is well known, the less information is contained in the functional (14),
the more difficult is to determine its minimum. For that reason in this work
we will specify the function f (x) as a minimizer of the functional

V() =Y (N)+a|fllZ,0.xs (21)
where o > 0 is a sufficiently small number.

wo€C*[0,R,], feL,[0,X], where X = R,+

THEOREM 2. Under the assumptions of Theorem 1, there exists at least one
element [ of L, [0, X] which minimizes the functional (21).

Analogous results are true for the problem (B), but in contrast to (4) we
are unable to provide strict positivity of the specific volume J throughout
the domain Q5. Thus in a proof of the assertion analogous to Theorem 1,
it is necessary to demand a smallness of the initial temeprature 6, (x).
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Sterowanie brzegowe ruchu oérodka
w problemach krystalizacji i topnienia

Praca dotyczy konstrukcji i analizy modeli matematycznych proceséw fazowych, sformulo-
wanych w terminach ruchu nogdlnionego. Ruch ten charakteryzuje si¢ nieciagloscia charaktery-
styk takich jak szybko$¢ przeplywu, gestosé, energia wewngtrzna i napr¢zenie. RozwaZane sa
dwa modele odpowiadajace zaloZzeniom o lepkosci lub elastycznodci osrodka. Proponowane
modele maja posta¢ zamknietego ukladu réwnan rdzniczkowych czastkowych zwiazanego
z pewnym zadaniem minimalizacji funkcjonalu. Podane sa twierdzenia o istnieniu i jedno-
znaczno$ci rozwigzan modeli.

I'pannunoe ympasJieHHe B NpoGieMax KPHCTAJUIH3AUHH
H IJIABJICHUS OTHOCHTE/ILHO JIBHXKEHHS Cpebl

IMpeamerom paboTel ABISETCS KOHCTPYKIMA H aHANM3 MATEMATHYECKHX Mojesell s
poneccoB (a3oBhIX NEPEXOIOB OTHOCHTENLHO 000OMEHHOrO ABHKEHMS, KOTOPOE XapaKTepH-
3UpyeTcs HENPEPHIBHOCTAMH TAKHX XaPAKTEPHCTHK KaK CKOPOCTh, IJIOTHOCTb, BHYTDPEHHS
9HeprMs B HANpsKeHue, IlpemnararoTcs OBE MOJEIH COOTBETCTBYHOUIME [PEMINOIOKEHHIM
0 Bs3KocTH B0 YIpYrocTH cpeibl, Mojen HMERT BH/ 3aMKHYTOH cucTeMsl mudibepeHumas-
HLIX YPaBHECHHH B YacTHBIX IIPOM3BOJHBIX CBA3aHHON C HeKOTOPOH 3ajauell MaHHMH3AIHH
dynxnuonana. ChopMynHpOBaHEl TEOPEMBI O CYLIECTBOBAHHM H €IHHCTBEHHOCTH DEHICHHI.



