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The classical statement of the alloy solidification problem, and a weak formulation of this 
problem which is the basis of both analytical and numerical work are described. Some 
numerical methods are outlined and results in both one and two space dimensions are shown. 
From these results arises a discussion of some open questions relating to so-called 'mushy 
regions', cellular and dendritic solidification, and the modelling of surface tension effects. 

1. Introduction 

The problem of modelling the solidification of a binary alloy involves 
coupled heat conduction and mass diffusion of the solute. Unlike the classical 
Stefan problem of freezing a pure substance, where the solidification tempe
rature is constant in the alloy problem the phase change temperature is 
determined by the local concentration of the solute. In certain situations the 
phase change temperature may also depend on other parameters, such as the 
velocity or curvature of the interface. At the phase change surface the latent 
heat is released as the material solidifies, and the concentration of the solute 
is also discontinuous. Thus the process of alloy solidification is described 
by a pair of coupled parabolic equations with an unknown moving boundary 
(the phase change surface), the position of which is to be determined by 
requiring that certain conditions must be satisfied there. This problem has 
attracted considerable interest in recent years, following the advances made 
in the mathematical treatment of the classical Stefan problem. The possible 
effects of fluid convection in the melt will not be considered in this 
paper. 

The description of the solidification history of an alloy and the consequent 
redistribution of the solute is a problem of importance in many physical 
situations. In metallurgical processes solute redistribution during solidification 
may have a detrimental effect on the strength of the alloy produced. 

------ ----------------------~--



98 A. B. CROWLEY 

Problems of this type also arise in the fabrication of semi-conductor devices, 
where pure substrate material is doped with an impurity by ion bombardment, 
and the crystalline damage is repaired using a high temperature annealing 
process. 

In this paper a weak formulation of such problems will be outlined. 
This conservation form is the starting point of most mathematical analyses 
and numerical techniques which have been developed. In the following section 
some numerical methods which have proved suitable for both one and two 
dimensional calculations will be described, and some typical solutions shown. 
There arise, in subsequent sections, some interesting questions as to the 
occurrence of regions where solid and liquid phases coexist (i.e. mushy regions), 
and whether these are related to the cellular and dendritic growth regimes 
seen experimentally when a planar interface becomes unstable due to consti
tutional supercooling. 

We commence now with a description of the classical statement of the 
alloy solidification problem as given by Rubinstein [1]. In this model it is 
assumed that heat transport is due solely to molecular heat conduction; 
both the energy flux associated with the mass flux at constant temperature 
and the cross-diffusion terms are neglected. Likewise the solute propagates 
by mass diffusion alone. For simplicity the thermal conductivity k, specific 
heat a, and the diffusion coefficient D, are taken as piecewise constant in 
each phase and the density is normalised to unity. The governing equations 
are then: 
Heat conduction 

Solute diffusion 

au 2 
a - =k;V u, i=s,L at 

ac 2 
-=D;V c, i=s,L at 

(1) 

(2) 

where u denotes temperature, c solute concentration, and t time. The 
subscripts s, L denote quantities pertaining to the solid, liquid phases respecti
vely. On the phase change surface S (x, t) = 0 energy conservation gives 

L as = [k. Vu· VS]L '-, 
at ' • 

and mass conservation 

L as L 
[c]. at= [D; Vc ·VS]. 

\ 
_ _) 

(3) 

(4) 

where [JJ denotes the jump in the quantity f on crossing S (x, t) = 0. 
Here L denotes the latent heat of the pure solvent. 
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The state of the material with g1ven values of u and c is determined 
from the equilibrium diagram, which for a dilute binary alloy is typically 
as shown in Fig. 1. Here the solidification temperature of the pure solvent 
has been chosen as the origin of the temperature scale for convenience. 
If the local values of u and c are such that u- mL c > 0 then the material 
is in the stable liquid phase, While if u- ms c < 0 then the material is in 
the Stable SOlid phase. If ms C < U < mL C then the material iS not in chemical 
equilibrium. For some solvent and solutes the effect of the solute is to 
raise the solidification temperature, corresponding to an equilibrium diagram 
where liquidus and solidus lines have pos~tive slope. 

u 

c 

Fig. 1. 

Assuming that the material at the phase change surface is in chemical 
equilibrium and that the temperature is continuous there, the conditions 
there may be writt~n as 

(5) 

and there exists a concentration discontinuity at the surface with 

(6) 

The ratio mdms is known. as the distribution coefficient. The equations (1) 
. and (2), together with conditions (3)--(6) at the phase change surface and 
appropriate conditions on the fixed boundaries and initially, complete · the 
classical statement of the alloy problem. 

As is the case for the classical Stefan problem, there is an analytical 
solution for a one-dimensional quenching problem in terms of error functions; 
which is given in [1]. On a semi-infinite region the alloy problem as given 
by (1)--(6) with initial conditions 

u (x, 0) = u0 > 0, c (x, 0) = c0 , 

and boundary conditions 

ac 
U (0, t) =Ut< 0, OX (0, t) = 0, 

(7) 

(8) 
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u (x, t) ~ u0 , c (x, t) ~ c0 as x ~ oo 

has the solution 
1 s (t) = 2[3{'! 

( ) 
erf (x/2a, Jt) 

u = u1 + u,-u1 erf([3/a,) 0 < x < s (t) 

c = u,/m, (9) 

erfc (x/2 aL Jt) 
u = uo+(u,-uo) . x > s (t) 

erfc ([3/IXL) 

( 
u, ) erfc (x/2 J!E]) 

C=Co+ - - Co ~ 

mL erfc (f3!)D;.) 
where x = s (t) is the interface, a; = k,/a, ai/a, [3 and u, are determined 
as the solutions of the transcendental equations 

and 

{3 (~-~) = .:J]f;_ (u,jmL- Co) e-fJ'IDL, 

mL m, JTc erfc (f3/JDL) 
whlch are obtained by substituting from the above expressions for tempera
ture and concentration into (3) and (4): It is shown in [1] that a solution 
of these exists. This analytical solution may be used to test the accuracy 
of numerical methods for the solution of (1H6). 

2. Weak formulation 

We next consider the weak formulation of the problem stated abovt 
employing a similar approach to that used in the enthalpy formulation of the 
classical Stefan problem [2]. This approach has been successfully extended
to the treatment of other moving boundary problems governed by a single 

· parabolic or elliptic partial differential equation [3, 4]. Here the enthalpy 
variable is defined by 

H__:_{au if u-m,c<O, 
- au+L if u-mL c > 0. 

(11) 

For the solute diffusion problem, the concentration, bejng discontinuous 
at the phase change surface, is an enthalpy-like variable. The condition 
m, c, = mL cL at the interface is simply a statement of the continuity of the 

- ---------------------------------
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chemical potential, or equivalently the chemical activity, at the interface. 
For dilute solutions, where the temperature range is not too great, the 
chemical activity may be taken as proportional to the solute concentration 
(see Guggenheim [5]). -Thus we introduce the che~ical acti-vity normalised 
so that 

V= -m; C; (12) 

in each phase. The mass diffusion equation (2) then becomes 

ac . 
- = V. (D~ Vv) where D~ = - D·/m· at I I I . I 

Thus, as for the classical Stefan pro blerri, we have 

, aH ac . 
-=V. (k; Vu), -a· = V. (Di Vv) 

at t . 
(13) 

with the constitutive relations 

{ 

cru · - ~ -vs/ms · 
H = e [cru, cru+L], C = e [ -V8/m5 , ~vLfmL], if u+v = 0 

cru+L -vdmL if u+v > 0 

ifu+v<O 
(14) 

Across any surface of discontinuity the jump conditions for (13a, b) are 
precisely the conditions (3, 4) of energy and solute conservation. These 
equations may therefore be regarded as holding throughout the region 
occupied by the material provided the derivatives are understood in a weak 
or distributional sense. Hence (13) and (14) are known as the conservation 
form of the alloy solidification problem. Denoting (H, c) by H and (u, v) 
by 1i the equations may be written as 

aH 
a~ = V. (x; V.u), 

where 

(k- 0) x;= ol v; · 

A weak solution {E,u} of (15), (14) is defined as a pair of bounded 
measurable vector functions related by (14), such that V.u is integrable, 
the boundary conditions are satisfied on -aQ, and ' 

T 

f f(H· ~~ -xV.u·VP)dxdt= ~ fH(.~.O)·P(x,O)dx (16) 
o n · . n . 

is satisfied for all vector test functions P=(411 ,412), such that 41 1 ,412 have 
continuous first order partial derivatives and 41 (x, T) = 0, 41laa = 0. (16) may 
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be derived from (15) by taking the dot product of (15) with p and inte
grating by parts, using the jump conditions (3) and (4) at the phase change 
surface. 

It should be noted that this definition of the weak solution is different 
from that commonly used for the classical Stefan problem (see for example 
the treatment in [6] in that only integration has been performed on 
the term l]>Vx ·Vu). For a pure substance, where the phase change tempera
ture is constant, it is usual to use the Kirchhoff transformation 

u 

i1 = J k (r) dr 
0 

to transform V. (kVu) to V2 u. T he weak solution to a problem with boundary 
data ulaQ = g, is then defined as a pair of bounded measurable functions 
(H, u), related by (14a), such that 

'[ 

=--I H(x,O) cP(x,O)d~ + I Ig ~: dxdt (17) 

[} 0 CQ 

ocP o2 cP 
is satisfied for all test ft1nctions cP such that cP, - ,., -, exist and ar e 

ot OX; axj 

continuous, cP (x , T) = 0, and cP irQ = 0. For the alloy problem the phase 
boundary, at which the thermal conductivity and diffusion coefficient may 
be discontinuous, is defined by u + v = 0. Thus t he thermal conductivity 
(d iffu sion coefficient) is not dete rmined as a fu nction of tempera ture (chemical 
activity) alo ne but depends a lso o n the phase, so a transfo rmation of Kirchhoff 

type is not available. 
In the derivation of the conservation form (13) and the weak solution 

(16) it has been assumed that a sharp interface between the solid and liq uid 
phases exist s. This is not necessarily so. For pure substances it has been 
shown that in problems of melting by volume heat sources a mushy region, 
where u == 0 and 0 < H < L, is formed [7]. This may be interpreted as 
a region where solid a nd liquid p hases coexist on a microscopic scale, with 
the temperature eq ual to the melting temperature to leading order (see Lacey 
& Tayler [8] for a discussion of the modelling of mushy regions in a pure 

material). Thus in modelling the alloy problem the possibility of mushy 
regions, now defined as regions where m5 c < H < mL c + L and u + v = 0, 
must be considered. Following Chalmers [9] we assume that in such a region 
the material may be regarded a s a fraction f solid and (1-f) liquid, with 
concentrations in each part corresponding to the solidus and Iiq uidus 
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concentrations at that temperature. Then 

H = au + (1 - f) L, 

C = fcs + (1 - f) CL, 

103 

where u = mL cL= m. c5 • The diffusion coefficient and thermal conductivity 
in such a region may be defined as weighted averages of their solid and 
liquid values, and the governing equations (13) still hold. This treatment 
is essentially that used in both [10] and [11, 12]. We shall return to 
mushy regions and their physical interpretation in a· later section of this 
paper. 

3. Numerical solution 

Two distinct approaches to the numerical solution of the alloy solidi
fication problem as described above have been employed. Both of these use 
the conservation form of the equations (13) and the constitutive relation (14). 
One approach is to use a straightforward explicit finite difference scheme [10], 
while the other uses a time discretisation leading to a system of quasi-varia
tional inequalities [11, 12]. In this section both schemes are outlined, using . 
one space dimension for simplicity. 

. /' 

Writing H~ = H (nbx, i&) where bx, & are the step lengths in the x and t 
directions respectively, an explicit finite difference scheme for (13) is ' 

(19) 

Having determined values of H~ + 1, c~ + 1, u~ + 1 and v~ + 1 are calculated from 
the inverse of (14). In order to invert (14), suitable values of u, v correspon
ding to values of H, c in the region m. c < H < mL c + L between the solidus 
and liquidus in the equilibrium diagram must be found. This is achieved 
by regarding this region as a mushy region where solid and liquid coexist, 
as discussed above. Eleminating f, c. and cL from (18), and taking the root 
of the resulting quadratic which corresponds to u = H /a on the solidus, 
(H- L)/a on the liquid us yields 

u = u* = 

= - (LmL + H(m. - md)- {(LmL + H(m. - m£)) 2 + 4Lm.mL(mL - m.)c}i 
2 (niL- m.) a 

(20) 
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The complete inversion of (14) is then 

u = u* v = -u* 
· I H/(J J -m. c 

(H-L)/(J' l-mLc 

if H -m. c < 0 
if m. c < H < mL c + L 
if H-mL c > L. 

A. B. CROWLE 

(21) 

This numerical scheme extends readily to two-dimensional calculations, 
where (19a) is replaced by 

& . . . . 
+ by2 k~(u~+ 1 -2u~+u~_ 1 ) , (22) 

and (19b) is modified similarly. The advantage of the finite difference scheme 
is that it is straightforward to program. 

In problems where there is a sharp interface between liquid and solid 
phases, it has been observed that a slight oscillation occurs near the interface 
in the temperature and concentration histories at a point. This is analogous 
to the oscillation seen when the usual finite difference scheme for the enthalpy 
method is applied to a classical Stefan problem. This oscillation may be 
removed by using an improved discretisation neat the interface, following 
the approach used by Tacke [13] for the classical Stefan problem. The 
modified discretisation for the alloy problem is described in [14]. Figs. 2 and 3 
show the temperature and concentration histories at x = 0.1, as computed 
using both discretisations, for the quenching problem described, above. Here 
the parameters used were u0 = 1, c0 = 0.1, u1 = -1, L= 1, D~ = D[. = 1, 
k. = kL = 1, m.= -1 and mL = -0.5. With the improve4 discretisation the 
oscil1ations are removed; the computed results for the temperature history 
are indistinguishable from the analytical solution. 

The alternative approach developed by Bermudez and Saguez [11, 12] 
is as follows. The governing equations (13) are supplemented by (14) written as 

H EHv (u), cEGu (v) . 

Introducing V= H 1 (Q) and V' the dual space, and the operators 

and h (t) defined by 

(A (u, v) , z)v· ,v = J kVu · Vz dQ 
Q 

(B (u, v), z)v·,v = J D' Vv · Vz dQ 
Q 

(h (t), z)v·,v = J.q (-r) z d-r, 
aal 
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Fig. 2. 
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Fig. 3. 

the global formulation 

aH 
Tt+A(u,v)=h, HeHv(u), 

ac . -
Tt+B(u,v)=O, cEGu(v), 

with appropriate initial conditions is obtained. Here q (t) denotes the prescribed 
heat flux across the boundary. Discretisation in time then yields the system · 
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of quasi-variational inequalities: 

i+ 1 i 

c -c +Biyi+1 = 0,d+lEGui+1(Vi+l). 
bt -

Here Ai, Bi are defined by 

and hi+t by 

(Aiu, z)v·,v = J kiVu. Vz dQ 
Q 

(Biv, z)v·,v = J DiVv. Vz dQ, 
Q 

(i+ 1)/lt 

hi+ 1 = ;t I h (r) dr. 

illt 

A. B. CROWLEY 

It may be shown that for fixed Hi, d, ui, vi there exists a unique solution 
Hi+ 1, d + 1 , ui + 1 , vi+ 1, of the discretised problem. 

For numerical solution, the method proceeds as follows (the algorithm 
given is for the minimal solution) 

i) Compute .1/ + 1 from 

ii) j = 0 ' vb + 1 = .Yi + 1 

iii) Compute H~ + 1 from the solution of the variational inequality 

i+ 1 i 
Hk +Aiui+1 = hi+1 +~ Hi+! EH i+l (ui+1). 

bt k bt ' k vk k 

iv) Compute ci~ \ the solution of the variational inequality 

Iterations are then continued on iii) and iv) until convergence to the required 
accuracy is achieved. Results for the one-dimensional problem from the two 
numerical methods are virtually identical (private communication). 

4. Extensions of the basic model 

We have thus far considered the simplest model for alloy solidification, 
with constant thermal and mass diffusion coefficients, constant specific heat 
and straight liquidus and solidus lines in the equilibrium diagram, This 



Alloy solidification problems 107 

approach is used for clarity in the explanation of the basic problem and 
numerical methods. We now consider the removal of such restrictions to 
obtain more realistic models. 

It is straightforward to allow the thermal conductivity and mass diffusion 
coefficients to be functions of temperature and activity. The governing 
equations (1), (2), then become 

au ac 
CJ at= V. (k; Vu), at= V. (D; V c), 

with corresponding modifications to the finite difference scheme (19). 
If the specific heat CJ is a function of temperature the alterations are 

slightly more complex. Firstly, if CJ is different in the two phases the boundary 
condition at the phase change surface (3) becomes. 

L as ( ) as L [HJ. at= L+(CJL -CJ.) u at= [k; Vu. VS]. 

because the heat content or enthalpy is given by 

{

CJ8 U, u+v<0, 
H= ~>[CJ8 U,CJLu+L], u+v = O, 

·CJLU, u+v>O. 

If the boundary condition were not J:DOdified in this way the heat content 
would be dependent on the precise conditions at which the material changed 
phase, that is, on the past history of the material. This boundary condition 
fits immediately into the weak formulation of the problem. When CJ., CJL are 
functions of temperature, the enthalpy is given by 

u 

J (J.(U)du, u+v < 0 
0 

u u 

H = e [J CJ8 (U) du, J CJL(u) du+L], u+ v = 0 
0 0 

u 

J (JL (U) du + L, u+v > 0. 
0 

In each case the inversion of (14) to express (u, v) in terms of (H, c) for the 
finite difference numerical solution becomes more complex, but the equivalent 
of (21) may be obtained. 

The equilibrium diagram shown in Fig. 1 is of the form, with straight 
liquidus and solidus line~ usually employed in the analysis of dilute binary 
alloy solidification problems, that is ones in which the solute concentration 
is small. In more general cases, when a range of concentrations from pure 
substance A to pure substance B may be obtained the equilibrium diagram 
may be of forms shown below. 

In the first case, suppose the liquidus is given by u =fr. (c), the solidus 

--- ----~------------------------------
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by u =f. (c). Then u - fL (c)> 0 is the stable liquid region of jthe equilibrium 
diagram, u- f. (c)< 0 is the stable solid region. The activity v is defined 
by v = fL (c) in the liquid phase, and by v =f. (c) in the solid. The mass 
diffusion equation in the liquid may then be written 

oc ( D . ) at= V. (DV c) = V. fL (fL 1 (v)) Vv 

together with a similar equation in the ·solid phase. This is discussed briefly 
in [11]. 

u 

100%8 

Fig. 4. 

If the phase diagram is of the second type, then the point (cE, uE) is 
known as the eutectic point. To the left of this point solidification occurs 
in which substance B is rejected into the melt and vice versa· to the right 
of (c~:, uE). If material solidifies at the eutectic point, then no segregation 
occurs on a macroscopic scale, but microscopic lamellae of solids r:1. and f3 
are formed parallel to t&e direction of solidification. (The interpretation 
of equilibrium diagrams and eutectic solidification are discussed at length 
in Flemings [15]}. On each side of the eutectic point the activity may be 
defined as above. 

Another approach to the modelling of alloy solidification problems has 
been employed by Donnelly [16] and Luckhaus and Visintin [17]. This 
is based on the ideas of non-equilibrium thermodynamics, and yields a specific 
form of the equations 

ow ar= - v.J 
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where w = (H, c) and l 1s a generalised flux defined by a constitutive 
relation of the form 

l =F(w, VU) 

U -- as (w) fu . aw ' - s a given convex . nctwn, 

U being given by (1/u, - fllu). Here fl ( = Ru 1n v in our earlier notation) is. 
the chemical potential of the so,lute, and F is coercive in its second argument. 
In [16] the existence of a unique weak solution is proved for the parti
cular case 

l = L VU, L a real symmetric matrix, 

when the problem can be transformed into a variational inequality. In [17] 
the existence of a weak solution is proved for more general F, but without 
uniqueness. This form of the equations includes cross-diffusion terms (that 
is a heat flux due to mass transport in the thermal equation and vice versa) 
in the governing equations. These terms are usually considered as negligibly 
small, allowing the system to be simplified to one of the form (15) with 
variable coefficients. The disadvantage of this approach is that the coefficients 
in the governing equations have a specific dependence on temperature and 
activity so that flexibility is lost. While this approach has proved useful for 
mathematical results concerning existence and uniqueness it has not yet, to 
the author's knowledge, been used to obtain numerical solutions. 

5. Mashy regions and allied open questions 

It has been implicitly assumed thus far that a sharp interface between 
solid and liquid phases exists, although the possibility of a two-phase region 
was mentioned in section 2. In this section we discuss briefly the stability 
of a planar interface to small perturbations, and the link with dendritic 
growth. Also mentioned is the evidence of numerical solutions, indicating 
the need for more detailed modelling of such phenomena. The use of 
asymptotic methods in this role is discussed elsewhere in this volume [18]. 

To metallurgists it is well known that if a binary alloy is cooled ul)i
directionally in such a way that the liquid in front of the solidification 
interface has concentration and temperature values for which u- mL c < 0, 
then the interface becomes unstable and cellullar growth (shown schemati
cally in Fig. 5) O\XUrs. If u- mL c < 0, the liquid has entered the metastable 
region between the liquidus and solidus on the equilibrium diagram, and 
is said to be constitutionally supercooled (so called as this usually occurs 
from a drop in local solute concentration causing a rise in the phase-change 
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Fig. 5. 

temperature). In cellular growth there are essentially three distinct regions 
in the solidifying material, as shown in Fig. 5. Typically the aspect ratio 
of the 'fingers' is in the region of 100: 1 to 500: 1. If sidearms form on the 
fingers, the growth is said to be dendritic. This occurs as the degree of 
constitutional supercooling is increased. 

A perturbation analysis of the stability of a phase-change surface moving 
at constant velocity [19] yields the criterion that when 

1 ( ks OU I kL OU I ) OC I - - -- + - +mL - < 0 
2 ks+kL OX S ks+kL OX L OX L 

the interface is stable. Here it is assumed that the solute diffusion coefficient 
in the solid phase may be taken as zero, and that surface tension effects 
are negligible. This criterion is similar to the constitutional supercooling 
criterion, except that the thermal gradient in the liquid is replaced by a 
weighted average of the gradients on the solid and liquid sides of the 
interface. The analysis shows the shortest wavelength perturbations grow 
fastest. Adding surface tension effects to the model modifies the liquidus 
condition ( 5) to 

u-mL c = -yK, (23) 

where y is related to the solid/liquid interfacial energy, and K is the curva
ture of the interface (positive when convex towards the liquid). This change 
stabilises very short wavelength perturbations, and ..determines a preferred 
wavenumber at which perturbations grow fastest. 

For a quenching problem of the type described in section 1, it is 
found that constitutional supercooling occurs in the analytical solution if 
(DL ajkL) « 1. A mushy region then appears in the numerical solution with 
either of the- methods based on the weak formulation described in section 3. 
Thus the weak formulation yields a solution with a two-phase region when 
the sharp interface becomes unstable. 

As cellsjdendrites are so thin in comparison with their length, for a one 
dimensional model the cellular/dendritic region may be regarded as the 
coexistence of liquid and solid phases. That 1s, the mushy regton seen 
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numerically is in some sense a crude representation of a zone of cel
lular/dendritic growth. For a more realistic representation, improved models 
of the structure of the solute and temperature fields in the region of the 
dendrite tips are required. Information from these could then be incorporated 
in the weak formulation through changes to the relationship of (u, v) to 
(H, c) for ms c < H < mL c+L. Towards this end local models near the 
dendrite tips, using asymptotic methods on the length scale of the cell 
spacing, are currently being studied [18]. 

Another work which considers the use of weak solutions and the existence 
of two-phase regions is that by A vdonin [20]. Here averaged equations for 
heat and mass transport within the two-phase region are derived to yield ·' 
a system of equations which is parabolic in the sense of Petrovskii. The 
crystallisation regime envisaged, volume crystallisation or equiaxed growth, 
is slightly different from that described in this paper. Equiaxed growth 
occurs when detached solid crystals nucleate in the supercooled melt ahead 
of the fully solid region, and is most commonly seen when the melt is 
initially constitutionally supercooled. 

An interesting open problem is that of finding a suitable weak formulation 
for computational work when surface tension effects are included so that the 
liquidus condition is (23). With such a formulation it might be possible to 
follow the evolution of a planar interface towards a cellular growth regime 
as constitutional supercooling develops. Some discussion of weak formula
tions with surface tension effects is given by Rogers [21]. Solutions of the 
problem have been obtained numerically in the two-dimensional case using 
front -tracking methods, but these methods are somwhat cumbersome and 
lack the elegance of weak solution techniques. 

In certain situations of extremely rapid solidification, such as . occur in the 
laser annealing of semi-conductor devices with implanted dopant, another 
effect is found. At solidification rates of m/sec, rather than the more usual 
cm/hr, the phase change temperature is depressed below its equilibrium value 
by an amount dependent on the front velocity. This phenomenon, known 
as kinetic undercooling, occurs when the time for an atom to be incorporated 
into the crystalline structure becomes significant, and is an example of 
non-equilibrium solidification. In the laser annealing case the kinetic under
cooling dominates the freezing point depression due to the solute concen
tration. The boundary condition on the phase-change surface x = s (t) (with 
liquid on the left) becomes 

f3 ds 
u+ v = -

dt 

where f3 is zero if the liquid phase is advancing, f3 > 0 if the solid phase 
is growing. Numerical solutions can be obtained for this problem using 
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the method described in [14], which is basically a weak solution approach 
although the front position is explicitly calculated. 

Postuipt 

It .is hoped that this paper gives the reader some of the flavour of alloy 
solidification problems, and will serve as a useful introduction to the recent 
mathematical work in this area. The study of moving boundary problems 
such as this is applicable to a variety of physical processes, the modelling 
of some of the phenomena is far from complete, and there are as yet few 
mathematical results for such systems. It is a challenging field in which 
to work. 
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Problemy zastygania stopt)w 

. Praca dotyczy problem6w zastygania stop6w. Badane S<! sformu!owania klasyczne i uog61-
nione (slabe) problem6w, b~<!Ce podstaw<! ro.zwai:ar\. zar6wno analitycznych jak i numerycz
nych. Przedstawione zostaj<! pewne ni.etody numeryczne l<!cznie z wynikami obliczer\. w przy
padku jedno- i dwuwymiarowym. Wyniki te stanowi<! podstaw« dyskusji wielu otwartych 
problem6w zwi<!zanych z tzw. obszarami mieszanymi, zastyganiem kom6rkowym i dendrytycz
nym, jak r6wniei: z modelowaniem efekt6w napr«i:enia powierzchniowego. 

llpo6JieMLI .J~TBep)l.eBaHHH CiJJI3BOB 

B pa6oTe o6cyJK)laeTcll KJiaccwJecKyiO H o6o6II(eHHYIO (cJia6yiO) <lJopMyJIHpoBh npo6JieMbr 
3aTBep)leBaHHll CTIJiaBOB, JielKali(He B OCHOBe TaK aHaJIHTH'leCKHX KaK H 'lHCJieHHbiX paccyJK)leHHH. 
flpe)lCTaBJil!eTCJi 'lHCJieHHbie MeTO)lbl pellleHHll 3THX 3a)la'l, BKJIIO'leHbl TOJKe pe3yJibTaTbl 

'lHCJieHHb!X 3KCTiepHMeHTOB B O)lHO- H !lBYXMepHbiX CJiyqal!X. 3TH pe3yJihTaTbl npHHl!Tbl 
OCHOBOH )lHCKYCCH_H pll)la OTKpb!TblX BOTipOCOB KaCaiOII(HXCll TaK Ha3biBaeMbiX ,mushy regions", 
KJieTO'IHOfO H )leH)lpHTHOfO 3aTBep)leBaHHll, . KpoMe TOfO MO)leJIHpOBaHHll 3<lJ<lJeKTOB TIOBepX
HOCTHOfO HanplllKeHHll. 
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