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Convergence properties of discrete approximations to degenerate problems of the Stefan 
type are discussed. The multidimensional problems are considered in their variational inequa
lity formulations. Some results of the performed numerical experiments are presented. 

1. Introduction 

Discrete approximations to multi-phase Stefan problems in a multi
dimensional case were studied by several authors. A comprehensive numerical 
anafysis of the approximations corresponding to the enthalpy formulation 
of the problems was, in particular, offered in [2, 3, 8]. In turn, the approxi
mations of the problems in their freezing index formulation (as variational 
inequality) were studied in [5]. In the above-mentioned publications, results 
on the convergence of the discrete solutions, including estimates of the 
convergence rate, were given for the strongly parabolic Stefan problems. 

Since the Stefan's structure is preserved also in some other multi-phase 
problems with free boundary, although without the strong parabolicity 
guaranteed, a natural question concerns the possibility of extending the 
convergence results from the parabolic onto a degenerate situation. This 
is motivated, for example, by fixed-domain models of electrochemical processes 
and partially saturated flows in porous media [1]. 

In this paper, discrete approximations of an evolution variational ine
quality, referring in particula~, to a class of degenerate multi-phase Stefan 
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problems, are studied. Results on the convergence, extending those valid in 
the parabolic case, are formulated. Some illustrating computational results 
are discussed. 

The techniques developed in this paper are oriented onto the problems 
with non-constant boundary data on r. This is motivated by our interest 
in construction of discrete approximations for the related problems of boun
dary control. 

2. ProWem forllltllation 

We shall consider the following evolution problem: 

(S) . 
· ~ .y 0 _(y') + Ay3fo in Q, 

avy + goy = g onl:, 
. .. y (0) = 0 in Q, 

1. -

(2.1) 
(2.2) 
(2.3) 

where A E !l' (V, V') is a linear operator, V~ H 1 (Q), y0 c R x R is a maximal 
monotone graph (in general, multi-valued), 
Yo (r) = y0 (r)+ Lxo (r), L~ 0, y- Lipschitz continuous, monotone; 
Xo- the Heaviside's graph (multi-valued). 

Provided a specific form of the graph y0 and A = - Ll, the problem (S) 
can refer to a multi-phase Stefan problem [4]. In particular, if the graph y0 

is not strictly monotone, the Stefan problem appears no more parabolic. 
In the Stefan problem, 

t 

y (x, t) = J e (x, r) dr, tE[O, T], 
0 

where e refers to temperature (in the thermal framework). In that problem, 
one prescribes e (0) = eo as an initial datum. f.( 

The problem (S) can be given the following weak formulation as a varia
tional inequality [ 4]: _ 

- y E W1•00 (0, T ; V), 
(Y'o (y' (t)) - fo (t) , z - y' (t)) + a (y (t) , z - y' (t)) -

(P) - (g (t), z- y' (t))r+ 'l' (z)- 'l' (y' (t)) ·~ 0, 
'v' z E V, for a. a. t E [0, T], 
y (0) = 0 in Q 

(2.4) 
(2.5) 

where(.,.), (.,.)rare inner products in Hand J3(r), respectively, a(.,.) is the 
bilinear form corresponding to A, 

'l' (z) = L J l/1 0 (z (x)) dx, l/1 0 (r) =;o r+. 
n . 
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The existence and uniqueness of the weak solution yEW 1·ro(O,T;V) 
·(iry0 is strictly monotone, then also yE H 2 (0, T; H), H ~ L2 (Q)) of the 
problem (P) is guaranteed, provided the following hypotheses hold: 
(P1) foE ltlo~,ro (R), fo (0) = 0, fo is non-decreasing; 
(P2) A E .P (V, V') is V-coercitive: 

:1 a> 0 such that V VE V (Av, v) ~ 0: llvll~; 

(P3) fo EH2 (0, T; H) (in the case of fo strictly monotone, foE H 1 (0, T; H)); 
(P4) gEH2 (0, T; L2 (r)); 
(P5) go E Lro (r), go~~ 0. 

REMARK 1. In a physically motivated formulation of the problem, as already 
mentioned, one imposes an initial condition on y', 

y' (0) =eo. (2.6) 

For the correctness, one needs then to assume the compatibility condition 
of the form f (0) = (y 0 )

0 (80 ), where (y 0 )
0 denotes the least section of the 

graph Yo· 
The variational inequality (P) admits an alternative equivalent form. 

LEMMA 1. (2.4) can be equivalently written as: 

a (y (t), z- y' (t))- (!0 (t), z- y' (t))- (g (t), z- y' (t))r + 
+cJ> (z)-cJ> (y'(t)) ~ 0, V zE V, for a.a. tE[O, T], (2.7) 

where 

r 

B:H~R,B(z)~ J /3(z(x))dx,f3(r)~ J f 0 (s)ds, rER. (2.9) 
Q 0 

Proof. (2.7) follows from (2.4) in view of the convexity of B and due to 
the existence of the Gateaux differential DB (. ), since 

(DB (v), z) = (fo (v), z), V v, zEH, 

(fo (v), z-v) ~ B (z)-B (v), V v, zEH. 

To show the reverse implication, take in (2.7) 

z = y' (t)+ x (w- y' (t)), 

with an arbitrary wE V, x E(O , 1), make use of the convexity of 'I' and, 

Control and Cyberneti~.:s 



130 M. NIEZGODKA. I. PAWLOW 

finally, pass to the limit with x --+ 0: 

0 ~ a (y (t) , w- y' (t)) - (!0 (t), w- y' (t)) - (g (t) , w- y' (t))r + 

+ lim {_!_ [ B (y' (t)+ x (w- y' (t))- B (y' (t)) + 'P (y' (t) + x (w- y' (t)) -
x-+0 X 

- 'P (y' (t))]} ~ a (y (t), w - y' (t)) -(!0 (t) , w - y' (t)) -

- (g (t), w - y' (t))r + (Yo (y' (t)), w - y' (t)) + 'P (w) - 'P (y' (t)). • 

In the further considerations, we shall confine ourselves to the most 
interesting degenerate case, assuming a special form of y0 (as in the Stefan 
problems, see [4]): 

r 

(P6) y0 (r) = J Q (s) ds, where 0 ~ Q (s) ~ Q < oo , sER. 
0 

3. Construction of approximations to Problem (P) 

3.1. Continuous approximations 

For any J-l E [0 , 1) define the strictly monotone function 

yll(r)!:=.y0 (r)+w, rER 

and introduce the corresponding 

'Y il (r) = yll (r) + Lxo (r). 

(3.1) 

The resulting strongly parabolic problem (P)Il (parabolic regularization 
of (P)) differs from (P) only in the form of the equation (2.1), now 

(3.2) 

where fll !:=. fo + J-leo . 

In turn, let us approximate the Heaviside's graph Xo by a family of smooth 
functions Xe (XeEC3 (R), see [4]), cE(O, 1), so that for the relevant 

c, - L 'Yile- 'Yile+ Xe, 

Ylle being a twice differentiable approximation of yll (if necessary), the inequality 

(3.3) 

is satisfied with a finite constant C independent of J-l, r.; besides, the mapping 
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yll,: H ~ H is uniformly bounded, 

IIYJl, (v)IIH ~ (Q'+ 1) llviiH+L(meas .Q)112
. 

The corresponding problem (Pfe differs from (P)Il again only in the form 
of the equation, this time 

yll, (y~,)+Ayll, = JJl, in Q, (3.4) 

instead of (3.2), with fll, being a smooth approximation of fJl (see [6]). 
We shall also admit f-1, 8 = 0 in the sequel, with f.1 = 0 referring to 

Problem (P)" 8 = 0- to Problem (P'f. 
The existence and uniqueness of the solutions yll and yJl, of Problems 

(PY' and (Pfe, respectively, follows as for Problem (P) (see [4]). 
For a detailed construction of the above regularizations we refer to [6]. 

3.2. Discrete approximations 

We shall confine our further exposition, assuming in the discrete case 
(P7) 00 EH2 (.Q); 
(P8) Q c R 2 is a convex domain; tfi., hE(O, 1], denotes a regular triangulation 
of Q, with h referring to the mesh size; V, c V is the finite-dimensional 
subspace of functions vh E V n C (Q), such that vh is a polynomial of order ~ 1 
over each element of §,;. 

In view of (P8), the problem is discretized in space by finite elements 
of the first order. 

To discretize the problem in t, we divide the interval [0, T] into N 
equal subintervals [ti>ti+ 1], i=O, ... ,N-1, with t;=ik, k=T/N. In the 
sequel, we shall use the standard notations: · 

wi(x) = w (x, t;), bwi = (wi+l_wi)/k, 

wi+k = wi+x (wi+ 1 -wi) = wi+xkbwi, 

bwi+x = (wi+ 1 +x_wi+")/k = bwi+x (bwi+ 1 - bwt x E [0, 1], 

()2 wi = (bwi+ 1_ bwi)/k = (wi+ 2- 2wi+ 1 + wi)/k2. 

As a discrete counterpart of Problem (PY: (f.l, 8 ~ 0) we shall take the 
following: 
Problem (P)i,h,k: (f-1, 8 E [0, 1)- arbitrary) 

a (wi+x, zh-livr;)-(fj,h, zh-bw;)-(g;, zh-bw;)r+ct>Jl, (zh)-

-cJ.>~' ,(ci ii·;) ~O. VzhEr 11 • i=O, ... ,N -1 , ~<~: 0 =0 in Q, (3.5) 
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where x E [0 , 1] is an arbitrary parameter characterizing the type of the 
scheme, 

cPJJ.e (z) = BJJ.e (z)+ Pe (z), 

BJJ.e (z) = f f3JJ.e (z (x)) dx, 
Q 

r 

f3JJ.e (r) = f YJJ.e (s) ds, rER, 
0 

Pe (z) = L f t/te (z (x)) dx, 
Q 

r 

t/te(r)= f Xe(s)ds , rER. 
0 

REMARK 2. System (P)~.h.k can be equivalently formulated as the following 
nonlinear programming problem: 

For i = 0, ... , N -1 determine bw; realizing 

inf {J~e (z); ZE V,}, 

where 

. 1 . . . 
J~e (z) = 2 xka (z, z)+cPJJ.e (z)+a (w', z) -U:eh• z)-(g', z)r. 

This implies that in view of the construction of cPJJ."' by the Weierstrass 
theorem there exists a solution of Problem (P)~.h.k· This solution is unique 
for all x E [0 , 1] in the parabolic case, and for x E (0, 1] in the degenerate 
case. 

Problem (Pfe,h,k can be implemented in the form of a time-stepping 
algorithm which offers a numerical method of solving Problem (P). Some 
results of the relevant computational experiments are shown in Section 5 
(see also [7]). The exposed way of approximating Problem (P) can be 
justified theoretically both in the parabolic and degenerate case. 

As an auxiliary intermediate stage, let us introduce the following semi
discrete 
Problem (P)~. h : JJ. , c; > 0- arbitrarily fixed 

Determine Yh Q. YJJ.ehEW 1·"" (0, T ; V,), such that 

l
a. (Yh (t) , zh- y/, (t))-(fJJ.eh (t), zh- y/, (t))-(g (t), zh - y/, (t))r+ 
+cPJJ.e(zh)-cPJJ.e(Y/.(t))~O, VzhEV,, for a.a. tE[O, T], 

Yh (0) = 0 in Q . 

The existence and uniqueness of the solution YhE W1·"" (0, T; V)nH2 (0, T;H) 
follows as in the case of Problem (Pf. (see [4]). 

- ------------------------------------------------------
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4. Convergence of approximations 

The analysis of a convergence (and its rate) of the discrete solutions 
Ypehk (of (PYe',h,k) to the solution y (of (P)), can be performed stepwise. 
In this paper we present only the principal steps of this analysis, referring 
to [6] for a detailed exposition. 

Throughout we shall assume that the hypotheses (P1HP6) are satisfied. 

PROPOSITION 1. (P)~" ~ (P) as f1 ~ 0+. Let y~"' y be the solutions of (P)~" and 
(P), respectively. Then 

IIY~" I Iw '·w (o,T;vJ+ /1 1 ~2 IIY~IIr.z(QJ ~ Co (4.1) 

with a finite constant C0 independent of f1· Let f1 ~ 0 + , then 

y~" ~ y weakly-* in W1' 00 (0, T; V) (4.2a) 

with 

besides, 

llyll-yi1Lw (O , T; V)+J1 112 IIy' - y~IIL'(Q) ~ Co /1 112 

with the same C0 as in (4.1). 

(4.2b) 

(4.2c) 

PROPOSITION 2. (P)~ ~ (PY as s ~ 0 +, f.l-fixed. Let y ~""' y ;t be th~ solutions 
of (PYe' and (P)~", respectively. Then the a priori bound (4.1) holds also ·· 
for y pe; besides, 

IIL1y;telle([O,T];H)+c112 IIL1Y~eiiL2 (QJ ~ Co . 

Assume, in addition to (P1) -i- (P6), 
(P9) meas {xE.Q; 0 < fJ 0 (x) < s} ~ Cs, C =I= C (s). 

Then 

with a finite constant C 1 independent of f1, s. 

PROPOSITION 3. (P)~,h, k ~ (Pfe as h, k ~ 0 + , f1, s-fixed. 
Assume, in addition to (P1)-i-(P6), also (P7)-i-(P9) and 

(P10) xE[1/2, 1]. 
Then the solutions w = Ypehk of (P)~,h,k are a priori bounded, 

N-2 

._max llw;llv+ ._ max 116w;ll v+J1112 ( L k llb2w;llk}112 ~ 
t-O, .. . ,N t-O , ... ,N -1 i=O 

(4.3) 

(4.4) 

~ C2 { llfoiiH2 (0,T;H)+ llgiiH2 (0,T;L2(TJ)+ llfJoiiH2 (Q)1 (4.5). 

with a finite constant C 2 independent of f1, s, h, k. 
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Besides, 
(i) for any fixed eE[O, 1), h, k > 0, 

. . 1/ 2 
._may IIYoehk-Y~ehk!lv~C2f..l , 
• -O , .. . ,N 

with the same C2 as in (4.5); 
(ii) for any fixed J..l E [0 , 1), h, k > 0, 

. . 1/2 
._ max II Y~ohk - Y~ehkllv ~ Ce , 
•-O , ... ,N 

(4.6b) 

with a finite constant C independent of J..l, e, h, k. 

PROPOSITION 4. (P)~.h--+ (P)~ as h--+ 0 +, J..l, e-fixed. Let Y11 ek, y11 , be the 
solutions of (P)~.h and (P)~, respecti~ly. Then 

(4.7) 

with the same C0 as in (4.1). Besides, there exists a finite constant C3 

independent of J..l, e, h, such that 

or, expressed discretely in t, 

N-1 

i=W~~.N lly~, - Y~ehllv + J..l
112 

( ;~o k 11 (y~,); - (Y~eh);llk) 1 12 ~ 

(4.8b) 

PROPOSITION 5. (Pr.,h,k--+ (Pr..h as k--+ 0 + , J..l, e, h-fixed. Let Y~ehb Y~eh be the 
solutions of (Pr.,h,k and (P)~.h, respectively. Assume that all the hypotheses 
(P1)-i-(P10) are satisfied. Thep. there exists a finite constant C4 independent 
of J..l, c:, h, k, such that 

(4.9) 

The assertions of Prepositions 1-;- 5 taken together yield the following 
estimate of the convergence rate. 
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THEOREM 1. (P)~.h,k ~ (P). Let the hypotheses (P1)-;-(P10) be satisfied. Then 
for the solutions y, Y"ehk of Problems (P) and (P)i,h,k> respectively . 

. _max 1 1 / - y~Ehkllv ~ c[fl112
+e

112
+ ~/2 +( 1~2 h)112 +k],: (4.10) o-o, ... , N e fl 

with a finite constant C independent of fl, e, h, k. 
In particular, let us assume fl == flo h, e = e0 h, k ~ k0 h512

, where flo , e0 ~ 0, 
k0 > 0 are arbitrary constants. Then the assertion (4.10) takes the form 

max 11/ - i 11 s Ch 112 
i=O , ... ,N !lehk V - · 

REMARK 3. The above results apply also to the problem (P) in an extended 
form, with Dirichlet conditions prescribed on a part r' of the boundary r 
(the Neumann or r~spectively mixed type conditions are imposed on the 
complement T" = T\ r'). To this end, one only needs to introduce an 
appropriate shifted variable y = y - w, WEW 1

•
00 (0 , T;V)-given, with the 

trace of w' on r' specifing the Dirichlet data (see [6] for details). 

5. Numerical solution of Problem (P) 

The results on the convergence rate for the discrete approximations to 
Problem (P), given in section 4, provide a basis for setting up relevant 
numerical algorithms. In the sequel, we shall present some results of the 
performed computational experiments. 

According to the discrete formulation (P)~.h,k of the problem, we have 
employed the following time-stepping algorithm: 
(0) Given parameters fl, e, h, k and data: e0 , g0 , g, fo 
(i) set the initial time t; , i = 0 

(ii) solve (3.5) with respect to C>w; 
(iii) set w; + 1 = w; + k C>wi 
(iv) test if i < N - 1; if not, skip to (vi) 
(v) pass to the next time step, i ~ i + 1; return to (ii) 

(vi) stop. 
To perform the step (ii) of the algorithm, we solved the minimization 

problem: 
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Determine bwiEV},, i = 0, ... , N-1, such that 

J~, ( bwi + bcv~) = inf {J~, (z + bcv~); z E VJ,}, 

where cvh denotes projection of cv onto V},. 

139 

The last formulation covers also the case of the Dirichlet data imposed 
on r' cr. 

The computations were performed both in the parabolic and in the 
degenerate cases. Our interest was focused on the efficiency of the proposed 
scheme in the degenerate case, therefore: 
(i) a practical accuracy of the parabolic regularization was test (/-l---+ 0 + ), 

(ii) influence of the degeneracy onto the number of iterations necessary 
for achieving the accuracy comparable with that, in the parabolic case 
was discussed. 
The problem (P) was studied in the extended form, with the Dirichlet 

data prescribed on the whole r so that the free boundary (level set e = 0) 
did not touch r. As the domain we took Q = [ -1, 1] x [ -1, 1] c R 2

, 

T= 0.256. We have admitted alternatively y(r) = 0 (degenerate case) or 
y (r) = r, r < 0 and y (r) = 5r, r > 0 (parabolic case). As the parabolic regulari
zation parameters we chose f-l = w-n, n = 1, 2, 3. For solving the minimization 
problem in the step (ii) of the algorithm the SOR method was used in the 
case of the implicit scheme. A regular triangulation ffh of Q was constructed 
including 289 nodes and 512 elements. The discretization parameters: 
h = 0.125, k = 0.008. 

The behaviour of the approximate solutions is shown in Fig. 1 (para
bolic case) and Fig. 2 (degenerate case), in both cases (a) refer to the 
evolution of the solution in time, (b) show the corresponding movement 
of the free boundary. As a representation of the solution y its time derivative 
y' = e is used. In the parabolic case, e can be interpreted as temperature 
(with freezing value 0), in the degenerate case- as potential or saturation, 
in particular (see also [1]). 

The results of the performed experiments led us to the following observa
tions: 

(i) accuracy of the numerical solutions was not influenced by the regulariza
tions, one could see it by comparing the relevant evolution of the free 
boundaries; 

(ii) number of iterations in the SOR process was heavily dependent upon 
the shape of y; in the degenerate case, to provide the same accuracy 
as in the parabolic case one needed in average two up to three times 
more iterations; 

(iii) in the degenerate problem under consideration we were able to reproduce 
the shape of r at the free boundary, as it could be physically expected 
in the electrochemical machining process, in particular. 

---- -- --------------------------------------------------------------------
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Analiza numeryczna zdegenerowanych zagadnien Stefana 

W pracy analizowana jest zbie:i:nosc dyskretnych aproksymacji zdegenerowanych zagadnien 
typu Stefana. Zagadnienia te S:'! sformulowane w postaci nier6wnosci wariacyjnych. Przed
stawiona zostaje dyskusja wynik6w przeprowadzonych eksperyment6w numerycznych. 

qucneuubiii auaJIH3 npo6neM CTeciJaua c oco6euuo~THMH 

B pa6oTe paCCMaTpF!BaCTCll CXO,[IHMOCTb ,[IHCKpeTHbiX armpOKCHMal(Hll ,[IJill rrp06JieM THIIa 
CTe<lJaHa c oco6eHHOCTliMH. 3TH rrpo6neMbi <iJopMyJIHpyeTcl! B sl'i:,[le sapHal(HOHHhiX HepaseHCTB. 
Ilpe.LICTaBJieHa ,[IHCKYCCHll pe3yJibTaTOB 'IHCJieHHbiX 3KCIICpHMeHTOB. 




