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Thermocapillary effect is thought to be one of the major causes of fluid motion in weak 
forced fields. This paper represents the review on mathematical models of thermocapillary 
motion. The results obtained in the Lavrentyev Institute of Hydrodynamics, Krasnoyarsk 
Computing Center of the Siberian Division of the USSR Academy of Sciences and Novo
sibirsk State University form the basis of this review. 

1. Formulation of the problem 

We consider nonisothermal motion of a viscous incompressible fluid 
with a free surface which for simplicity is assumed to be connected. Main 
attention is paid to partial or developed weightlessness. In this case, in the 
absence of a surfacely active matter, the surface tension coefficient as being 
function of temperature is the major cause of fluid motion. 

A mathematical formulation of the above-mentioned problem is as follows 
[1, 2]. It is required to find a region Q (t) c R\ tE(O, T) bounded by both 
a solid impermeable unmovable surface and a free surface r (t) and a solution 
,v (x, t), p (x, t), e (x, t) of the Oberbeck-Boussinesq system of equations 

.vr+P· V,v = - Q- 1 Vp + vLJ,v - peg, 
V ·,v = 0, er+.v· Ve = xLJe 

m the region satisfying the initial conditions Q (0) = Q0 

,ii(x,O) = ,lfl(x), e(x,O)=e0 (x), xEQ0 , 

the boundary conditions on the unmovable boundary 

(1.1) 

(1.2) 

,v = O, e = a(x,t), xEl', tE(O, T) (1.3) 
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and the boundary conditions on the free surface r (t) (for simplicity it is 
assumed that f n f = ~) 

p - 2Qv'fi · D · ji = 2oH- Qg · '1- + C, 

2Qv D · ji- 2Qv (ji · D · ii) ji = V r a, 

Vtl·ii+tX (8 - b (x , t)) = 0, 

:v·fi =V,., xEF (t), tE(O, T) . 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

Here lj is the velocity, p is the pressure fluid deviation from a hydrostatic 
value, e is the fluid temperature, g = g (t) the gravitational acceleration. 
In (1.4}-(1.7) ji denotes the unit vector of an external normal to r, 
D = (Vi!+ (VP)*)/2 is the deformation velocity tensor, H is the mean surface ~ 
curvature, a = a (8) is the surface tension coefficient, C = C (t) is the parameter 
connected with a mean depth or volume of region Q (t), V, is the velocity 
of r displacement towards ii, V r = V- (ji ·V) ji is the surface gradient. 
Positive values of v (kinematic viscosity coefficient), Q (density), x (heat 
conductivity coefficient), f3 (coefficient of thermal expansion), et (interphase heat 
exchange coefficient) are assumed constant. The prescribed vector function 
,v0 and positive functions 8°, a, b satisfy natural consistency conditions 
which are not specified here. Physically, the function a (tl) assumes positive 
meanings also for pure liquids, dajdtl < 0. (An anomalous thermocapillary 
effect observed in aqueous solutions of high-molecule alcohols [3] will not 
be considered). For simplicity, let us assume that 

(1.8) 

. where a0 , 80 , x (temperature coefficient of surface tension) are positive 
constants. An import' limiting case of (1.6) when a o;= 0 corresponds to a heat 
insulated free boundary. Instead of (1.6) it is suitable to consider the condition 
.. e = b (x , t), XEF (t), tE(O, T), (1.9) 

formally obtained from (1.6) by the limiting transition a~ oo. 
In the last equation of (1.1) the term which describes the 4eat inflow due 

to kinetic energy dissipation is not taken into account. Its value is expressed 
by 2vc -l D: D, where c is the heat capacity of a fluid. In the case of 
convective motion the above-mentioned term achieves significant values only 
in the boundary layers generated by a great temperature drop along the 
free surface. 

2. Basic parameters 

The relations (1.1}-(1.8) represent a basic mathematical model of gravita
tional capillary convection in a homoge~eous fluid. A relative role of either 
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of the convection mechanism is characterized by the dimensionless parameter 
L = ggf3h2 x- 1

, where h is the extent of region Q in the direction of 
. a gravity force, g = l!ll . If L ~ 1, the thermocapillary effect contribution into 
convection appears dominating. 

Technological experiments in weightlessness usually are made at h < 5 cm 
[4]. The value of g was about w- 2 cm/s2 for an unmanned flight of the 
space station "Salute-6" and about 1 cm/s2 for a regular work of the spacecraft 
crew [5] Since.for the majority of liquids Q/3 . x- 1 < w- 2 s2 jcm3

, the parameter 
L does not exceed 0.25 x 10- 2 and 0.25 for the first and second case, 
respectively. 

The intensity of thermocapillary convection is characterized by the Ma
rangoni number M = xe* hjgvx, and that of gravitational convection- by 
the Grasshof number Gr = LM (here(}* is the characteristic temperature drop). 
Sometimes instead of M it is appropriate to introduce the modified Marangoni 
number Ma = M /Pr, where Pr = v/x is Prandtl number. 

The parameter A = x(}*ja0 responsible for the free surface deformation 
by surface thermocapillary forces is of great importance in our considerations. 
As usual, this parameter is small, e.g., in the experiments with germanium 
crystallization using the CRYSTAL setup it was A< 0.09 [6], and on 
detecting thermocapillary bubble drift using the PION setup- A< 0.05 [4]. 

In the case of an equilibrium form of an isothermal free surface the 
Bond number Bo = ggh2/a0 is the determining parameter. In the conditions 
of an orbital flight it is about 10- 4-10- 3

. The Biot number Bi = ah 
characterizes the intensity of heat exchange between liquid and gaseous 
phases. In contrast to the above-mentioned values, the parameter a, 
together with the Biot number, is determined with a significantly less 
accuracx, due to a semi-empirical character of (1.6). 

3. Exact solutions 

The problem (1.1)-(1.8) only recently beca:m,e an object of mathematical 
considerations. Up to now an unknown boundary, nonlinearity and high 
order of the system of equations have not allowed us to obtain general 
results guaranteeing unique solvability of an initial boundary-value problem. 
Its numerical solution appears very complicated due to the same reasons. 
Therefore a construction of any classes of special solutions of (1.1)-(1.8) is 
of great interest. Each special solution can be regarded as a model of some 
thermocapillary motion. 

In [7] the group-theoretic analysis of differential equations [8] is applied 
to investigate the invariance properties of the boundary value problem 
(1.1)-(1.8) for g = 0, besides the conditions on the function a (x , t), b (x, t) are 
formulated, such that the problem has invariant solutions. Among the solutions 
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described in [7] those are to be emphasized which describe plane or 
axisymmetrical deformation of a liquid film due to the gaseous phase tempe
rature inhomogeneity having the form b = b2 (t) r2 + b0 (t), where r = lx 11 
and r = (xf + xW12 in the plane and axisymmetrical case, respectively. 

Another example illustrates a plane stationary self-similar flow in the 
sector where one boundary is free and heat isolated and the other is a solid 
wall [9]; here a (x) is the power function of polar radius. The velocity field 
at the origin lias a singularity of source or sink type. Earlier an axisymmetrical 
stationary selfsimilar solution was built with a plane free boundary, the latter 
being the position of a heat source [10]. 

The class of exact solutions of (1.1)-(1.8) is not wide in the general 
case g -1= 0. The situation considered by Birikh [11] and its generalization 
[ 12] are of particular importance. These solutions correspond to the case 
g = const. and describe plane stationary flows, where the free boundary IS 

a plane, x 2 = 0, and the functions a, b are linearly dependent on x1 . 

4. A plane stationary problem 

It is assumed that p, e, p and a, b, c do not depend on x 3 and t, and I: 
and r are the cylindrical surfaces with a generatrix parallel to the axis. x3 , 

the surface r being unmovable, so that -v,. = 0. In this case the solution of 
(1.1)-(1.8) describes a plane stationary motion. The above problem, under 
additional ~ss~mptions g = 0 and f n f = ~ was first investigated in [13] 
using a complex representation of the solution of Navier-Stokes equation [14]. 
The existence and uniqueness of the solution at small Marangoni numbers, 
Ma, was proved, an iterative method of its numerical solution was justified 
and branching of rest and quasisolid rotation was studied. 

Let us consider the latter result in more detail. It is assumed that I: is 
the circumference r = (xi+ x~) 1 1 2 = R 0 rotating round its centre with an 
angular velocity w, and that g = 0 , a= const., b = const. Then the problem 
(1.1), (1.3)-(1.8) has an exact solution, which, in a rotating system of coordi
nates, corresponds to rest with temperature distribution e = e* ln (R/r), 
where e* = const. > 0, and circular free boundary r: r = R > R 0 (basic solu
tion). In this case a= e* ln 1/e , b = -e* Bi, e = R 0 /R, Bi = o:R (Biot number). 
Let us introduce the dimensionless parameter We= ovx/a0 R (Weber number), 
Bo = QW 2 R3 /a0 (analog of Bond number) and M= xe* R /QVX ln 1/e (Maran
goni number), the latter being the bifurcational parameter. 

It has been proved in [15] that there exist secondary flows branching 
from the basic one when 

1 +ck Bi 
Mk =M? 1+ali We (Bo+k2-1) I ' k = 1, 2, ... 
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where M~, ck> ak are the positive functions of parameter e. The numbers 
M~ corresponding to the undeformable heat isolated free boundary were 
previously calculated in [16]. It is obvious that taking into account defor
mability r gives rise to a decrease in spectral numbers Mk. 

The secondary flow has a structure 2k of convective shafts and is symmetrical 
with respect to the fixed straight line passing through the origin. The spectral 
numbers Mk are at a minimum at some k =km (e). The number of km can 
be estimated as follows: the convective shaft size along an angular coordinate 
q> must have an order of the layer thickness R- R0 . 

The · methods described in [13] admit a natural generalization for the 
cases when g = const. and the lines 1: and r have contact points. It deserves 
a remark that in [17] the class of exact solutions of the linearized system 
(1.1) has been found, which described thermocapillary motion in a circular 
region or half-plane. In that case the free boundary is adjacent to the solid 
wall and the temperature distribution along it can be arbitrary. 

5. A weakly deformable free surface 

As it has been mentioned above, the question of solvability of (1.1H1.8) 
in the general case remains open. In addition to technical difficulties, the 
absence of a closed statement of the problems of such kind in the cases when 
surfaces 1: and r have a moving contact line is a serious handicap for solving 
this problem (see a discussion of this problem and references cited in [18]). 
In the meantime, in applications there can arise situations when the problem 
(1.1H1.8) may be splitted with a high accuracy into two successively solvable 
problems, of the determination of the form of the free boundary and 
determination of temperature and flow field in the known region. Validity 
of the condition g = const., A= xe*jCJ0 ~ 1 provides a good justification for 
such decomposition (all other determining parameters are of the order of unity). 
It should be noted that just this scheme is used to calculate therm~capillary 
motion (see, e.g., [19-21]). The works [22, 23] represent an exception to 
this rule. 

Thus, it is assumed that the parameter A is small, g is idependent of t, 
and it is required to find the components p, p, e of the solution of (1.1H1.8) 
in the form of formal power series over the whole non-negative powers of 
parameter A . A similar expansion is used for both the function determining 
the free boundary (symbolically it can be represented as r = r<oJ + Ar<1 l + ... ) 
and the functional C entering the condition (1.4): C = c<0 l+AC< 1l+ ... The 
corresponding characteristic scales of time, velocity, modified pressure and value 
of C are respectively Qvj xe* h, xe* jQv, xe* jh and CJ 0 jh. The characteristic 
linear size h and temperature drop e* are assumed a priori known. 
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As far as A is concerned, if A - 0 then we obtain 

2cr0 H<
0>+gg·~+c<o> = 0, 

V. V. PUKHNACHOV 

(5.1) 

which in principle gives us the surface r<0>. For definiteness the liquid is 
assumed to move in an open vessel, then the following boundary condition 
is added to (5.1): 

ji<O)' fh: = COS Y, (5.2) 

which is to be fulfilled on the surface ( between surfaces r<o> and I:. Here 
ji<0 > and iii: are the unit vectors of normals to r<o> and I:, y is the boundary 
angle determined from the properties of contacting media. 

An extensive bibliography in [1] is devoted to the problem (5.1), (5.2); 
also the works [24, 25] deserve an attention in this respect. Further we 
postulate that this problem has a classical solution r<Ol E C2 (Sufficient 
conditions for this are I: is the cylindrical surface whose directrix is a curve 
line of class C3

; Y· g > 0, where Y is the vector parallel to the generatrix I: 
and directed from the gaseous phase to the liquid one; 0 < y < n [26]). 

Zero order terms ,IJ0l, p<0>, e<o> in the power expansion of the solution 
with respect to A satisfy the equation (1.1) in the known region Q<0 > 

bounded by surfaces I: and r<o>, initial conditions (1.3) on the surface I: and 
conditions (1.5H1.7) on r<o> . In the latter conditions ji is to be substituted 
by ji<Ol, V r er by - xV re•> e<o> and it should be noted that V, = 0, since r<o> is 
unmovable. 

So far any mathematical facts have not been established for (1.1}-(1.3), 
(1.5Hl.8), even though this problem is of natural origin and great significance 
in view of applications. The uniqueness of the classical solution alone is 
proved for it in a relatively simple manner. It is difficult to prove the 
solvability of this problem "in global" due to the absence .. at present of 
sufficiently strong a priori estimates. 

Now let us give a stationary formulation of the problem under conside
ration. Index (0) of he required functions and symbols r<o> and ji<0> will be 
omitted. It is required to find the solution ,v (x), p (x), () (x) of the system 
of equations 

p·Vp= - Q- 1 Vp + vt1p-f38g, 

v ·.v = o, ,v· ve = xLJe (5.3) 

in the region Q with the boundary I: u r u ( satisfying the boundary 
conditions 

,v = 0,8 = a(x), xEE, 
I 

2QvD ·n- 2QV (fi·D ·m fi = - xVf e, XEF, 

VB · ii + a(O - b(x)) = O, ,v·ii = O, xEF. 

---- --------------------

(5.4) 

(5.5) 

(5.6) 
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If the functions a and b slightly differ from a constant, it is appropriate 
to use the method of successive approximations to solve the problem (5.3H5.6). 
The results obtained in [27] on the boundary value problem for a stationary 
system of Navier-Stokes equations with m:ixed boundary conditions (5.4H5.6) 
allow us to hope for the convergence of an iterative process at low Marangoni 
numbers. 

6. A linear model 

As a rule, in order to understand a mathematical nature of non-linar 
problems, it is appropriate first to investigate relevant linearized models. 
In the problem under consideration the simplest linear model arises 
from linearization (1.1)-(1.7) at rest (p = 0) with a constant temperature 
distribution. Such linearization is based on the representation a = e* + ef1 (x, t), 
b = e* +efz (x, t), where e* = const., [', is the small parameter and fl and fz 
are the smooth functions independent of e. 

It is readily seen that after series expanding of the solution in series in 
terms A in zero approximation the free surface r is determined as an 
equilibrium capillary surface in a gravity force. In the first approximation 
there arises a problem in the known region Q which is splitted into two 
successively solvable problems. The first, trivial problem consists in finding 
the solution of a linear heat equation with the conditions (1.3), (1.6). The 
second is the problem of finding the solution of the system of Stokes 
equations with inhomogeneous conditions on the free boundary r. The right 
hand side of the equation (1.1), where the term ,v · '\lp is omitted, and the 
right-hand sides of (1.4), (1.5) include the pre-determined function e and its 
derivatives. Probably this problem has not been studied in a general statement, 
though a necessary mathematical apparatus in reality has been already 
developed (see Chapter VI of the book [1]). At the same time, there is 
a great number of works, where the above-mentioned problem has been solved 
for specific regions Q of a rather simple form (see the paper [28], where the 
case of an infinite circular cylinder with a free boundary has been considered 
in detail, as well as references therein). · 

The proof of existence and uniqueness theorems in the linearized problem 
has mainly a methodological meaning. However, a linar model plays a 
principal role in the study of the problem of Lyapunov motion stability. 
The thermocapillary instability mechanism was first studied theoretically 
by Pearson in [29]. He investigated the instability of a weightless plane 
layer with an undeformable free boundary heated from below. If a = const., 
b = const., liquid is at rest, and its temperature is a linear function of the 
coordinate normal to the layer boundaries. This equilibrium is stable only 
if M< M* (Bi), where M is Marangoni number calculated from the tempe
rature drop on the boundaries and thickness of the layer. When M> M*, 
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the equilibrium becomes unstable. The function M* (Bi) monotonically 
increases with increasing Biot number (Bi), M*~ 79.6, when Bi = 0, M* --+ oo 

-when Bi--+ oo [29]. 
In [30] the problem of stability is studied for the situation more typical 

for weightlessness, when both layer bounaries are free. It is worth to mention 
also the results of Chapter VIII in book [1], concerning the problem 
of thermocapillary equilibrium stability of the liquid filling in a spherical layer 
(one boundary is free and the other is solid) or a rectangular channel 
(here a free boundary is plane that corresponds to a wetting angle n/2); 
in both cases g = 0. 

As regards the thermocapillary stationary motion stability, the first 
publications on this matter appeared quite recently [31, 32]. They are devoted 
to the stability of plane and axisymmetrical flows [11, 33], where free 
boundaries are straight lines or cylindrical surfaces, and temperature is 
a linear function of a homogeneous coordinate. It should be noted that the 
resulting spectral problems do not admit a full separation of variables. 
Application of the longitudinal coordinate "freezing" in the condition (1.4), 
however, makes it possible to reduce the above problems to eigenvalue 
problems for a system of ordinary differential sixth-order equations (This 
approach has been used long ago in the analysis of flow stability in a boundary 
layer). By combination of asymptotical and numerical methods the authors 
of [31, 32] built numerical curves on the "wave number- Marangoni 
number" plane, studied different limiting cases of disturbance behavior, 
calculated asymptotics of eigenvalues and eigenfunctions. It has been shown, 
in particular, that taking into account the free boundary deformability can 
lead to the flow instability with respect to long-wave disturbances. 

7. Motion in a thin layer 

Since thermocapillary motion is induced by surface forces, the thermo
capillary effect is expected to be most significant in thin liquid layers. 
Approximate equations describing thermocapillary convection in a thin layer 
were derived by a number of authors under different simplifying assumptions. 
This has been done successfully in the works [34-36], where a review of 
previous investigations is also available. 

The liquid is assumed to be bounded by a solid plane x3 = 0 and free 
surface x3 = YJ (x 1 , x 2 , t), which is projected uniquely onto the above plane. 
Let us also assume for simplicity that f3 = 0, g = (0, 0, -g) = co11st. The 
basic hypothesis, which allows to simplify radically the problem (1.1)--(1.8) 
consists in the assuming that there exist two characteristic length scales in 
the motion, namely the longitudinal scale l and the transversal scale h, 
thereby e = h/l ~ 1. For h, it is natural to choose max YJo (x 1 , x 2), where 
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1'/o = 17 (x1, x 2, 0) is given function taking non-negative values according to 
its physical sense. For l, it is appropriate to choose the diameter supp 1'/o 
in the case of a finite function 1'/o (this corresponds to a drop on a plane), 
and the least period 1'/o in the case when this function is periodical, etc. 

By an asymptotic integration (when s-> 0) of the equations (1.1) across 
the layer and eliminating the functions ,v, p due to the conditions (1.3Hl.5), 
(1.7), we obtain the equation describing the layer thickness evolution 17: 

17 ,_V· - WJ + - -V g17 - - LJ 17 ::= 0 [
x 11 z 173 ( O'o )] ' 

1 2Qv r 3v Q 
(7.1) 

(throughout Section 7 V and Ll denote two-dimensional gradient and Laplacian 
respectively. If free boundary temperature satisfies the first-kind condition 
(1.9), (Jr = b(x, t) and the equation (7.1) becomes closed. This 'situation was 
considered in [35] where a one-dimensional analog of (7.1) was obtained 
for a 0 ~ 0. For a uniqueness of the function 17 the following initial condition 
is to be added to (7.1): 

'7 = 1'/o(xl , xz) at t = O. (7.2) 

If (1.6) is taken as a condition for the surface temperature, m the thin 
layer apProximation we have 

() _ a+cx.b17 
r - 1 + cx.'7 ' 

(7.3) 

where a, b are the known functions of x 1 , x2 and t, ex. = const. > 0 is the 
interface heat exchange coefficient. 

In an important specific case when a and b were constant the problem 
(7.1H7.3) was studied in [34], a =P b. It is expedient to emphasize such 
qualitative results as the existence of stationary solutions with a finite support 
(the wetting angle y on the drop boundary is to be of the order of s) and 
the possibility to stabilize a liquid layer with constant thickness positioned 
on a "ceiling" (g < 0) by thermocapillary forces for sufficiently small values 
of dimensionless parameter Q [g[ h2 jx fa- b[ . 

. The solvabiliry of the Cauchy problem (7.1H7.3) for finite initial data 1'/o 
is an open question. It seems that is succeeds in a large measure- it is so 
due to the difficulties typical for the problems of viscous fluid with a moving 
line of a three, phase contact [18]. 

8. Marangoni boundary layer 

Our above considerations were based on the assumption that the Marangoni 
number is of order of unity. In some technological experiments under the 
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conditions of weightlessness (see, for example, [6]) thermocapillary motion 
with high Marangoni numbers are realized. This fact stimulated the develop- . 
ment of a Marangoni boundary layer theory [37-39]. We will restrict ourselves 
to formulation of the simplest boundary layer of this theory in the plane 
stationary ca~e, ignoring buoyancy forces (L ~ 1) and free boundary deformation 
(A~ 1). 

It is required to find the solution w (x, tj;) of the equation 

Wx = V Jw wl/ll/l-2dpjdx 

in the region II e = { x , tjJ: 0 < x < l, tjJ > 0} , satisfying the conditions 

W = Wo (t/J) if X = 0 , tjJ ~ 0, 

wl/1 = -r (x) if 0:::;; x:::;; l, tjJ = 0, 

w---+ V 2 (x) if 0:::;; x:::;; l, t/1---+ oo. 

(8 .1) 

(8.2) 

The relations (8.1), (8.2) have been expressed in the von Mises variables [40], 
so that x is the free boundary arc length reckoned from some point on it, tjJ is 
the stream function, w the longitudinal velocity square. Pressure p is connected 
with the outer flow velocity V by the equality 2p + V 2 = const. The function 
-r (x) is proportional to a tangential deviation of temperature on the free 
boundary. 

The problem (8.1H8.2) differs from the classical Prandtl problem studied 
in [41] by the kind of the boundary condition at tjJ = 0. Generally speaking, 
(8.1) does not degenerate on the free boundary, however, its degeneration 
is possible when tf;-+ oo . This occurs when the Marangoni boundary layer 
flow is conjugated with a rest V = 0 . The function w0 is assumed to have 
a finite support, and the conditions which guarantee a global solvability of the 
problem (8.1), (8.2) are fulfilled: the function w0 satisfies Lipschitz condition 
and is non-negative, the function -r is continuous and negative. Then at any 
fixed x > 0 the support of function w will also be finite. This disturbance 
localization effect has no analog in the Prandtl boundary layer theory. 

The problem (8.1), (8.2) was investigated in [42]. Let us formulate one 
of the results of that work. Let w0 > 0 , dw0 /dt/l < 0 for 0 :::;; t/1 < oo, w0 E 

EC2 +<x [0, oo ), 0 < ry_ < 1, V> 0 for 0:::;; x:::;; l, VEC 1 +<>12 [0, l] , w0 (oo) = 
= V 2 (0) , -r < 0 for 0:::;; x:::;; l , rEC<l+a)/2 [0 , l]. Then at any l > 0 there 
exists a unique solution wEC2 +a, l+cx/ 2 (lle) of (8.1), (8.2), thereby w > 0, 
wl/1 < 0 for (x, t/I)Elle . It should be emphasized that in contrast to the Prandtl 
problem, for a global solvability of the problem under consideration "in 
a global" there is no need to impose the condition Px :::;; 0 for x E [0, l]. 
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·If should be noted that on the basis of the Marangoni boundary layer 
theory an algorithm for calculating thermocapillary flow in an ampule 
partially filled by the semiconductor melting has been developed [43]. 

We do not consider here the complex problems of a nonstationary 
Marangoni boundary layer which almost have not been studied up to now. 
A special publication of the author will be devoted to such problems. 

9. A two-layer system 

The thermocapillary convection model (1.1H1.8) under consideration and 
its simplified variants correspond to the idealized situation, when a dynamical 
effect of a gaseous phase on a liquid one can be ignored, and a thermal 

· effect is modelled by the condition (1.6). In the meantime, already in [44] 
it ha'S been shown that taking into account transfer processes in the gaseous 
p)1ase effects qualitatively in the neutral curve behaviour over the range 
of small wave numbers of the Pearson problem [29]. 

In this connection a question arises: to what extent is the model proposed 
in Section 7 limiting from the point of view of the "two-layer" approach, 
in which one layer is liquid and the other is gaseous? To answer this 
question it is appropriate to derive equations describing thermocapillary 
motion in the "liquid-gas" system within the framework of long-wave appro
ximation. The system is closed between two solid planes x3 = 0 and x3 = h. 
The interface has the equa,tion x3 = '1 (x 1 , x 2 , t). The plane x3 = 0 bounding 
liquid is sustained at a constant temperature ell and the plane x3 = h 
contacting with gas is heated up to a constant temperature eg· 

Let us denote by Q*, 11*, A.* the ratios of densities, dynamic coefficients 
of viscosity and heat conductivity coefficients of gas and liquid. Typical 
values of these parameters are: Q*"'10- 3 -2x10- 3 ,Jl*"'10- 2 - 2x10- 2 , · 

A.*,...., 5 x 10- 2 - 10- 1 . Therefore the limiting transition in the equations of 
long-wave approximation Q*--+ 0, 11*--+ 0 at fixed value of A.*> 0 seems to 
be justified. In the limit we obtain exactly the relations (7.1), (7.3), where 
a = (1-A.*)- 1 (8

9
- A.*ez), b=89 (This result was obtained by the author 

together with L. G. Badratinova). Hence it can be concluded that the model 
of thermocapillary motion in a thin layer [34] attracting the condition of 

. thermal contact with gaseous phase (1.6) is more realistic than the model 
;.. suggested in [35]. 

The thermocapillary effect in the two-layer system lacks so far a satisfactory 
theoretic treatment. Let us note the works [45, 46] where finite-amplitude 
motion in a rectangular cavity filled by two viscous unmixing liquids has 
been studied. Among the most interesting results of these works are those 
on periodical and non-periodical oscillations caused by the thermocapillary 
mechanism. 
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10. Bubble motion 

Let us consider the problem of steady-state motion in weightlessness 
of a gaseous bubble with radius R, caused by temperature field inhomo
geneity in a liquid (} (x), such that ve--t g = const. i= 0 when X --t Cf). This 
problem, by virtue of its significance, was the subject of a study (see [47] 
and references cited there). 

To solve this problem, it is necessary to consider the given system as 
a two-component one and next to perform the limit passage Q*---+ 0; 
f..l* ---+ 0, A.* ---+ 0. 

The problem of thermocapillary drift of a drop of one liquid into the 
other admits an effective analytical solution in the case of small modified 
Marangoni numbers Ma = xR 2 l{jJ/Qv 2 (For the given pair of media the 
condition of smallness of M a can be realized by choosing a sufficiently 
small value of R2 l{jJ. For example, for an air bubble in pure water at 
(} = 20°C we have Ma < 1 if R 2 lgl < 10- 3 cm·grad) . It should be noted that 
the smallness condition of the Marangoni number in the case under conside
ration automatically gives rise to the small parameter A responsible for the 
free boundary deformation. Thus, the expansion of the solution over small 

· parameter M a bears a resemblence to the procedure described in Section 5. 
' Moreover, the deviation of the bubble shape from a spherical one is of the 
order Ma 2 at M a---+ 0 [47]. The expression for velocity V of the thermo
capillary bubble drift takes the form 

- xRg 
V= -

2
- [1 +0 (Ma)] if M a---+ 0. 
QV 

If the liquid contains may bubbles with a mean distance l between them 
being R ~ I~ diam. Q, the representations of a heterogeneous medium 
mechanism can be applied to the description of thermocapillary motion in 
such a system. A phenomenological model of thermocapillary motion in 
a gas-liquid system was suggested in [ 48] (see also [ 49]). The two results 
obtained by the above-mentioned model are of a particular importance. 
A uniform distribution of bubbles of equal radius at constant temperature 
gradient and constant gravity acceleration is unstable. A nonlinear evolution 
of one-dimensional initial distribution of smoothed ledge type causes a sharp 
steepening of concentration profile with increasing time [50]. 
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Modele ruchOw termokapilarnych 

Efekt termokapilarnosci jest uwazany za jeden z gl6wnych przypadk6w ruchu plyn6w 
w polach slabych oddzialywan. Praca stanowi przeghtd modeli matematycznych ruch6w termo
kapilarnych. Podstaw«< przeghtdu stanowiq wyniki otrzymane w lnstytucie Hydrodynamiki 
im. Lawrentiewa i Krasnojarskim Osrodku Obliczeniowym Oddzialu Syberyjskiego AN ZSRR, 
a takze w Uniwersytecie w Nowosibirsku. 

3<!J<!JeKT TepMOKam!JijjpHOCTH jjBJijjeTCjj OJ(HHM H3 CaMbiX Cyll.leCTBeHHb!X CJiy'!aeB J(BHJKeHHjj 
JKHJ(KOCTH B IIOJijjX CJia6hlX J(eHCTBHH. B pa6oTe rrpeJ(CTaBJieHbl pe3yJibTaTbl, KOTOpb!e IIOJIY
'!eHbl B l1HCTHryTe rHJ(pOJ(HHaMHKH HM. naspeHTbeBa, KpaCHOjjpcKHM Bbi'IHCJIHTeJihHOM 
IJ;eHTpe CH6HpCKOfO 0TJ(eJieHHjj AH CCCP H B HoBOCH6HpcKOM rocyJ(apcTBeHHOM YHHBep
CHTeTe. 




