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Let S be a smooth surface in Euclidean 3-space and let C be a smooth curve having its 
end points on S. Consider a surface x bounded by S and C which is a stationary point 
Qf Dirichlet's integral. We give an optimal estimate for the length of the trace of x on S. 
The proof of S. Hildebrandt and J. C. C. Nitsche is generalized to surfaces x with branch 
points of odd order on the free boundary. 

1. Introduction 

Let us have a look at a configuration in R3 conststmg of a smooth 
Jordan arc C having its end points P1 and P2 on a smooth surface S and no 
other points in common with S. Consider a surface x which has minimal 
area among all surfaces bounded by C and S. This variational problem 
can be illustrated beautifully by experiments with soap films whire S is · 
represented' by a thin plate of plastic material and C is a thin wire fixed 
to S at two points (see fig. 1). Note that we shall work with supporting 
surfaces S without boundary and so S could be for example a torus or 
a .sphere. 

Let us formulate the basic variational problem. Denote by B the upper 
half of the unit disc in the (u, v)-plane B = {(u, v)lu 2 +v2 < 1, v > 0} and by 
a+ B its boundary portion {(u, v)lu 2 +v2 = 1, V> 0} and by I the interval 
( -1 , 1) x {0} on the real axis. Let Z (C, S) be the set of all surfaces 
x = x (u, v) = (x 1 (u, v), x 2 (u, v), x3 (u, v))EC0 (B)nH 1

•
2 (B) which are boun

ded by C and S in the following sense: x maps a+ B continuously and 
in a weakly monotonic manner onto C such that x (- 1, 0) = P1 , x (1, 0) = P2 
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s 

Fig. 1 

and x (0, 1) = ~ for some fixed third point P3 on C, different from P1 and 
P2 , while 

dist (x (u, v), S) = inf lx (u , v)- yi ~ 0 
yeS 

(1) 

as (u,v)~(u0 ,0)El . The boundary condition on 1 is a free boundary 
condition in the sense that x may vary on the supporting surface S. But 
note that the boundary · condition on a+ B is free on the one-dimensional 
manifold .C too. It just has to satisfy the three point condition. 

We set 

d (C, S) = inf D (y), 
yeZ(C,S) 

where 

D (y) = J 1Vyl2 du dv 
B 

is Dirichlet's intt<gral, and consider the variational problem (V) to find some 
surface x in the class Z (C, S) such that 

D (x) = d (C, S) . 

It is well known that this variational problem has at least one solution, see 
eh. VI in [1]. In general there is no uniqueness for this problem. Each solution 
of (V) is a minimal surface i.e. 

L1x = 0 , Xu · Xv = 0, lxul = lxvl 

on B. Il also minimizes the area functional . 

A (x) = J lxu 1\ xvl du dv 
B 

(2) 

in the .class Z (C , S), see [12]. For a survey of the results up to 1975 we 
refer to [13], pp. 447-474. 
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Several authors have investigated the boundary behaviour of solutions 
of the variational problem (V). There is satisfactory information concerning 
the regularity. Roughly spoken the results are to the effect that up to the 
boundary x is as smooth as the bounding contour C resp. S itself is. For 
the behaviour at the "fixed" boundary a+ B see [13] , pp. 281- 325. The 
crucial point in proving regularity at the free boundary I is to show 
continuity of x on Bu I. Condition (1) only implies continuity for the 
distance function but not for x itself. For solutions of (V), i.e. for area 
minimizing minimal surfaces, regularity of the free boundary has been proved 
by W. Jager in [10], J. C. C. Nitsche in [12] and [14], and by K. H. Goldhorn 
and S. Hildebrandt in [5]. The most important observation concerning the 
free boundary is that a solution x meets the supporting surface S orthogonally. 
This has been proved by W. Jager in [10] even for stationary solutions. 
M. Grliter, S. Hildebrandt, and J. C. C. Nitsche in [6] and the author in 
[2, 3] proved regularity of the free boundary for stationary points of Dirichlet's 
integral, i.e. for surfaces x which are not area minimizing. Regularity results 
for surfaces S with boundary can be found in [7] and [8]. 

Besides the question of boundary regularity one of the most interesting 
problems concerning partially free minimal surfaces is to estimate the length 
of the trace 

T = {x (u, O)llul < 1} 

of x. In [9] Hildebrandt and Nitsche proved the estimate 

a 
L(T)~ L(C)+RA (x) (3) 

for the length of the trace of a stationary surface x in Z (C, S) with a constant 
a< 7. Here L represents the length of the curve indicated. A. Klister [11] 
succeeded in proving the optimal estimate with a= 2. 1/R represents a bound 
for the pi:incipal curvatures of S. The authors assumed that S satisfies a 
two-sided R-sphere condition and that the minimal surface x had no branch 
points of odd order on the free boundary. A branch point of a minimal 
surface is a point w0 = u0 + iv0 where the gradient of x vanishes. In the 
neighbourhood of a branch point one has an asymptotic expansion of the form 

Xw (w) = c (w - w0t + o (lw - w0 lm) 

where xw = (xu - ixv)/2, with some number mEN and some vector cEC, 
c =f. 0, m is called the order of the branch point w0 . The problem with branch 
points of odd order is such in which xv (u, 0) changes direction as u passes 
through a branch point (u0 , 0). For better interpretation of such singular 
points we refer to [9]. The authors exclude branch points on I under certain 
conditions, see Thms. 4 and 5 there. The most important fact is that for 
minimizing minimal surfaces branch points on I can be excluded. 
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· The aim of this paper is to prove the estimate (3) without assuming 
the non existence of branch points of odd order on the free boundary. T~e 
idea of proof is due to S. Hildebrandt . . J. C. C. Nitsche and A. Klister. 
Our task is just some sort of a regularization. First we say something 
about the basic situation, i.e. about admissible supporting surfaces and 
stationary solutions. We al~o list some regularity properties. Then we prove 
inequality (3). 

2. Stationary Free Minimal Surfaces 

First we suppose that Z ( C, S) is not empty. This is guaranteed for example 
if the end points P1 and P2 of C can be connected by a rectifiable Jordan 
arc on S. We assume that C is of class C1

·" and that C meets S at P1 and 
P2 under angles greater than zero. For weaker assumptions see [9]. We now 
specify what an admissible supporting surface is. For example every compact 
surface S in R 3 given by f (x) = 0, jE C'"·IL (R3

), V f i= 0 on S, represents such 
a surface. 

1. DEFINITION. Let S be a 2-dimensional C"'·IL-manifold in R3 with the 
following properties: For every point x0 E S there exist some neighbourhood 
U 0 of x 0 in R3 and some real-valued function foE C"'·IL (U 0 ) with V fo i= 0 
in U0 and fo (x) = .0 iff xES n U0 . There is some positive number d and 
there are functions~ ' a, nE cm-l,p. (Ud) in the strip ud = {x E R3 1dist (x, S) < d} 
such that every xE Ua can be expressed uniquely as 

x = a (x)+~ (x) n (x), 

where a (x) ES, n (x) is normal to Sat a (x), in (x)l = 1, and I ~ (x)l = dist (x, S) . 
In addition to that we assume that 

sup IVnl < oo. (4) 
u, 

Then we call S an admissible supporting surface of class C"'·P. (m EN, m ~ 2, 
O~.u~1). 

It should be noticed that this definition contains two decisive assumptions. 
First there is a global strip about S, embedded in R 3 , and secondly (4) is 
a global condition on the curvature of S if S is unbounded. 

From 1. Definition one easily concludes the following statements; see also 
[4], appendix . 

2. LEMMA. ~ E cm,p. (Ud), n (x) =V~ (x), H (x) n (x) = 0 on Ud, where we define 
H;k (x) = ~x;xk (x) (i, k = 1, 2, 3) . The nonzero eigenvalues of Ff can be esti-
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mated by 

k 
1-k 1~1 ' 

where k = max {lkd, lk2 1} and k1 , k2 are the principal curvatures of Sat the 
foot point a. At last k ~ 1/d. 

3. DEFINITION. A family x, E Z ( C, S) (le I < le01) is called an admissible variation 
of xEZ(C,S) if x, =x+ez(e , ·), where z(e ,· )EH1

•
2 (B) and , 

d 
~D (x,)le=O 

exists. x is called stationary if this expression vanishes for all admissible 
variation x, of x. x is called minimizing if 

D (x) ~ D (y) 

for every yEZ (C, S) . 
For a detailed discussion of admissible variations the interested reader is 

referred to [11], § 3. Of course, every minimizing surface is stationary. But 
there are surfaces in Z ( C, S) which are stationary but not area minimizing. 

W. Jager has proved that a stationary surface meets the supporting surface 
orthogonally; see [10]. 

4. LEMMA. Let S be an admissible supporting surface of class C2 and let 
xEZ (C, S) be stationary. Then 

Xv = Xv · n · X n · X 

on I. 
Here we have used the regularity of x on I. Let us just collect the 

regularity properties of stationary solutions of (V). 

5. LEMMA. 1. Regularity at the ''fixed" boundary. Assume that C is a regular 
curve ofclass cm·ll(mEN,O~J1<1) . Then xECm·ll(Bua+ B) if poi=O and 

xEcm-l,v(Bu a + B)for every vE(0,1) ifJ1=0 . 
2. Regularity at the free boundary. Let S be an admissible supporting 

surface of class cm·ll(mEN,m~2,0~j1< 1). Then XECm·ll(Bul) if w'i=O 
and xEcm- l,v (Bui) for every vE(O, 1) if J1 = 0. 
In both cases we have assumed that x is stationary. 

References for the proof of this Lemma were g1ven m the introduction 
to this paper. 
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3. The Length of the Trace 

·In this part of the paper we shall prove the estimate (3) for the length 
of the trace of a stationary minimal surface. Due to an idea of S. Hildebrandt 
an J.C.C. Nitsche we do not need continuity for x at the corner points 
( - 1,0) and (0, 1). 

6. THEOREM. Let S be an admissible surface of class C 2 and let C be a regular 
arc of class cl,v_ If XEZ (C, S) is stationary then 

2 
L(T)~ L(C)+d A (x). 

7. COROLLARY. Under the assumptions of the theorem, X E C0
·1l (B) for some 

JlE(O, 1). 
This is an easy consequence of the fact that the trace of x on I and 

a+ B is in H 1
•
1 (I), H 1

•
1 (a+ B) resp. and that xEH 1

•
2 (B) . 

8. CoROLLARY. Let S satisfy an R-sphere condition, i.e. S is the boundary of 
some open set G in R 3 with oG E C2

' and for every X o E s there are two balls 
·of radius R, tangent to S at x 0 , which do not contain any points of S, then 
d may be taken as R in the Theorem. 

The two-sided R-sphere condition implies that the principal curvatures 
of S are bounded oy 1/R and globally it garantees that a strip of width 
d = R exists where the decomposition 

x = a (x)+~ (x) n (x) 

is unique. 

Proof of the Theorem. 
Let 6 be some small positive number. The length of 

To= {x(u,O)IIul < 1-6} 

1s g1ven by 

L(To) = J lxul du, Ia = (-1 +6 , 1-6) 
I , 

and because of the conformality relations in (2) this equals 

J lxvl du. 
I, 

Since x meets S transversally (see 4. Lemma) we have 

L(To) = J I(~ ·x)vl du. 
I, 

We now construct some function 1J which is smooth on B such that 

IJv? l((·x)vi 

(5) 

(6) 
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on I. Since ~ · x is defined in some neighbourhood of I only, we take 
a function I/JEC2 (R) with 1/J(t)= 1/f(d)(t~d), 1/f(t)= -1/J(d)(t~ -d),l/!(0)= 
F 0, 1/1' (0) = 1, 1/1' E C6 ( -d, d), W (t)l ~ (1 +D) (1-ltl/d) and W'l ~ (1 +D)/d . 
We set 

((x) ={l/l(~(x)) 2 
for xEU~ · 

1/J (d) 2 for xER\Ud 

and 

11 = (az + ~. x)l /2 

on B, where a (u, v) = Dv. We see that in B 

V17 = (a2+( ·x)- 112 (a Va+ V-(( ·x)/ 2). 

Thus near I, 

M.+ 1/1' (~ · x) 1/1 (~ · x) (~ · x)v 
1'/v = (a2 + 1/1 (~. x)2)1/2 

which tends to 

as v --+ 0 , v > 0 . 

We shall have to estimate - Ll1J from above. So, let us calculate this expression 

-L117 = (a2+( ·x) - 312 la Va,+ V (( ·xW-
-(az+(·x)-lf2(1Vai2+LJ ((·x)/2), 

V (( ·x) = 21/f' (~ ·x) 1/1 (~ ·x) V(~ ·x) 

and abbreviating y = 1/11/1' we get 

Ll (( · x) = 2y' (~ · x) IV(~· x)l 2 + 2y (~ · x) LJ (~ · x). 

Thus 

-L117 = (a2 +( ·x)- 312 (laVa+y (~ ·x) V(~ ·x)l2-

-(a2+( ·x) (1Val 2+y' (~ ·x) V(~ ·x)l 2
))-

-(a2+ ( ·x)- 112y (~ ·x) LJ (~ ·x) = 

= a2 + ( · x)- 312 (-la!/!'(~· x) V (C x)-1/1 (~ · x) Val 2)

-(a2 +1/J (~ ·x)2
)-

112 (1/1 (~ ·x) 1/1" (~ ·x) IV(~ ·xW + 
~+Y(~·x)LJ (~·x)). 

From this is follows that 

- L111 ~ W' (~ · x)IIV (~ · xW + W (~·~x)IILJ (~ · x)l. (7) 
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With Bb = B n {w = (u, v)llw ± 11 > <5} formulas (5), (6) and (7) yield 

L (T;;) ;':; I 1Jv du = -I ~~ du = I- Jry du dv + J ~: ds (8) 
I, I, B, oB,\16 

and since 

k ( 2 2) ;;; 1 -kl~·xl IVxl -IV(~·x)l 

for I~· xi;':; d, 

11/1' (~ · x)IIV (~ · x)l ;;; 

;':; (1+<5)(1- ~~~xl) 1 -k~~·xl (1Vxi 2 -IV(~·x)l 2) 

;;; (1+<5)_2_(1Vxi 2 -IV(~·x)l 2). (9) 
d 

Because of 

W'(~·x)IIV(~·xW;;; (1+<5) ~ IV(~·x)l 2 , 
(7) and (9) together give us the following bound for the first integral in (8): 

I-Llrydudv:::;; (l+b) ~ D(x). (10) 

The second integral in (8) consists of two boundary integrals. The first one 
ranges over a+ Bb = a+ Bn Bb and can be estimated like this: 

\I ~~ ds\ ;':; bn+(l+D) L(C), (11) 

a,B, 

because 

and 

I(~· x),l ;':; lx,l = lxsl, 

where r = lwl. Here we have used conformal parameters (2). 
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For given b1 > 0, the Lemma of Courant-Lebesgue gives us some number 
b from the interval (bi , bt) such that 

f lx.l ds ~ ( nD (x)jlog ~1 ) 
112

, (12) 

a,B, 

where 8 1 Bil = {w!lw - 11=b,wEB}. The same is true for the remaining 
integral, for another b perhaps. But this creates technical difficulties only. 
If we estimate as in the proof of (11), then collect our inequalities (8), 
(10), (11) and (12), we arrive at 

1 
L ('4) ~ (1 + b) d D (x)+(1 +b) L (C) + o (1) 

as b ---t 0, and the Theorem is proved. • 
References 

[1] COURANT R. Dirichlet's principle, conformal mapping, and minimal surfaces. New York, 
lnterscience, 1950. 

[2] Dz!UK G. Uber die Stetigkeit teilweise freier Minimalflachen. Man. math. 36 (1981), 
241- 251. 

[3] DzwKG. C 2
- Regularity for partially free minimal surfaces. Math Z. 189 (1985) , 

71- 79. 
[4] GJLBARG D., TRUDINGER N. S. Elliptic partial differential equations of second order 

Berlin-Heidelberg-New York, 1977. 
[5] GOLDHORN K. H., HILDEBRANDT S. Zum Randverhalten der Losungen gewisser zweidi

mensionaler Variationsprobleme mit freien Randbedingungen. Math. Z. 118 (1970), 241- 253. 
[6] GROTER M., HILDEBRANDT S., NITSCHE J. C. C. On the boundary behavior of minimal 

surfaces with a free boundary which are not minima of the area. Man. math. 35 (1981), 
387-410. 

[7] HILDEBRANDT S., NITSCHE J. C. C. Minimal surfaces with free boundaries. Acta Math. 
143 (1979), 251-272. 

[8] HILDEBRANDT S. , NnscHE J. C. C. A uniqueness theorem for surfaces of least area with 

partially free boundaries on obstacles. Arch. Rat. Mech. Anal. 79 (1982), 189-218. 

[9] HILDEBRANDT S., NITSCHE J. C. C. Geometric properties of minimal surfaces with free 
boundaries. Math. Z. 184 (1983), 497- 509. 

[10] JAGER W. Behaviour of minimal surfaces with free boundaries. Comm. Pure Appl. Math. 
23 (1970), 803-818. 

[11] KOSTER A. An optimal estimate of the free boundary of a minimal surface. J. f d. Reine u. 
Angew. Math. 349 (198.4), 55-62. 

[12] NITSCHE J. C. C. Minimal surfaces with partially free boundary. Least area property and 
Holder continuity for boundaries satisfying a chord-arc condition. Arch. Rat. Mech. Anal. 
39 (1970), 131-145. 

[13] NITSCHE J. C. C. Vorlesungen iiber Minimalfliichen Berlin-Heidelberg-New York, Springer, 

1975. 

[14] NITSCHE J. C. C. The regularity of the trace for minimal surfaces. Annali Scuola Norm. 
Sup. Pisa, Ser. IV, 3 (1976), 139- 155. 



170 G. DZIUK 

0 dlugosci swobodnej granicy powierzchni minimalnej 

Niech S b~dzie gladkit powierzchni11 w euklidesowej przestrzeni 3-wymiarowej, a C - gladki! 
krzyw1:l maji!Cit kor\.ce na S. Rozwa:i:ana jest powierzchnia x, ograniczona przez S i C, 
b~;di!ca punktem stacjonarnym calki Dirichleta. Podane zostaje optymalne oszacowanie dlugosci 
sladu x na S. Dow6d S. Hildebrandta i J. C .C. Nitsche zostaje uog61niony na powierzchnie x 
z majilcymi nieparzysty rZiid punktami rozga!~zienia na swobodnej granicy. 

0 ,lJ.JIHHe CBo6o.IJ.HOH rpaHH~bl MHHHM3JibHOH DOBepXHOCTH 

I1yCTh S 6y,~:~eT mat:~KOH IIOBepXHOCThiO B TpeXMepHOM 3BKmi,L:IOBOM rrpOCTpaHCTBe If C 
o603HaqaeT fJia,L:IKyJO KpHBYIO C KOHUaMH Ha S. PaccMaTHBaeTCH IIOBepXHOCTh X Orpa!;I!f'IeHHYIO 
S If C, KOTOpaH HBJIHeTCH CTaUHOHapHOH TQqKOH HHTerpana )l;HpHXJie. IJo,~:~aHa OIITlf'MaJihHaH 
ou;eHKa ,L:IJIHHhi cne,~:~a x Ha S. )l;oKa3aTeJihCTBO rrpHHa,~:~neJKamee C. XHJiht:~e6paHt:~TY H fi:.C.C. 
HH•Ie o6o6maeTCH Ha CJiyqaif IIOBepXHOCTeH X, y KOTOpbiX Ha CB060t:~HOH rpaHHUe B03HHKaJOT 
TQqK!f pa3BeTBJieHHH HeqeTHOfO IIOpH,L:~Ka. 


