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The thermostat problem for ordinary differential equations and the heat operator is 
considered, and the existence of a solution is proved. Nonuniqueness is discussed in several 
examples. 

1. Introduction 

The thermostat problem can be formulated as L(u, s) = 0, where Lis a 
differential operator in u, and s the thermostat or switch variable. In 
general s = s (Mu) with an observable w: = Mu. We have to distinguish 
wether Mu ranges in a finite dimensional space or not. 

In the simplest case w is real valued and then s (w (t)) is described as 
follows. Assume that at a given time s = 0 and w < 1.. Then if with 
increasing time w crosses the value 1, the ' function s switches to 1. 
Conversely, if s = 1 and w > 0 at some given time, and if with increasing 
time w crosses 0, then s switches to 0. In other words, (w, s) must lie in 
what we shall call switch configuration. In the situation of Fig. 1 we define 
S 0 : = ] - oo, 1 [ and S 1 : = ]0, oo [. The arrows in Fig. 1 indicate that at 
the switch values 0 and 1 only jumps in certain directions are allowed. 
Of course, more general switch configurations are possible (Fig. 2), and in 
the vector case it may look as in Fig. 3. If w is Rm valued and if the 
thermostat has the two states 0 and 1, we define the switch configuration 
by two open sets S0 and S 1 in Rm with S0 uS 1 = Rm and let 

:E: = {(w, s)ERm+ 1
; s = 0 and wES0 , or s = 1 and wESt}, 

f:={(w,s)ERm+ 1 ;(w,s)E:E, or O~s~1 and wEoS0 uoSI}. 
(1.1) 
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The operator L will be such that for each s there is a unique soluilon u. 
of the corresponding initial value problem on the time interval [0 , T] with 
L(u8 , s) = 0. 

In section 2 we consider the case that L is an ordinary differential 
operator. But, of course, the results in section 2 apply to any situation, in 
which M maps into Rm and the functions Mu. are compact in C0 ([0, T]; Rm). 
This is, for example, the case when L is the heat operator and M the 
evaluation at a finite number of points, see e.g. the problem in [1]. 

In section 3 we consider the heat equation with Mu = u. This means that 
every space point· is an atomic thermostat. It applies to any physical quantity 
u, whose spatial distribution is governed by diffusion with a production- rate, 
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which behaves like a thermostat at every space point (see [2]). The difference 
to the situation in section 2 is, that switching at a point at a certain time 
is influenced yia diffusion by previous switching in a whole neighborhood. 
In order to handle this effect we apply the maximum principle. Therefore 
the proof in its present version is restricted to a scalar u and one space 
dimension .. The optimality of the result is shown in 3.3-3.5. 

To construct a solution of the thermostat problem one has to give a mathe
matical formulation of the jump condition at the switch values, which is not 
contained in the definition of L:. An adequate formulation seems to be 

s= cp (w, s) 

with cp as in Fig. 1. To solve this one has to approximate the problem. One 
possibility is 

s = cp0 (w, s) 

with Lipschitz functions cp0 converging to cp . Example 2.1 shows that cp0 

has to converge to /+ oo also in a neighborhood of the critical line 
{1} x]O, 1[, and similarly to -oo near {0} x]O, 1[. This means that the 
switch configuration is approximated by the zero set of smooth functions 
as in Fig. 4. But even then there are cases (see Example 2.2), where () 
dependent small perturbation of the initial data do not lead to a solution 
of the thermostat problem, for (w, s) ·is not allowed to enter the interior of 
the loop. Therefore the thermostat problem in principle is the limit of regul~r 
hysteresis problems (see [3]), however, approximations of this type not always 
are consistent. 

Another way to interprete this is to understand the character of the 
thermostat problem by postulating that the switch reacts faster than w has 
time to change its values. In other words, the time scale for the thermostat 
is much smaller then, for example, the time scale for diffusion. To realize 
this we use time discretization as approximation and set 

s(t + h) - s(t) _ ( (). ()) 
h - (/){J w t 's t 

with lcpol = o( ~) outside the switch configuration. Here () should tend to 

zero fast enough compared with h. The best choice is () = h and cp0 as in 
Fig. 5. Then, assuming that 0 :( s (0) :( 1, 

{ 

1 if w (t)ES 1\S0 , 

s (t + h) = . s(t) if w (t) ESqn S1 , 

0 if w (t) ES0\S1 . 

(1.2) 



174 

I 

I 
rp =-oo 

s 

I 
I 

0 

0 

---- -----·----
1 

<1\r-+f 

Fig. 4 

<p = :!...:2.. 
6 0 

cp,=- ~ 
0 

Fig. 5 

I 
I 
I . .. 
1 w 

I 
'P =+00 

I 
I 
I 
I 
I 

w 

cp. _ 1-S ·- --0 

w 

In section 3 we shall use the modification 

{ 

1 if w (t+h)ES 1\S0 , 

s (t+h)= s (t) .if w(t+h)ESq~S1 , 
0 if w (t+h)ES0\S1 . 

H. W. ALT 

(1.3) 

The advantage is, that already the approximations have thermostat character. 
The fact that the operation in (1.2) and (1.3) is not continuous in w, is 
no disadvantage, because in general the solution of the thermostat problem 
does not depend continuously on the data. 

This is connected to nonuniqueness. If we consider all limits of stable 
solutions, then for certain data several solutions exist. In other words, 
there is no stable algorithm for solving the thermostat problem. As a 
consequence, in order to avoid that the special numerical solution obtained 
by a given algorithm depends on the algorithm itself, one could apply random 
perturbations to the numerical solution at every time step. But then it becomes 
unlikely to reach certain solutions, for example, u_ in Example 2.3. Another 
example for nonuniqueness is given in 2.4. 
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Finally, for the solution of the thermostat problem the side condition 
on (w, s) can be formulated as follows. We must have (w (t), s (t))EE (or at 
least f) and on {t; w (t)ES0 } the switch function s must be nonincreasing,· 
and nondecreasing on {t; w (t)ESd. An equivalent formulation is given 
in (2.3). 

2. Existence for ODE 

First let us prove the existence of a solution, if the underlying operator 
L is an ordinary differential operator and Mu = u. As pointed out in the 
introduction, the proof applies also to a general class of problems. 

We begin with three examples related to the switch configuration in Fig. 1. 
The first two use approximations s = CfJ!J (u, s) of the switch condition. 

1 . 
2.1. ExAMPLE. For given x E]O, 2 [ we consider the problem 

If 

u = x - s, u(O) = 1, s(O)=O. 

1 
(j 

CfJ!J (u, s): = 0 
1 

for u > 1, 0 < s < 1 , 

for 0 < u < 1 , 0 < s < 1 , 

- --;5 for u < 0, 0 < s < 1, 

then s/J (t) = ·· ~ for small t, and we calculate 

and 

1 
u!J (t) = 1- x (t - 2Dx), s0 (t) = 2x for 0 < t - 2Dx < - . 

. X 

After that the solution behaves symmetrically on the left side of the loop. 
2 

Thus as 6 t 0 the approximation (u0 , s{J) converges to a - -periodic solution 
(u, s) with (see Fig. 6) x 

1 
u(t)= 1- xt,s(t) = 2x for O<t<-, 

X 

1 2 
u(t) = xt - 1, s(t) = O for -<t< - . 

X X 
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This is not a solution of the thermostat problem, although the initial value 
lies on the switch configuration. On the other hand, if we set 

-l ~ . if u + s > 1 ' 0 < s < 1 ' 
q>0 (u, s)- . 

1 
-- if u + s < 1 ' 0 < s < 1 ' 

' () 

then the solution is given by 

t 2 t 
U0 (t) = 1+xt-

2
(), s0 (t) = 7) for 0 < t <b. 

Thus lu0 -1l,;; ~ on [0, J] and in the limit we obtain a solution of the 

thermostat problem with period (x (1- x)t 1 given by 

1 
u(t)= 1-(1-x)t, s(t)= 1 for O<t< 

1
_x, 

X 1 1 
u (t) = xt--

1
--, s (t) = 0 for 0 < t--

1
-- < -. 

-x -x x 

This solution is also reached by time discretization 

1 h (uh (t+h)-uh (t)) = x-sh (t) 

with uh (0) = 1, sh (0) = 0 using formula (1.2) or (1.3) for sh. 

2.2. ExAMPLE. Next we consider the initial value problem 

u= -u-s, u(O)= 1, s(O)=O 

using the approximation 

1+J . 
q>0 (u,s)=-()- (u+s-1) for u+s> 1,0,;; s< 1. 
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U we perturbe the initial data by the order of b, say, ua (0) = 1 + b, we obtain 
as solution 

1 
ua(t) = (1+b)(1 - t) , sa(t)=(1+b)t for O<t< 

1
+b. 

. 1+b . 1 
Settmg <r>a(u, s):= --b-(1-u-s) for u+s < 1, 0 < s ~ 1, after time 

1
+b 

the solution behaves similar as in Example 2.1, that is, 

and then 

1-(sb+ub) (tb+t) = b (et fb_1) , 

1- sa (tb+t) = (1 +b) (b (etfb - 1)- t), 

in particular u<l (tb), sb (tb) = o( b log !) for tb: = tb+b log ~ . Therefore as 

b L 0 the limit so}ution is 

u(t)= 1-t, s(t)=t for O<t< 1, 

u(t)=O, s(t) = O for t>l. 

We should remark that the initial state never can be reached again. 
On the other hand, if we use time discretization for approximation as 

in Example 2.1, and the initial value uh (0) = 1 +h, we obtain in the limit 
the following solution of the thermostat problem. 

u(t) = - 1+ 2e- 1
, s(t)=1 for 0<t<log2, 

u(t) = O, s(t) = O for t>log2 . 

The next two examples deal with the nongeneric nonuniqueness of the 
ther,mostat problem. 

2.3. ExAMPLE. The initial value problem here is 

u (t) = max (0, 1- t) - s (t) , 
1 

u (0) = 2+~>, s (0) = 0. 

For t: < 0 the solution (u., s,) is 

· 2 +t:+t-2 for 0 < t < 1, 

1
1 .. t 2 

u (t)-
e - 1 + t; for t > 1' 

s, (t) = 0 for t > 0, 

12 - Cnnt r·•l .rnd Cybernetics 
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whereas for e > 0 

t 

s, (t) = 1, Ue (t) = 1-J min (~, 1) d~ for te < t < t, , 
'· 

where te is given by 

T, 

J min ( ~, 1) d~ = 1 . 
. .. /' 

t, 

As e ~ 0 on [0, 1] they converge to the same solution (u, s), but on ]1, oo[ 
the limits 

u_: = lim u, and u+: = lim u, 
efO e!O 

are different (see Fig. 7). The reason is that u (1) = 1, but u (1) = 0. Therefore 

u 

t, 1 t, 

Fig. 7 

it is not clear wether the thermostat should decide to switch at time 1 or 
not. Both solutions u+ and u_ are limits of stable solutions. Consequently 
if we want the solution set to be closed we have to allow nonuniqueness. 

The same situation arises, if we fix the initial value u (0) = _!_, but perturb 
the switch value 1. · 2 

The functions u± are not the only solutions. For any x > 1 the function 

1 t 2 

2 +t-2 for 0 ~ t ~ 1, 

1 for 1 ~ t ~ x, 
u, (t): = " 1 +%- t rOr X ~ t ~ X+ 1 , 

0 for t > x+ 1, 
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is a solution in the sense of (2.1H2.3), if 

{

0 for t < x, 
s" _(t): = '1 for x < t < x+ 1, 

0 for t > x+ 1. 
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This solution derives from u_ by introducing a positive perturbation of u_ 
at time x. If we consider random perturbations of u_ over the whole time 
interval, then the probability for such a perturbation to have a sign on 
a given interval is 0. Consequently ·we will obtain the solution u+ with 
probability L In this sense u+ is the stable and u _ the unstable solution. 

Consider also the problem u (t) = 1- t - s (t) with u (0) = ~ , s (0) = 0. 
A vector version of this example is 

2.4. ExAMPLE. Let 

S0 : = {uER2
; u1 < 1}, S1: = {uER2

; u 1 > 0}, 

and for e, o > 0 consider the initial value problem 

ul = e, ul (0) = 1- o, 
Uz = f(u, s), Uz (0) = 0 

with s (0) = 0. The solution is 

u1 (t) = 1- 0+et fort> 0, 

s (t) = I 0 for t < ~, 

0 
1 for t > -. 

e 

If e, o ~ 0 the limit problem is 

ul = 0, ul (0) = 1' 

Uz = f(u, s), Uz (0) = 0 

with s (0) = 0. For the partial limit o = xe ~ 0, x > 0 given, the above solutions 
converge to 

/ 

u1 (t) = 1 for t > 0, 

5 (t) = {0 for t < x, 
1 for t > x, 

. () - {f(1,u2 ,0) for t<x, u2 t -
f(1, u2 , 1) for t > x 
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with u2 (0) = 0. If, for example, f(u, s): = 1-s then 

( ) _ {t for t ::::; x, 
u2 t -

x for t?: x . 
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Thus we gef a whole family of solutions. The reason is that for u E 8S0 the 
right side (O,f(u, s)) is a tangent vector of 8S0 at u. 

Now we treat the thermostat problem for a system of ordinary differential 
equations 

u (t) = f(t, u (t), s (t)), u (0) = u0 , 

where u: [0 , T] ~ Rm. 

2.5. AssuMPTIONS. f(t , u , s) and g (t, v) are Caratheodory functions with 

lf(t , u, s)l::::; g (t, lul), 
g (t, v) increasing in v. 

We assume that the initial value u0 E Rm allows a solution of 

v (t) = g (t , V (t)), V (0) = luol, 

which is absolute continuous in [0, T]. 
The switch configuration (see Fig. 3) is given by two open sets 

S0 ,S1 cRm with S0 uS1 = Rm, and I: is defined as in (1.1). Also s0 ER is 
given. We call (u, s) a solution of the thermostat problem, if uE 

EH1
•
1 ([0 , T]; Rm) , SEL00 oo, T[; R) with 

u(t) = f(t , u(t) , s(t)) for almost all t, u(O) = u0 . (2.1) 
(u (t), s (t))EL for almost all t. (2.2) 

For all 1J EC0 ([0, T[) with 17?: 0 in {t; u (t)E 8S0 } and 17::::; 0 
in {t; u (t)E8SI} 

T 

f(s-s0)~::::;0 . (2.3) 
0 

The last condition determines the direction of jumps of s, and contains the 
initial condition for s as well. 

We prove 

2.6. TH EOREM . Under the assumptions in 2.5, and if (u 0 , s0)EL, there is a 
solution (u, s) of the thermostat problem (2.1H2.3) in the time interval [0, T]. 
In addition, s has a finite number of switch times, if any. 

Proof: For h > 0 we define approximations (uh, sh) by uh (0): = u0 and 

t+ll 

uh (t + h) : = uh (t)+ f f(~, uh (t), sh (t)) d~. 
t 
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sh (t +h) is given by (1.2) with w (t) = uh (t), and sh (0): = s0 . First we see that 
uh converges. For this let v as in 2.5. Then iuh (t)l ~ v (t) implies 

t+h 

iuh (t + h)l ~ iuh (t)l + J g (~, iuh (t)l) d~ ~ v (t +h) . 

Therefore iuhi ~ v. Similarly 
k-1 t+(j+ l)h 

iuh(t+kh)-uh(t)i~ L J g(~,iuh(t+jh)l)d~ 
j= 0 t+ jh 

~ v (t+kh)-v (t). 

Interpolating uh, for example, by 
t+t 

uh (t+-r): = uh (t)+ J f(~, uh (t), sh (t)) d~ 
t 

for 0 ~ -r ~ h, we conclude that for a subsequence uh---+ u uniformly with 
u E C0 ([0, T]; Rm). Next we interpolate sh piecewise constant. Since 0 ~ ah ~ 1 
we get that again for a subsequence 

sh ---+ s weakly star in L"" (]0, T[). 

We have to show (i2). If u(t0)ES0\S1 , by the uniform convergence for 
some e > 0 (not depending on t0 ) 

uh (t)ESo\S1 for lt-t0 1 ~ e (and t?: 0), 

provided h is small enough. Then by (1.2) 

sh(t)=O for - c:+h~t -t0 ~c: , 

consequently by the ":eak convergences= 0 in B, (t0 ), that is, (u (t 0 ), s (t0 ))El:'. 
The same if u (t0)ES1\S0 . If u (t0 )ES0 n S1 again for some e > 0 and small h 

Now (1.2) yields that there are numbers eh with 

sh (t) = eh for -c:+h ~ t-t0 ~e. 

Let ih the smallest integer with sh (ih) = eh for all ih h ~ ih ~ t0 . If ih > 0 then 
sh (ih h)i= sh ((ih-1) h), and therefore (1.2) implies that eh= 0 or eh= 1. If 
ih = 0 we use the information (uo' so) E 1:'. In ca_se Uo i 8So u as 1 this initial 
condition implies eh = s0 = 0 or 1, and if u0 E Rm\(S0 n S 1) then eh = sh (h) = 0 
or 1 by (1.2). Thus eh= 0 or 1 in any case, consequently by weak con
vergence s = 0 in B, (t 0 ) or s = 1 in B, (t0 ). This proof also shows that 
sh ---+ s pointwise in 
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Now let us consider the critical case u (to) Ea so (for u (to) E as 1 the argument 
is the same). Then u (t0)ES1 and as above for some e > 0 and small h 

uh(t)ES1 for jt-t0 j~s. 

Now the algorithm in (1.2) tells us that sh cannot jump to 0 in the time 
interval [t 0 - s+h, t0 +s]. Hence there is a constant eh and an integer ih, 
such that for all ih in that interval 

sh (ih) ={eh for ~ ~ ~h, 
1 for z > zh. 

Here ih h > t0 - e, but possibly ih h > t0 +e. By the above argument eh = 0 
or eh = 1. Choose a subsequence with eh~ cE{O, 1} and, if necessary, 
ih h ~ t1. Then for jt - t0 j ~ e 

{
c if t < t1, 

sh (t) = 
1 ift>t1. 

Therefore (u(t0 ),s(t0)}EE, if c= 1 or t1 i=t0 . If c = O, then t1 is a switch 
time. Since e did not depend on t0 the proof shows that those time values 
are isolated in [0, T]. Also the weak jump condition (2.3) is a byproduct of 
the proof, and (2.1) follows from the pointwise convergence of sh. • 

Finally we prove that nonuniqueness always is caused by the same effect 
as in the examples given in 2.3-:-2.4. 

2.7. LEMMA. Every solution of (2.1H2.3) has a finite number of switch times. 
For two different solutions (u 1 , st) and (u2 , s2 ) there is a t0 E[0, T[ with 
u1 = u2 on [0, t0 ], such that t0 is a switch time, say, for s1 but not for s2 . 

In addition, if t0 > 0, then 

± f(to, U; (to), Sz (to)} 

ly in the tangent cone of S0 at u; (t0 ) in case s2 (t0 ) = 0, and Si in case 
s2 (t0 ) = 1. If t0 = 0 then this holds for + f(O, u0 , s0 ) . 

Proof. Pick any solution (u, s) and any t0?;:: 0. Due to the continuity of 
u and (2.3) the fuJ.?.cti~n s is constant in B, (t0 ) u ]0, T[ for some e > 0 , 
provided u (t0 ) E Rm\8S0\8S 1. By (2.2) this constant must be 0 or 1. If 
u (t0 )E8S0 then by (2.3) the function s-s0 (with s (t): = s0 for t < 0) is 
monotone nondecreasing in B, (t 0 ) for some s > 0. By (2.2) the function s 
is 0,1 valued. Therefore, if s is not constant in B, (t0 ) n ]0, T[, there is a 
t 1 ?;:: 0 such that for jt-t0 j < s, t?;:: 0, 

s(t) = O if t<t 1 ,s(t) = 1 if t>t 1 . 

Since u is uniformly continous, e does not depend on t0 . Consequently the 
number of switch times of s is finite. 
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Now consider two solutions and let [0, t1] the maximum interval on which 
u1 = u2 . Then s1 (t) :;f s2 (t) for a sequence of times t! t 1 , hence the maximum 
interval [0, t0] on which s1 = s2 is contained in [0, t1]. The case t0 < t1' 
occurs only if f(t,ui(t),O) = f(t,ui(t), 1) for t0 < t< t 1 . Anyway t 0 must be 
a switch time for s1 or s2, hence Uj (to)E8So u as1. For definiteness assume 
U; (to) Ea so. Then by (2.2) and (2.3) the switch functions si must be con
decreasing near t0 . Therefore for t near t0 , say, 

{
0 for t < t0 , 

s2 (t) = 0, and s1 (t) = 
1 

c 
tOr t>t0 . 

In particular u2 (t) E S0 for t near t0 , which implies the last statement of 
the lemma. If t0 = 0 then the above monotonicity yields s0 = 0. • 

3. Existence for the heat operator 

In this section we demonstrate, that the existence procedure also works, 
if the underlying operator L defines a partial differential equation. For 
simplicity we consider the easiest parabolic initial boundary value problem 

u- u" +f(s) = 0 in ]0, T[ X Q . 

In contrast to the previous section here we treat the situation, where every 
space point consists of a thermostat. We postulate that they work independent 
to each other, their relationship is governed by diffusion only. Therefore s 
is a function in time and space and with Mu = u we require that 
(u (t, x), s (t, x)) lies in the switch configuration for almost all (t, x). We 
assume that u is a scalar and Q an interval. This will be used in the 
local part of the existence proof. 

3.1 AssuMPTIONS. Q is an open bounded interval, T> 0, and Qr: = ]0, T[ x Q. 
The given Dirichlet data u0 are regular, say in H 1

·oo (Qr) with u0 E L00 (Qr) 
and u'o E 13 (Qr) . We take u0 (0, ·) as initial data. We can assume that f 
is linear in the switch variable s, that is, 

f(t, x, s): = fo (t, x) (1 - s)+f1 (t, x) s, 

where fo and f 1 are bounded measurable functions. The monotonicity 
condition is 

fo ( t, X) ~ 0 ~ f1 ( t, X), 

that 1s, switching of each thermostat changes sign of the production rate. 
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The initial state of the thermostat is given by a measurable function s0 

such that (u0 (0, x), s0 (x))El' for almost all x. Here l' is the switch configu
ration in (1.1) with m= 1, S0 = ]- oo, 1[, and S1 = ]0, oo[. We also assume 
that u0 .(0, x)tt:{O, 1} for almost all x. 

In the following existence theorem we see that in general we cannot 
solve the diffusion equation with f(s). However, as shown in Example 3.3, 
the existence result is optimal. 

3.2 THEOREM. Under the above assumptions there is a solution (u, s) of the 
thermostat problem with U-UoEL2 (0, T; H1

•
2 (Q)), at UEI3 (QT). This means 

that u (0) = u0 and 

u = u"+f(a) = 0 in L2 (QT) with a= sin {u i= 0, 1}, 

and in the remainder f(a) = 0 and 0 ~a~ s on {u = 0}, 
s ~a ~ 1 on { u = 1}. (3.1) 

(u (t, x), s (t, x)) E f for almost all (t, x). (3.2) 

For all1JEC0 ([0,T[xQ) with 11~0 on QTn{u=1} 
and 11~0 on QTn{u=O} 

T 

J J(s-so)~~O. (3.3) 
0 Q 

Proof: First we construct approximations (uh, sh) by time discretization. For 
this we approximate the Dirchlet data by 

ih 

. 1 
u0 h (zh, x): = h f u0 (r, x) dr. 

(i- l)h 

For any step function v in time we identify v (ih) with its value on the 
time interval ](i-1) h, ih[. We start with uh (0, x): = u0 (0, x) and sh (0, x): = 

s0 (x). Then, if uh (t- h) and sh (t -h) are already known, uh (t) E H 1
•2 (Q) is 

defined as the solution of the Dirichlet problem 
1 

h (uh (t)- uh (t- h))-u" (t)+yh (t) = 0 in Q, uh (t) = u0 h (t) on 8Q (3.4) 

with Yh (t, x)EFh (t, x, uh (t, x)). The monotone graph Fh is defined by 

Fh (t, x, z): =!oh (t, x)+(f1h (t, x)-foh (t, x)) Gh (t, x, z). 

Here !oh and f 1h are defined in the same manner as u0h, and Gh by 

I 
0 if z < 0, 
[O ,sh(t -h,x)] if z=O, 

Gh(t,x,z):= sh(t-h,x) if0<z<1, 
[sh (t-h, x), 1] if z = 1, 
1 ifz>l. 
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This is possible since below sh (t) will be defined so that · inductively 
0 ~ sh ~ 1. Approximating Fh pointwise in (t, x) by continuous monotone 
functions in z we obtain in a standard manner a unique solution uh (t) of 
(3.4). Then we define (see (1.3)) 

·to ifuh(t,x)<O, · 
sh(t,x) : = sh(t-h,x) ifO~uh(t,x)~1, 

1 if uh(t,x)> 1. . 

With 

fh (t, x, z): =!oh (t, x) (1-z)+fth (t, x) z 

we can write Yh(t,x)=fh(t,x,ah(t,x)), where O~ah(t,x)~1 and 

ah (t, x) = sh (t, x) if uh (t, x) # 0, 1; (3.5) 

and 

0 ~ ah (t, ,x) ~ sh (t, x) if uh (t, x) = 0, 

sdt, x) ~ ah(t, x) ~ 1 if uh(t, x) = 1. 
(3.6) 

To derive convergence of uh we first multiply the differential equation (3.4) 
with uh (t)- u0h (t). Integrating over . t we obtain the energy estimate 

T 

sup J iuh (tW+ J J /u~/ 2 ~C . 
t n o n 

Then multiplying with 

1 . 1 
h (uh (t)- uh (t- h)) -h (uoh (t)- u0h (t- h)) 

and integrating over t we obtain after standard manipulations that 

Therefore the piecewise linear interpolation 

. 1 tf+h 
Uh (t, x): = h Uh ('r, x) d1: for (t, x)EQy 

t 

Is bounded m H 1
•
2 (Qr). It follows that there exist u E H 1

•2 (Qr) and 
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s,y EL00 (.QT) so that for a subsequence 

iih--+ u weakly in H 1
•
2 (.Q.:r), , 

iih--+ u almost everywhere in .. ,.QT, 
sh--+ s weakly star in L00 (.QT), 
Yh--+ y weakly star in e (.QT). 

H. W. ALT 

Obviously 0 ~ s ~ 1, and u is the weak solution of the initial boundary value 
problem 

U- U" +y = 0 in .QT, 

u (0) = Uo (0), u = Uo on ]0, T[ X o.Q. 
(3.7) 

Since y is bounded, we can use the DeGiorgi regularity result, that is, u is 
HOlder continuous in QT · Applying the DeGiorgi technique to the approxi
mations, we also obtain that iih are equicontinuous in QT· Therefore iih--+ u 
uniformly, hence also uh--+ u uniformly. 

As a consequence we derive (3.3). In fact, if 11 E C0 ([0, T[ x .Q) with 
supp '1 c {u > 0}, we have supp 11 c {u;?: 6} for some 6 > 0. Hence, if h is 
small enough, 11 (t, x) # 0 implies uh (t, x) > 0. Therefore by definition 
sh (t, x):?: sh (t - h, x). If in addition 11;?: 0 it follows that 

T 

0~ f f ~ (sh(t,x)-sh(t _:_ h,x)}IJ(t,x)dxdt = 

0 Q 
T 

= f f(sdt,x) - s0 (x))! ('1(t,x)-1J(t+h,x)}dxdt-+ 

0 Q 

A corresponding inequality holds in {u < 1}, which proves (3.3). 
Next we consider y. ah was defined by 

Yh =!oh (1 - a h) + f1h O"h, 

and 0 ~ O"h ~ 1. Let O" be a weak star limit of (Jh in e (.QT). Since foh--+ fo and 
!1h --+ !1 in L1 (.QT) we derive 

Y = fo (1- a) + !1 O" = f ( O") and 0 ~ O" ~ 1. 

From (3.5), (3.6) and the uniform convergence of uh we conclude that 0 ~ O" ~ s 
in {u<1} and s~0"~1 in {u>O}, and that a = s in {u-#0,1}. Now, 
from (3.7) we see that u" EI3 (.QT). Therefore u = 0 and u" = 0 almost 
everywhere in .QTn {u = 1} and .QTn {u = 0}. Then we get from (3.7) that 
y = 0 almost everywhere in these sets. Hence all statements in (3.1) are proved. 

-~ --- -------------------

' 
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It remains to show (3.2). Since u is continuous and uh -tu uniformly, 
in {u > 1} and in {u < 0} condition (3.2) can be proved in the same way 
as in 2.6. 

Now let (t 0 , x0) E QT with 0 < u (t 0 , x0) < 1. We have to show that at 
almost all such points s (t 0 , x0 ) = 0 or 1. First, by assumption on the 
initial data, we can choose x 0 with 

Uo (0, xo) =f. 0, 1. (3.8) 

Next, to derive a contradiction, we choose x0 so that {0 < s < 1} has 
density 1 ·at (t 0 , x 0 ). Then by continuity we have 0 < u < l in a neighbourhood 
of (t0 , x0), and therefore (3.3) implies that s = 0 in this neighbourhood. 
Consequently the function s (t0 ) is well defined in a neighbourhood of x0·. 

and the above choice of (to, Xo) means that {0 < S (to)< 1} C Q has density 
1 at x 0 , th{lt is, 

(3.9) 

First let us consider the case that 

0<u(t,x0 )< 1 for all O<;t:::;:t0 . 

Then for some e > 0 and sufficient small h 

a:::;:uh:::;:1 - a in [O,t0]xB,{x0 ). 

Hence by construction sh (t, x) = sh (t-h, x) for (t, x) in this region. Therefore 
sh (t, x) = s0 (x) and then also s (t, x) = s0 (x). Since (u0 (0, x), s0 (x)) EL by 
assumption, we conclude that s (t0 ) has only values 0 and 1 almost everywhere 
in B, (x0 ), which is a contradiction to (3.9). 

Next we assume that u (t , x0 ) rf: ]0, 1 [ for some t:::;: t0 . Since u is continuous . 
and using (3.8) we find a finite number of times 

with u(ti,x0 )i=0,1, so that u on each interval [ti+l,ti] ranges in 
]0, eo [ or ] - eo, 1 [. By the continuity of u and the uniform convergence 

of uh we can choose e > 0 so that the same is true on B, (x0 ), that is, 

u(ti,x)¥=0,1 for j = O, .. . ,k and lx - x 0 l<:a, 

and for j = 0, .•. , k-1 

u ([ti+i, ti] xB, (x0))c ]0, eo[ or ] - eo, 1[. 

First let us prove that 

(3.10) 

(3.11) 
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where for definiteness we take the second case in (3.10). Then (3.3) yields 

(3.12) 

Now assume u (-r , x0) < 0 for some TE]t 1, t0 [. By uniform convergence there 
is a neighbourhood B6 ((c, x0 )) such that the inequality uh < 0 holds uniformly 
for all small h. Then by definition sh = 0 in that neighbourhood, hence also 
s = 0 . But then (3.12) implies that s = 0 in ]c , t0 [ x B6 (x0), in particular 
s (t 0 ) = 0 in B6 (x0), a contradiction to (3.9) . 

As a consequence of (3.10) and (3.11) we have 0 < u (t 1 , x) <: 1 for 
lx - x0 1 ~ e. (If t 1 = 0, we replace t 1 by an arbitrary small time and define 
t 2 : = 0 .) Therefore as above the function s (t d is well defined in B, (x0 ) . 

We distinguish between two cases. 
·The first case is that {0 < s (t 1) < 1} has positive measure in B,12 (x0 ). 

Then we find a point x 1 EB,12 (x0 ) such that {0 < s (t 1) < 1} has density 1 
at x 1 , that is (3.9) is satisfied for s (t 1) at x 1 . In that case we start recursively 
the whole argument following (3 .10) with (t 1 , xd instead of (t0 , x0 ) and with 
e · 2 as new e. Note that the time values t 2 , ... , tk can be left unchanged. 

The second case then is, that (call~ng ~ the new e) 

s (t 1 , x) = 0 or 1 for almost all xEB, (x0). 

Since the assumptions of the theorem are symmetric with respect to the 
switch values, we again have to consider only the second case in (3.10), 
which is 

u(t , x)<1 for t 1 ~t~t0 and ! x - x0 l ~e. (3.13) 

Now, if the denisty of {s (t1) = 0} at x 0 would be positive, we infer from 
(3.12) that the same is true for { s (t0 ) = 0}, which by (3.9) is impossible. 
Thus we are left with the case that 

{s (t 1) = 1} has density 1 at x 0 . (3.14) 

We have to show that together with (3.13) this leads to a contradiction to (3.9). 
It follows from (3.9) that there are values 

such that 

{s (t0 ) > 0} has density 1 at x _ and x+. (3.15) 

Since we consider { x _ , x +} as the boundary of ]x _ , x + [, here we make 
essential use of the fact that Q is one dimensional. As in the proof of 
(3.11) it follows that u (t , x_) ~ 0 and u (t, x+) ~ 0 for t 1 ~ t ~ t0 . By (3.10) 
and (3.11) we also know that 0 < u (ti , x) < 1 for j = 0, 1 and .lx - x0 ! ~e. 

----------------------------------------------------
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Thus 

u~O on 8D, where D:=]t1 ,t0[x]x-,x+[. (3.16) 

Since a= s = 0 in {u < 0} by (3.1), we see that 

it-u" = -f(a) = -f(O)~ 0 in Dn {u < 0}. 

Together with (3.16) the weak maximum principle yields u ~ 0 in D. We want 
to have the same for uh. First for small h 

0 < uh (t, x) < 1 for t = t1 , t0 and lx-x0 1:::::; e, (3.17) 

uh (t, x) < 1 for t 1 :::::; t:::::; t0 and lx-x0 1:::::; e. (3.18) 

Next we consider the lateral boundary of D. Let y = x_ or y = x+. We know 
that 0 < uh < 1 uniformly for small h in a neighbourhood Ba ((t0 , y)). Therefore 
by definition sh is time independent in this neighbourhood. The same holds 
for s. This implies that the weak star convergence of sh to s in Lro (Ba (t 0 , y)) 
is equivalent to the weak star convergence of sh(t0 ) to s(t0 ) in Lro(Bn(Y)) . 
By (3.15) we can choose (J so that 

1 f 1 
2

() s (t 0 ) ~ 2 . 
B,(y) 

Then for small h 

Therefore for small h we can pick a point YhEBn (y) for which {sh (t 0 ) > 0} 
has density 1 at Yh· This implies that 

(3.19) 

If not, then uh (T, Yh) < 0 for some TE]t 1 , t0 [. But then also uh (T, z) < 0 for 
z E Bnh (Yh) for some (Jh > 0. By definition of sh this means that sh (T, z) = 0 
for z E Bnh (yh). If (J and (Jh were chosen small enough then Bnh (Yh) c B, (x0 ). 

Using (3.18) we then conclude that sh (t, z) = 0 forT:::::; t:::::; t0 and lz- Yhl:::::; bh. 
This is a contradiction to the choice of Yh. 

Thus replacing y by yh, that is, x_ and x+ by certain x~ and xh+, (3.17) 
and (3.19) gives 

uh~O on 8Dh, where Dh:=]t 1 ,t0[x]x~,x\[. 

Now consider any time t E [t 1 + h, t0 ] such that 

uh (t-h)~ 0 in Qh: = ]x~, x\[, 

which is true for t = t1 +h. Then multiplying (3.4) by (: = min (uh (t), 0) 
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we obtain 

. I~ lW+ I~ uh(t-h)·(-0+ Il('l 2 + Ifh(ah(t)}(=O. (3.20) 

nh nh n, nh 

Clearly ((x)¥=0 implies uh(t , x)<O and therefore ah(t , x)=sh(t,x)=O by 
(3.5). We conclude 

fh (t, x, ah (t , x)) = fh (t, x, 0) ~ 0. 

Thus the last term in (3.20) is nonnegative, as are the others~ So they must 
be zero, that is, uh (t)? 0. Together with (3.18) and the definition of sh we 
also obtain that sh (t) = sh (t-h) . 

Applying this maximum principle inductively in time, we deduce that 
uh? 0 in Dh, and that sh is time independent in Dh . Since the (J in the proof 
of {3.19) was arbitrarily small, we obtain in the limit h ~ 0 that s = 0 in D. 
But . then (3.14) implies that also { s (t 0 ) = 1} has density 1 at x 0 , a 
contradiction to (3.9). a 

3.3. ExAMPLE. Let Q =] -1 , 1[, fo < 0 <f1 = 1, and s0 = 1. Define 

( ) {
v(x-t)forx?t?O, 

U t, X:= 
0 for 0 ~ x ~ t 

with 

v(~) : = ~-1+e~~, 

·and continue u to the left as an even function in x. Then, if 
J 1 in {u > 0}, 

a: = l - ft ~ fo in { u = 0} ' 

( u, a) satisfies 

u-u" +f(a) = 0 . 

There are many possibilities to choose s so that one obtains a solution of 
the thermostat problem in the sense of (3.1H3.3). The easiest choice is s = 1. 
But also any function s with 

s= 1 in {u>O}, s?a in {u=O}, 

which is nondecreasing in time will be a solution. However, since fo < 0 , s 
is never allowed to take values 0, because (3.1) contains the condition that 
0 ~a~ s on {u = 0}. Note also the only s for which (u, s) ranges in L 
(not f) is s = 1. Another observation is, that if fo = const then s = a seems 
to be the physical solution, since it means that the change in the production 
rate is due to a certain density of switching atomic thermostats. On the 

------------------------------------------------~ ~-----
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other hand, if fo < 0 then the choice s = CJ would contradict (3.3). (We assume 
that the upper threshold of the thermostat is near infinity.) 

The following consideration is more important. Let us consider the above 
solution only up to a certain small time t0 . Theri we start to increase 
the boundary data to a high level, but still below the upper threshold. By 
the maximum principle the solution must be strictly positive after some 
time. There are two possibilities. The first one is 

( ) {
1 for t > t0 , lxl >to, 

S t X = 
' 0 for t > t0 , lxl <to, 

and u (t) > 0 in Q for t > t0 . For t0 = 1 we have with an appropriate choice 
of the Dirichlet data u (t, x) = - fo · (t- 1) for t > 1. These solutions correspond 
to the functions u" in 2.3. The second possibility is that s = 1 all time, 
therefore CJ i= s in { u = 0} . These solutions are reached by the approximation 
in the proof of 3.2. To see this, define 

uh(t,x):=vh(x-t) for x;:?=t;:?=O, 

where 

vh((): = (-1+e-"~, 

and IX is the unique solution of 

e-ah= 1-hiX2 with IX= 1- ~ +0(h2). 

Then 

! (uh (t, x)-udt-h, x))-u;; (t, x)+ 1 = 0 for x > t. 

Furthermore, define 

uh (t, x): = 0 for 0 ~ x ~ t, 

and CJh by 

1

1 for x > t > 0, 

f(t, x, CJh (t)): = ! vh (~-(t-h)) for 0 < t-h < x < t, 

0 for 0 < x < t-h. 

Then 0 ~ CJh ~ 1, CJh = 1 in {uh > 0}, and uh solves 

1 
h (uh (t)-uh (t-h))-u~ (t)+f(CJh (t)) = 0 

for each t = ih. Since uh;:?: 0 the algorithm m the proof of Theorem 3.2 
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says sh = 1 . 

3.4. ExAMPLE. This example explains why it has been assumed that 
[f0 ,j~] encloses the value 0. Let Q = ]0, l[,.f0 a constant with 0 <.{0 <f1 = 1, 
and again s0 = 1. Choose any y E [j~, 1 [ and let 

( ) {
v+ (x-t) for x ~ t, 

U t X. = 
' · yv_ (t - x) for x ~ t . 

Here v+ rs the same function as in Example 3.3 and 

v_ (~):= e~ - 1 - ~. 

Then u E C1
•
1 ([0, eo[ x R) and 

u- u" + f (a) = 0 in ]0, eo [ x Q, 

if a: = 1 in {x > y} and 0 ~a< 1 in {x < t} withf(a) = y. For this example 
the procedure in the existence proof will not work. Indeed if s: = a then 
conditions (3.1) and (3.3) for a solution are satisfied, but not (3.2) if y > f 0 . 

It should be possible to prove that the approximation uh in the proof of 
3.2 with sh (0) = 1 converge to u, since uh creates small intervals of negativity 
near { u = 0}, but each such interval in the next time step immediately 
disappears. 

3.5. REMARK. It might be unreasonable to consider the thermostat problem 
with the reversed monotonicity f 1 < fo . For example, let j 1 = 0, fo = 1, and 
Q = ]0, n:[ . Then 

v(t,x) : = e- tsinx, a: = s:=1 

is a solution. But there will be another one, say u, which at a certain time 
creates a set { u < 0} near oQ. Of course, he discrete solutions vh with 
sh (0) = 1 converge to v . But it seems that there are discrete solutions uh with 

J (1-sh (0))--+ 0 as h--+ 0, 
Q 

which converge to u. 
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0 zagadnieniu termostatu 

W pracy rozwa:i:ane jest zagadnienie termostatu opisywane przez r6wnanie L(u, s) = 0, 
gdt:ic L jest operatorem r6zniczkowym wzgl~dem u; s = s (Mu) odpowiada zmiennej przeh1czania 
termostatu. Zakladajqc :i:e L jest operatorem r6i.niczkowym zwyczajnym lub operatorem 
r6i.niczkowym czqstkowym oraz przyjmujqc r6:i:ne postacie M udowodniono istnienie rozwiqzan 
zagadnienia termostatu. 

0 npOOJieMe TepMOCTaTa 

B pa6oTe o6cy)K.LiaeTc» rrpo6neMa TepMocTaTa orrucaHHa» ypaaHeHneM L (u, s) = 0 r,L\e L ~ j 
HBJIHeTCJI .L\ll<}><}>epeHI(llaJibHbiM OrrepaTOpOM OTHOCllTeJibHO U, S = S (Mu) COOTBeTCTByeT rrepe- 1 

MeHHOH rrepeKmo'!eHll» TepMOCTa:a. B rrpeJIIIOJIO)KeHllll '!TO L o6biKHOBeHHbiH .Lill<}><}>epeHI(llaJib

HbiH onepaTop llJill orrepaTop B '!aCTHbiX rrpon3BO.L\HbiX, u npnHnMa» pa3Hbie <}>opMbi M 
,L\OKa3biBaeTCH cymeCTBOBaHlle peiiieHWH rrpo6JieMbl TepMOCTaTa. 
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