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A

The mathematical model studied here describes the evolution of the thermal field in a
material undergoing an irreversible change of stricture at a prescribed temperature with latent
heat abSorption. An existence theorem is proved for the multidimensional case. More results
(particularly a uniqueness theorem) are given for the one-dimensional case and some results of
numerical computations are presented. y L

1. Introduction

Intumescent paints when heated above some threshold temperature by
external heat sources change their structure, releasing gas and absorbing heat.
The process is used e.g. to create a protective coating against fire, owing to
the low thermal conductivity of the material produced, which looks swollen
and porous. Such a transformation is of course irreversible. In [1], [2]
a first approach was considered’ basically consisting in a Stefan problem.
Only the case of monotone processes was taken into account, as suggested
by the technical problem dealt with. On the other hand, we shall see that
introducing irreversibility in free boundary problems (even in the simple

*) Work partially supported by the University of Florence, by the CNR-GNFM and by
the NSF Grant 48-206-80. : :
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Stefan’s scheme) leads to non-standard problems which are very interesting
and by no means trivial. The resulting class of problems seems to be related
to a number of phenomena, presently under investigation, which are charac-
terized by an irreversible change of structure (see also Remark 1.4).

In usual, reversible change of phase processes it is natural to mtroduce
an energy-temperature relanonshlp of the form

E=u+iH (u) (1.1)

(A >0 is the latent heat and the heat capacity has been taken equal to one
for simplicity), where H (u) is the Heaviside graph, jumping at the tempe-
rature u =0, at which the’ transrtlon from “state 1” (u<0) to “state 2”
(u > 0) occurs. .

In an irreversible process, once the material is in state 2 it will never pass
to state I, even if the temperature becomes negative. Thus, if at a point F,
the material is in state 1 (necessarily u <0 in B,) latent heat will be
absorbed only thé first time the temperature u = 0 is crossed. Let us seek for
a modification of (1.1) accounting for irreversibility.

Let @ be a bounded domain in R" occupied by the heat conducting
medium. Assume that Q2 is smooth and for 0 < T< oo set ;= Qx(0, T].
Denpte by Q,, 2, the subsets of Qr corresponding to state 1 and to state 2,
respectively. The temperature u (x,t) satisfies the heat equation in Q; and
in 2, (for simplicity we set all thermal coefficients equal to one in both phases,
although this is not needed for the formulation below). For a classical solution
the. interface I' = Q1 can be represented by the equation @ (x,t) =0, where
¢ is a C' function such that & <0 in state 1 and @ > 0 in state 2.

On I' we have the continuity of u(x, t) and elther Stefan type condltlons
(brakets denotmg jumps, das usual)

U= 01 [Vx u]‘vx ¢ = Z’(pl
(A = latent heat), or just a “diffraction” type thermal balance
[Vx u}'vx b= 09

according to whether state 2 is forming (ie. @, > 0) or not (&, = 0).

If we want to interpret the above model (complemented with initial and
boundary conditions) in a weak sense, the standard procedure of multiplying
by a test function from a suitable space and integrating by parts leads to the
following differential equation

- 8/0t (u+Ay)— Au =0,
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in the sense of 2’ (Qr), where ¥ is the charac’feristic function of the region
occupied by state 2. s :
The effect of 1rrever31b1111y amounts to the formal ldentlﬁcatlon

x—H(sup u(x, 7).

0=<t<t
Hence it looks natural to substitute (1.1) with

E(x,t)=ul(x,t)+H (Osup u (x, 7)) (1.2)

and to proceed to formulating the problem as follows.
Let u, (x), f(x,t) be given functions such that

(A)) uoeH' (Q NI (Q),
(A;) feC(0,T; 2 (Q)NI2(0, T; H (6Q),

\ 4ol o,0+ I1f e ip0xi01) S M (1.3)

for some constant M > 0.
The functions u, and f will play the role of the initial temperature and

of the boundary data respectively.

We assume that the support of uf does not coincide with @, since
otherwise the problem is trivial.

The initial state of the system is described by a function (,(x)e
€H (up (x)), xeQ.

ProsLeM (P) Find a pair (u, &) such that

ueC (0, T; 2 (Q)nI?(0, T; H' (Q)n L* (Q7), (1.4)
u=fon 02x(0,T) in the sense of the traces, (1.5)

& (x, r) is mcluded in H (ess sup u (x,t)) in the sense
g "~ of the graphs, (1.6)

and such that the equation

-t ot VoV, o) dxdi = ot 0 (-, 00dx  (17)

is satisfied for all peH' ()N I* (0, T; HO (2)), which vanish for =T
Here and in the followmg we assume A =1 )

RemARk 1.1. The above scheme includes the possibility of mushy regions
evolving in the system, although it does not specify their degree of irréver-
- sibility. For complete irreversibility one should replace & (x,t) in (1.7) with

ess sup € (x, 1), with & (x, t) included in H (u(x,1)). Of course this remark

O=<t<t

is irrelevant when the measure of the set of zero temperature is zero. It can
be observed that this kind of artificial monotonicity of energy in mushy
regions represents a limiting case of hysteresis with “open cycles” (the closing
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side being moved to infinity). Change of phase problems with hysteresis have
- been studied in [3] (see also the literature quoted therem) The present
treatment contams substantlal dlfferences

REMARK 1.2. In stating Problem (P) we assumed implicitly that at any point

where u, (x) <0 the material is in state 1 for t=0. However it is not

difficult to take into account the possibility that in some subset of u, <0

the material is in state 2. It suffices to introduce a suitable non-negative

function ‘oo (x) and to replace H (ug(x)) by H (g (x)+00 (%)),

H (ess sup u (x, 7)) by H (ess sup u (x, 1)+, (x)). Such a substitution leaves
0<t<t O=t<g 5 £

all the analysis presented here unaffected.

RemARK 1.3. In the model considered here all thermal coefficients are taken
equal to one. However we can expect they depend in general on u and on
sup u(x, 1), belng dlfferem in state 1 and in state 2. Another mmphﬁcaﬂon

O=<t<t

introduced consists in neglectmg the deformatlon undergone by the material.
These simplifications are not crucial for the one-dimensional case. Finally the
gas dynamics is neglected as well as its interaction with heat transport. The
motivation for considering such a simplified model is to focus our attcnnon
on the difﬁcultles 1nvolved by 1rrever51b111ty

REMARK 1.4. Some other examples of free boundary problems with irreversi-

bility can be found in the literature. An oxygen diffusion-consuption model

studied in [4] divides the tissue in three zones: the alive zone (diffusing

and absorbing; oxygen above somé threshold concentration A > 0) a ‘sort of
reservoir zone (reversible, absorbing but not diffusing; oxygen concentration

" ue(0, 4)), and the dead zone j(irreversib]e, difftising but not absorbi'ng;
inf u(x,7)=0). '

O<r<t

Change of phase with removal of the formed phase (see [5]) is a one-phase
problem with artificial monotonicity of the free boundary. The direct
accessibility of the phase front makes th;s problem substantlally dlfferent from
the one studied here.

Another class of irreversible phenomena with free boundaries is represented
by pyrolysis and combustion of intumescent polymers as descrlbed e.g. in
[6] (see also the literaturé quoted therein).

In this paper the following existence theorem will be proved.

THEOREM 1.5. Under assumptions (A{)}(A,), Problem P possesses at least one
solution.

In addition some comments will be made concerning the one-dimensional
case (Thm. 8.1). In particular, uniqueness can be shown to hold in tlus case,
although in a special class.
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The plan of the paper is as follows. In Sec. 2 the problem is reformulated
in a way which is moré¢ suitable for the use of compactness arguments.
In Sections 3,4 and 5 a regularized problem is introduced (by smoothing H)
and solved. Further a priori estimates on the approximating solutions are
obtained in Sec. 6, while in Sec. 7 it will be concluded that there exists
a sequence of approximating solutions converging to the solution of the refor-
mulated problem. A basic lemma will concern the equlcontmulty of the
negative part of the regularized solutions.

Finally, it will be shown that the solution obtained for the reformulated
problem is actually a solutlon of problem (P) and that 1ts negatwe part is
continuous.

One-dimensional problems w1ll be dlscussed in Sec. 8 along w1th some
numcrlcat computatlon

2. Am auxiliary formulation

In order to construct a solution to Problem (P) we will use a compactness
argument on a sequence of regularized solutions. However in such a setting
it is hard to recover €& (x,1) in H (ess sup u(x, 7)) as a limit of a convergent

sequence. For tlns reason 1t is convement to replace H (ess sup u (x, 7)) in

<t<t

(1.6) by H(I u (x t)dt+ig (x)] and to note that H (u, (x)] < H (ug (x )).

Of course we cannot say a priori that the two formulations are equivalent.

Indeed, if for some (x,t) we have ess supp u (x, 7) <0, the first formulation
O<t<t

implies ¢ (x,t) =0, but the same conclusnon is not generally true in the
second one.
Therefore, once a solution to the reformulated problem will be obtained,

we will have to show that & (x,t) actually vanishes whenever ess sup u (x,7) < 0.
0<z<t

3. The approximating problem (P,)

For each ¢ > 0 set
‘1 ifs=e
H,(s)= ls/s if0<s<e, (3.1)
0 ifs<0

and

_Jug (x), if ug (x) > e,
% (x) = {sgo (x), if uf (x)e[o, &). (3:2)
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In such a way

H, (¢, (x)) =& (x), xeQ, (3.3)
for all ¢> 0. '
We look for a solution u, (x, t) of the following problem.
Problem (P,) Find u,eC (0, T; > ()N I? (0, T; H! (2)), u,cH., (1), such
that the equation

gf I:u +H, (fu: (x, 1) dt+a, (x))]—f—Am:O (3.4)

0
is satisfied in 2’ (Q;) and

U, (x, 1) = f(x, 1), (xr, HedR x (0, T1, (3.5)
U, (x, 0) = u, (x), xe (3.6)

in the sense of the traces.
More explicitly, u, satisfies (3.5) and

I {~[u+H, (Ju" (.7 deta, ()] o+
;l-qu~Vx @} dx dt = f(u0+§0)(p(x,0)dx (3.7

for all ¢ in the space of test functions spe01f1ed in Sec. 1.
Let us first prove uniqueness.

ProrosiTioN 3.1. (B) has at most one solution.
The proof is standard. Let u;, u, be two solutions and set w = Uy —Uy.
T

Choosing ¢ (x,t)= [ w(x, 7)dt as a test function, it is not difficult to get
the inequality .

‘ “ w? dx dt < (Tle) H w2 dxdt, - . (3.8)

which implies w =0 in Qx(0, ¢/2]. An 1terat10n process ylelds umqueness
in Qr for arbitrary T > 0.
- To prove éxistence, we use a time dlscretlzatlon procedure motlvated by
the following formal calculation,

Let us introduce the function

t

v (x, )= [ u(x,7)de. 39)

0
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It is easily seen that (3.4)3.6) reduces to

—Av = —Hz(f v dr+o, (X)) +ue+&, (3.10)
D »
vix, )= [ f(x, 0)de, (x,0€82%(0, T]. (3.11)
0
v(x,0)=0, xeQ. (3.12)

 §
The term H, (_f v} dt+a,) can be regarded as a nonlinear source containing
0 . -

the “history” of the process. Similarly, our discretizéd problem will contain
at each time step the “memory” of the values of the solution at every
previous time. ‘

Next section will be devoted to prove existence of a solution to the
discretized problems. In Section 5 we will prove the existence of u,.

4. Time discretized approximation to (P,)

For any neN set h=T/n,t;=ih,i=0,1, .., n, and consider the discre-
tized problem )
v(x,ty) =0, xe, (4.1)

v(x, tisq)—0(x, 1)
h

—Av(x,ti44) =

= (‘Zo [o(x, tj41)—v (x, £)]" + o, (x)) + 1o (x)+&o (x) in 2'(Q), (4.2)
= 4

U{x, ti+1) =h E f(x, tj+1), xeag, i= 0, susiy T i (4.3)

i=0
ProposITION 4.1. The above recursive scheme uniquely defines
b (x, t) e H? (@)~ I® (@) CH+= ()
for i; [ J— 2

Proof. The existence is proved by the Schauder-Leray fixed point theorem,
via standard elliptic estimates, since H, (-) is L:pschltz contlnuous Umqueness
follows from the monotommty of H,(-).
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Now we define
u (xs rI’.'l) = uO (X), (44)

v (xs Liy 1)—?) (xs ti)
h »

u(x,tipq) = (4.5)

i=0,1,..,n—1,xeQ and we consmler the txme plecewme constant functxon
deﬁned by

i(x,0)=1up(x), - (4.6)
ff(x, t) =U (x, £i+1)} if ti <t < ti+l> f O, 1, Wi n—1. (4.7)
It is easy to verify that
i ti+1
Z [o(x, tje)—v(x, )] = a* (x,7)de 4.8)
j=o0 0
and that
u(x,tiv)—ulx,t)

h —Au (X, tipq) =

1 ti

_ _% {He (Jﬁa% (x, 7) d1+fxs (x)):—Hs(Jﬂ+ (JC, T) dt+o, (X))}
0 ' .

ae in 2, (4.9
u(x,tir)=f(x,t;4,) on 8Q, i=0,1,..,n—1. - (4.10)
We proceed to derive a priori estimates independent of h.

Lemma 4.1, There exists a constant ¥ Endependenr of h and of &, such that
juz (x,t)dx <y, 0<i<n, 4.11)

(fIV, @* dxdr <. (4.12)
Qr

Proof Let w(x,t;) be recursively defined by

w (JC, r(+1]_w (X, ti)
h

—Aw (X, t4 1) =0 in @, (4.13)

W (X, to) = to (X), | | (4.14)
w(x,t)=f(x,t) on 8Q,i=0,1,..,n. (4.15)
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It is well known that such a w exists and is unique, and that the following
estimate holds

liwll < C, (4.16)

where

liwill = Z BT L0 (6, i) =w (x, 1)) dx+

-1

+ Z h I[V w(x, ti+1)]? dx+ ax W, t)eo (417)

i=0

and C is a constant dependlng on the data, but not on h. The funcuon
U=i-w satlsﬁes

U (x, tis)=U (x, 1)

h —AU(x,ti+1)=

Tt

- _,% {He(J Tt (x, 1) dt+a, (x))—He(f T (x, 7)de+
0

0

+a, (x )} Fomifl; Lyt ~ 1Y)

with zero initial and boundary values.
. Multiplying (4.18) by U (x, t;+), integrating over £ and adding over
i=0,1,..,j—1,0 <j <n, after some algebraic operations one obtains

I

—;—J‘Uz(x,rj)dx+J jw U2 dx dt <

0

}g J{ (J (x, 1) dt+a, (x) (fﬁ* (x, 7) dt+

o, (x))}" WX, s ) dx.  (4.19)

Performing a discrete integration by parts on the right hand side, the latter
is estimated in terms of T, ||, and of [jw]|, i.e. of a constant independent
of h. At this point the proof of (4.11), (4.12) follows immediately.

Lemma 4.2. For every compact set A < Q there exists a constant y (K)
dependent on dist (A", 6€2), but neither on h nor on &, such that

n—1 - ;
- ﬂu(x,rmi! “(x’t'}rdxéy(f)/gz- (420
i=0 - '

H
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Proof. Let {(x) be a smooth function such that {=1 on #,{=0 on
92, |V, (| bounded in terms of dist (", dQ). Multiply (4.13) by [u (x,t;4+)—
—u(x, ;)] {*(x), integrate over 02 and add over i=0,1,..,n—1 to get

n—1
Z h_l I{u(x&ti+l)_u(x1 t:)] Czdx'l'
i1=0 Q

EY V(e i) Vi [0 66yt )=ty 0] €2 dx =
i=0 N
n—1
= =2 'ZQ ﬁ‘: [u (xs t£+1)_u (xs ri)] Cvx Cvx u (x!.tiﬁ-l) dx—

ti+1

S (o) e, ()

0
R

—H, ([ 7 (e, ) dr+o, ()} [ (%, tieg)—u (x, 801 (P dx. (421)

0

Using Cauchy’s inequality and Lemma 4.2, the absolute value of the right
hand side of (4.21) is found to be less than

%":il it j[“ (%, tiva)—u (x, t)] C% dx+y ()%
=0

where the dependence on %" results from |V, (|.
The first term on the left side can be shown to be greater than
— |luollf1 ). Hence (4.20) follows by proper redefinition of y (#).

5. Existence of a solution to (P,)

ProrosiTion 5.1. A solution to (F) exists.

Proof If we introduce the function

up (%, 8) = u 0, i )+ A1 (E—t4 1) [u (x, tigq)—u (x, 8],
telt, tive], i=0,1,..,n—1, (5.1)

as a consequence of Lemmas 4.1 and 4.2 we have that

Vi upll2,0, <y (5.2)
for some y independent of h and of &,

I

where y (#") is the constant appearing in (4.20).

0
ot "

dt <y (X)/e?, (5.3)

b
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Hence we have proved the following.

LemMma 5.2. There exists a subsequence of {u,} (which we relabel with h)
such that

uy, — u, strongly in I? (Qy), (5.4)
u, > u, a.e. in Qr, (5.5)
V. u,— V, u, weakly in IZ (Q;), (5.6)

duy /0t — du,/ot weakly over I? (A x(0, T)),
implying du,/ét € I, (Q7). (5.7)

Now we préve that u, coincides with f on the boundary.

LemMmA 53 u, (x,t)=f(x,t) in the sense of the traces for a.e. te[0,T).

Proof. If f, (x, t) denotes the piecewise linear function interpolating f in the
intervals (¢;, t;+4), it is easy to show that | fy-trace ul|;.0.0,mn tends to zero
as h—0 (use (54)). Since | f,—fll2s0x0mn also tends to zero, the lemma
follows. . [

To complete the existence proof, we have to show that u, satisfies (3.7).
Omitting the details, we confine ourselves to sketching the main steps. Take
a test function ¢ with a compact support in 27, multiply (4.9) by
@ (x, t;+1) h, integrate over  and add over i=0, 1, ..,n—1, finally perform
a discrete integration by parts in time. The resulting equation is

ti+1
n—1

0
ZOI -I‘{_H(JC,Ii)%-FVxH(X,tHl)-Vxgo[x,fi+1]}dxd'r=
i= o

ti +1 ti

= J[uo (x)+E&o (x)] @ (x,0) dx+'iil j -[HE(JA a* (x,7)dt+
2 s Q 0

t

8
+a, {x]) —(;%”— dxdr,

where @, is defined in the same way as u,.

At this point the subscript h can be transferred from ¢, to u in the terms
where it appears, with the addition of terms, which are easily shown to go
to zero as h—0 (use Lemma 4.3). By virtue of Lemma 52 the limit
h—0 can now be performed in (5.8), leading to (3.7).

Remark 5.4. From (5.7) it follows that u, satisfies (3.4) a.e. in Q.
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6. A priori estimates on the solution of (P,)

On the basis of Remark 54 we can rewrite equation (3.4) in the form

. ;
Ou,fot— Au, = — Hy ([ ug” (x, 1) dr+a, (x)) u.” (x, 1) (6.1)
0
and prove that u, is bounded uniformly

LemMa 6.1, For all e>0
4]l 0,0, < M, (6.2)

where M is the constant appearing in (1.3).

Proof. Multiply (6.1) by the functions i(uiM)i, which vanish on the
parabolic boundary of Q,, and integrate over Qx (0, ) to obtain

[ 1T M Pdx+ [ [V, i, FM)*? dx dr =
Q%) 0n

¢(]: J H, (j u (x,s)ds+a, (x) u; (x, 1) (w,};’v"')-i dxdt. (6.3)

The right hand side of (6.3) is non-positive when we choose the upper
sign and it is zero when we choose the lower sign. Hence the proof of
(6.2) has been completed. [ |

ReEMARK 6.2. By Lemma 6.1, the right hand side of (6.1) is bounded and
therefore u, is Holder continuous in Q, (see eg. [10] Thm. 10.1 p. 204)
although non-uniformly in &.

A crucial role in performing in (3.7) the limit passage as ¢ —0 will be
played by the equicontinuity of the family {u, }. Let K be a compact subset
of Q and let # be a compact subset of Q; of the form

J("=K><[t1,t2], 0<[1<11-€T

By dp Qr and 0, # we will denote the parabolic boundary of Q; and
of A", respectively.

ProposiTioN 6.3. For every compact subset A < Qp and for every e>0
the functions u; (x,t) are continuous in A" with uniform modulus of continuity

() = [log log (4/0)1 %, (6.4)

where A, B are two positive constants dependent upon M, on the data,
and on dist (X', 0, Qy), but independent of e. For a pair of points (x;,t;)e X,
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i=1,2, o denotes the parabolic distance
0 = |xy—xa|+ |t — 1,

If in addition uy (x) is continuous in Q with modulus of continuity @y (+),
then for every compact set KX < Q the above equicontinuity extends to
H %[0, T] with modulus of continuity

@ (o) = max {w (g), wo (0)}-

In such a case the constants A, B depend on dist (X', 0Q).

Proof. The proof of the proposition follows the same arguments as [7]
starting from basic inequalities which we derive next. Let (xq,to)eQr be
fixed and let B(R) = {xeQ:|x—x,| < R}. Denote by Q% the cylinder

% = B(R)x(to—0OR?, 1), 6> 0.
If ¢,,0,€(0,1) consider algedhe coaxial cylinder

Q?‘(.(Ul, 0'2) = B(R—Ul R}X(tg’—(l—‘ﬂ'z) SRZ, to).

We let R be so small thatQbc Q;. With (x,t)—={(x,t) we denote a
piecewise smooth cutoff function in Q% which equals one on Q% (0, d,),
vanishes on the parabolic boundary of Q% and satisfies

V. (< (oy R 1AL < c(oy RT3 0< (< (0, 0R?) 1.

For notational simplicity we set
v=u, ,

and denote with k a positive number.
Following the notation of [10] set

V0 (QR) = C[to—6R?, to; I (B(R)]
. N I [t,—0R?,to; H' (B (R))],
and if we V" (QR),

2 _ 2 2
w300 = N _légiiégie Iw (-, DIz, 8@+ Ve wligs.

LEMMA 6.4. There exists a constant y independent of &, such that for every
k>0

=R B < 7 [0 B2 4+02 0RD T 0—K) g (64)
Proof Multiply (6.1) by ¢ = —(—u, +k)~ {* and integrate over Q%' = B(R) x

2. X (to— QR?, t), where te[to—(1—0,) OR?, t,]. Since ¢ vanishes except when
u, < —k, and k >0, the right hand side does not give any contribution.
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As to the left hand side, it equals

—ﬂ[{v*kr]-"*ccfdxdw-;— f [0—k)*T? 02 dx+

0% B(R)x {t}

£ H;Vx (0—k)*|? (2 dx dr+2 ”(»-kﬁ V. (v—k)* ¢V, ¢ dx da.

of oi

The last term is not less than

1
i J:[le W=k dxdi—2 j:|‘[(u~—§'c)+:|2 IV, {|? dx dr.
o Ok
Hence recalling the definition of {, for arbitrary te[ty—(1—0,) OR? t4]
and for some real constant y the following inequality holds:

[(v—k)*]? dx+ jij (w=k)*? P dxdr <
B(R—-a:R)x {1} oy
<y[o; R 2+(62 ORY) 1] (v—K)* |3
and the lemma is proved.
For the next lemma we set the following definition

AJZR = {(xs I)EQ‘;R:U()C, t.) "‘<- k}s

LemMA 6.5. There exists a constant y depending upon the data and independent
of ¢, such that for every k>0

Io—©)" 1904 0,059 <7 [(61 R)™?+(0, OR?) ] x
X {l(0—=k)" |50 +k meas Az g}. (6.5
Proof We muitiply (6.1) by the function .
¢ =(—u; +k)*

and integrate over 0%, where Q%' is defined as before. We observe that
¢ =0 and therefore the product on the right hand side gives a non-positive
contribution and it is dropped.

We treat the remaining terms as follows. First

4l " oo |l s * o
wgus(“uc +k} = ot (us ue)_( Uy +k) =

-8 el
——[(v—k)" P +k— u?.
26r[(u )1+ ar““
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Therefore
—a-u (—u; +k)* C2=i [w=k) 1> (x, t) dx—
ey 2 A
b B(R) % {t}

—JVJ.[(v—if()"]2 (L dx dt+k J u; 2 dx—

o B(R)* (1}
—2k Iju: {(, dx dr.

o

Recalling the properties of the cutoff function { we have

0 1
fJJ’W Uy (—uy, +k)* Cdxdr = 5 o=k~ (-, Dl3e®=-0,r)—
4

—(6, OR*)™! ||(U—k)_l|ig‘;*2k (6, 0R?H)! '”u:' dx dr.
o}
For the second term we have

J= ([ V-V (—u7 +k)* 2 dxde+2 [ Veu,(—u; +k)* (V, dxde =
ok ok
= J1+J2.

The first integral is extended only to the set where u,= —u; and
therefore

Ji= [[ IV, (v=k)|*{? dx dr.
o
In the second integral we perform an integration by parts to obtain
Jo==2[{u, Vi (—u; +k)* (V. {dxdr =
Qgr.(

=2 [ u, (—uy +k)* (Ve {24V dx de = TP +JP.
o

We observe that the integral in JY is extended only to the set
{—k < —u, <0} and such a set is included in the set A, g. Therefore

JP > —% JT!Vx (v—k)™|? {* dx dt —2k* (5, R)” % meas A; .
0

.0
44

14 Comtrol amd Oy berneties
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For JY, since |u|< M, reéalling the structure of the cutoff function {
we have

JP> —CM (o, R)"? [[ (v—k)™ dx dr.
O

Combining these estimates we find

1 " 1 2
[[(v—k) ||§,B(R—U,R]><{r}+3 J:[W:; (v—k) |2 Cz dx dr<

ok
< C (0, 0RY) ™! [(0—K) " |2.04+ CM [(0; R)" % +(c; OR?) 1] x

x{JT(v—k)‘ dx dt+k jju: dx dt +k* meas A,“_R}, (6.6)
& ;

8|

04
with C properly redefined.
* Since v=>0 we obviously have [(v—k)™ |, <k and therefore

[f(v—k)~ dx dr < k meas A; .
Tk
Also the integral |[{u,” dx dr is extended only to the set {u,>0}n Q% and
Ok
such a set is included in the set {—u, > —k}n Qk = A z. Hence
k [ ub dxdt< kM meas A g.
Ok

Substituting these estimates in (6.6), since te[t,—(1—0,) OR?, t,] is arbitrary,
we deduce

I@—=K)7 I w2 (g460,.0 < ¥ [(61 R)™2 +(02 OR?) ] x
X {I(v=K)" ]34 +k meas A g}

and the lemma is proved.
Let k>0 and let u,n be positive numbers satisfying

u=esssup (v—k) ;0 <n<p. 6.7)
Lo
Set

¥ (x), 1) = log* [W—#k}rl?} (6.8)
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LEMMA 6.6. There exists a constant C = C () such that for all te[ty—0R?, t,]

[ P2 (x,0)dx< | Y2 (x,to—OR?)dx+ y

B(R—aR) B(R)

+C (0) 072 log (4/n) meas B(R).  (6.9)

Proof. Let x—{(x) be a cutoff function in B(R) which equals one on
B(R—o0, R), vanishes on 4B (R) and |V{| <(o; R)"'. We multiply (6.1) by
—(¥?y {2, the prime denoting differentiation w.r.t. v, and integrate over Q%".

We observe that (¥2) = 2¥¥, vanishes on the set {v <k}. Such a set
includes the support of u; and therefore the product on the right hand
side will give a zero contribution. The various integrals will be extended to
the set {v > k}, ie. {—u, < —k}.

Therefore we have

5 ”%ue(wr {2 (x) dx dr = J";'(u—k)* (P2Y {2 dx d =

ok’ ok

ot

ox' B(R)

=Hi P2 (2 (x)dx dt = I ¥ (x, ) (P dx—

— | P*(x,t,—6R}) 2 dx>

B(R)

= P2 (x,t) dx— J‘ Y2 (x, to—0OR?) dx.

B{(R-aR) B(R)

In estimating the second term we first observe that
(P =2(1+9) (P)>.

Hence, arguing as before,

— [ Vu, V (P2Y 0% dx d = 2 [ Vu, (P2) (VC dx dt =
oF' %!

=2[fA+®) () |Vo|* (> dx dr+4 [[ VoY (V(dx dt >
o% oY

> [[ (14 9) (¥) Vol (2 dx dv—8 (o, R)™2 [ [ ¥ dx dx.
oy 0%
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Combining these estimates we have for all te[t,—0R?, to]

| P*(x,t)dx< | ¥*(x,t0—OR?)dx+

B(R—oR) B{R)

+C(o, R)"? [ Pdxdr. (6.10)
Or
From the definition (6.8) it follows that

| (x, 1) < log (u/n)
and therefore

C(oy R)"? [ Wdxdt < C(oy R)”?1In(u/n) meas Q% <
o
< Cloy 2 In (u/n) meas B(R).

Substituting this in (6.10), the lemma follows.

ReEMARK 6.7. Lemma 6.6 is analogous to Lemma 2.2 of [7], page 140.

The conclusion of the Proposition 6.2 now follows from inequalities
(6.4), (6.5) and (6.9) via the arguments of [7], pp. 143-160. In this connection
see also remarks on page 160 and 175. The continuity up to t =0 can be
proved as in Theorem 5.1, page 161. The specific modulus of continuity
w (¢) was estimated in [11] (see Remark 3.1 page 101).

7. The limit as ¢— 0
From the results of sections 4, 5 we have that

luell3, 0, + 1 Vx 3,0, < C, (7.1)

-

where C is independent of &. By Proposition 6.3, the sequence {u;} is
equibounded and equicontinuous over compact subsets of Q.

Therefore a subsequence out of {u,} can be selected (and relabelled with )
such that

U, — u weakly in I? ()

V}.‘ u!:‘ = Vx u » ti) 2

u:‘ e ¢ % EL] 2

U, >w uniformly over compact subsets of Qr.

Lemma 7.1, um =@®, u™ =w.
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Proof Obviously @ > 0. Since for every ¢pel?(Qr)

”Iu(p dx dt = ling ” (u; —u; ) @ dx dt = ” (P—w) @ dx dt
0 L =

T fir
and —w <0, to show the assertion it will suffice to prove that

(supp) @ A supp w) = 0.

If K is compact non-empty and contained in (supp @ N supp w), we have
w>n on K and u, > n/2 on K, for all ¢ sufficiently small. Because of the
uniform convergence. of u; to w in K, if ¢eI?(27) and supp ¢ < K,

[J (@—w) @ dxdt =lim || (4 —u;) ¢ dx dt = — ([ wo dx dt.
or =0 27 o
Hence
H D@ dxdt =0,Voel? (K)
Qr
and hence @ =0 ae. in K. A contradiction. [ |

RemARrk. If neither {u,"} nor {u; } converges uniformly it is not clear that the

weak limits of {u,"} and {u, } have disjoint support and hence it is not

clear that if u,— u we also have u,” »u and u, - u".
t i

Lemma 7.2, [uf (x,7)dt— [u* (x,7)dr ae. in Q.
1] 4]

Proof. Since obviously

- G

—g? J.ut,,.+ (x,7)dr v, J‘u: (x,7)dr

0 2,01 0 2,07

where C is independent of &, for a subsequence (again relabelled with &)

t
gu: (x,7)dt = ¥ (x, 7) strongly in I? (Q;) and ae. in Q. (7.2)

t
We want to identify ¥ as j' u™ (x, t) dr. Such an identification is not immediate
4]

since u;” — u™ only weakly in IZ (Q;).
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Let geI? (27). Then

(- ]'ru* (x,7)d1)gdx dt = _[_[(‘P—f u, (x,1)dr) g dxdt+
7 0 ) Qr 0

+yg (6[ [u (x, 7)—u* (x, 7)]) dz.

The first integral converges to zero as ¢ — 0 because of (7.2) and the second
tends to zero since u,;” - u* weakly in I? (Q7). Therefore, letting & — 0,

t .
(= ut (x,7)dr)gdxdt=0
r 4]
for all geI? (2;) and hence
4
¥={u*(x,1)dr ae in Q.
0

We may now conclude the proof of existence.

Proof of Theorem 1.5. Consider (3.8) and let ¢ >0 in the subsequence
chosen above. We obtain

) {—up,+V, u-V, ¢} dxdt = [ (ug+&o) @ (x,0) dx+
Qr Q

+lirré if (Hs (f ul (x, t)dr +o, (x)]) @, dxdt. (71.3)
0 ar 0
As £ — 0 we have
H,;(jt uf (x,7)dt+o, (x)) > H (jE ut (x, 9)+ug (x)).
0 ]

As discussed in section 2, such a selection coincides with a selection out
of H( sup u(x, 1)), except possibly at those (x, t) for which

WES £ S
(i) - xe\supp (ug)
(i) sup uix,. ) <q.

0=t=¢

At such points we must have u(x,7)<0,0 <7<t and

sup u,(x,7)<0

0stst

for all ¢ sufficiently small, because of the uniform convergence of u, to u ™.
Hence

t
Juf (x,v)dr=0 for all ¢ sufficiently small.
0
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" and
I

H,(Juf (x,7)dt+o, (x)) =0 for all ¢ sufficiently small.
0

It follows that

¢(x,t)c H(sup u(x,t)), ae in Qr
0=sr=¢

and the theorem is proved. @

8. Remarks on the one-dimensional case

In order to be specific, assume Q= (0, 1), upeC ([0, 1]) and u, (x) <0
for 0 <x < b, where the material is ih state 1, uy(x)>0 for b<x <1,
where the material is in state 2. Moreover the boundary data are
u@,0)=f@)<0,u(l,t)=1f; (t)>0.

In the classical statement of the one-dimensional problem the free
- boundary is a C' curve x = s(t), separating state 1 on the left from state
2 on the right (if mushy regions are absent).

Assuming a classical solution exists, we can say that in any time
interval where $(t) <0 the classical solution coincides with the solution
(o, u) of the Stefan problem (SP) with free boundary conditions

u(o@®)t,1)=0, u (o ©)—, ) —u, (0 )+, 1) = 6 (2).

In the opposite situation, ie. if §(tf)=0 in some interval, the classical
solution coincides with the solution of a wusual initial boundary value
problem(*) (IBP) and is characterized by the fact that the zero level curve
x = o (t) may enter the region occupied by state 2.

In the following we will assume that
(i) the functions f (¢), f (t) are analytic for t > 0 and continuous for ¢ = 0.

It is known that (SP) is uniquely solvable for t >0 and that the free
boundary x = ¢ () is analytic for ¢t > 0 ([8], [9]).

Assume that ug (x) is such that either
(ii) :ngl g(t)<0
or
o : il
(i1 t_.0+oc(t}>0{ T

(*) We recall that thermal coefficients are set equal to one throughout the system.
However this simplification is not crucial for the case we want to study.
(**) In the stationary case ¢ = b or « = b there is no difference among problems (P), (SP)
and (IBP).
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We want to prove the following.

TueoREM 8.1. Under assumptions (i) and (ii) or (ii") Problem (P) has a classical
solution having piecewise analytic free boundary and zero level curve. Such
a solution is unique in the class specified and can be constructed by solving
(SP) and (IBP) in successive time intervals.

Proof We confine ourselves to the case (ii), since the proof concerning (ii)
is completely analogous.

First we note that under the conditions guaranteeing (ii) also the level
curve x = o (t) lies on the left of x = b for ¢ sufficiently small. This implies
that the Stefan solution is the only solution of our problem with monotonic
zero level curve up to the time T'=sup {t:6 (1)< 0}. From the analyticity
of o (t) we infer that ¢ (t) > ¢ (T) in some interval (T, T+9).

Let us solve (IBP) in (T, T+4), assuming u(x, T) = f(x) as the initial
datum. We show that the curve u (x, t) =0 lies on the right of x = ¢ (T) for
a non-zero interval.

Let us define

(@, x>a(T),
e {—f(—x), x <o (T).

The difference f(x)—g (x) is zero for x > ¢ (T) and coincides with the
analytic function f(x)+f(—x) for x < ¢ (T) (remember u(x, T) is analytic
both for x > ¢ (T) and for x < o (T)).

Hence there exists some positive constant # such that f(x)—g (x) has
a given sign in (6 (T)—n, o (T)). Indeed if this conclusion were false, the
function f should be odd implying that all derivatives of ¢ (t) vanish for
t = T, thus contradicting the definition of T.

On the other hand, comparing the solution of (SP) for t > T with the
stationary solution (corresponding to an odd datum for t = T) we conclude
that f(x)—g (x)> 0 in (o (T)—n, ¢ (T)) by monotone dependence.

At this point the monotone dependence of the solution of (IBP) on the
datum f(x) yields a (t) > o (T') in a right neighbourhood of t = T Hence the
solution of (IBP) is also a solution of (P) and no other solution exists with
monotone zero level curve.

Next we define T=sup {t:t > T, a(t) = o (T)}.

The function « () must have at least one non-zero derivative for t = T,
otherwise 8" u/ot" = 0, for all n at (s(T), T), which is not permitted by the
definition of T.

Let m > 0 be the order of he first non-vanishing derivative of «. Then

™ ufotm = 92m u/ax*™ < 0, 8.1)"
& ufotk = 9% u/ox* = 0 for all k <m at (s(T), T). (8.2)
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We will use (8.1), (8.2) to show that solving the Stefan problem for t > T,
the corresponding free boundary is found to lie on the left of x = o (T) in
the vicinity of t = T.

Put f(x)=u(x, T) and note that if

lim d?f/dx* =0, 1=1;2, ...k

x=5(T)
then
lim d' o/dt' =0, 1=1,2, ., k+1.

This result is proved recursively by considering that the derivatives
d' ¢/dt* solve integral equations of the form

il

cM)=F@O+| | K (x,t,1) 0P (c)dxdr,
T o(T)

where the free term tends to zero as t — T and the kernel is weakly singular.
As a consequence, by differentiating u (o (t), 1) =0 k+1 times one finds
that (8! u/dt** '), ;i tends to zero as t—»T*.
Recalling (8.2) we have

i (0" /0™ =iy =0 (83)

(take k = m—1). Therefore é™u/ét™ is discontinuous for t =T, x = a (T)

t
u<0| ;
0.24 A Fu=g - 0.24
u=015
018 - : a -0.18
u=- 0.5 U=1
0.12 1 ' 012
u=10 u=0
u=0.15
0.06+ ~0.06
u=0
u=1
0
u=-05

Fig. 1. Free boundary solid line and zero level curve (dotted line) for initial
and boundary data (8.6), (8.7)
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(remember (8.1)) and it is easy to see that
lim (@™ u/0t™ ! X)x=gi = F 0. (8.4)
Thus
lim d™t!s/dt™t! = — 0. (8.5)

This analysis can be iterated showing that the solution can be constructed
in a unique way in successive time intervals either by solving (SP) or by
solving (IBP). The shift from one problem to the other is marked by the
change of slope of the zero temperature curve.

The picture below shows the computed free boundary (solid line) and
zero level curve (dotted line) corresponding to the initial datum

Uy (x) = —0.5 (8.6)
and to the boundary data

fo )= —05.£, ()= {‘ for te(2n, (2n+1)0),

0.15 for te(@n+1)6,2 (+1)0),6 =006. &7

A finite difference explicit method was used to compute the discretized
version of 0 (u+¢&)/0t—Au =0 with ¢ specified by (1.8).

The data were chosen is such a way to create a non-monotone zero level
curve.
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O zagadnieniu ze swobodna granica zwigzanym
z pewnym procesem nieodwracalnym

Rozwazany model matematyczny opisuje ewolucj¢ pola cieplnego w materiale, ktory
podlega nieodwracalnej przemianie struktury, zachodzacej przy zadanej temperaturze z absorpcja
ciepla utajonego. Dowodzi si¢ istnienia rozwigzan w przypadku wielowymiarowym. Inne wyniki
(w szczegdlnosci twierdzenie o jednoznacznosci) dotycza przypadku jednowymiarowego. Przed-
stawione zostaja w tym przypadku réwniez pewne wyniki eksperymentéw numerycznych.

06 oauoii mpobieme co cBoGoaHol rpanHuel oTHOCsIIeHCH
K HeoOpaTHMOMY mpoiieccy

PaccmaTpuBaeTcsi MaTeMaTHYECKYIO MOJE/Mb 3BOJIOLHH TCMJIOBOrO 10N B MaTepuane
KOTOPLIH NOANEXKHUT HeOOPaTHMOMY H3IMEHEHHIO CTPYKTYPbl, NPOM3XOAAILEMY ITPH 33 1aHHOH TeM-
nepatype ¢ abcopbumeit ckppiToill TerioTel. JoKa3blBaeTcd CYILIECTBOBAHNME PEIEHHNA B MHOTO-
MepHOM ciysae. B omsomepHoit GopmynHposke naHbl TOXKe ApYrue pe3yjibTaThl (B 4ACTHOCTH,
TEOpEMA O EIMHCTBEHHOCTH perieHnii). B 3TOM cnyuae nperncraBieHsl HEKOTOPBIE Pe3YJIbTATHI
YHCIIEHHBIX 3KCIEPHMEHTOB.
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