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In this paper we consider the following problem: Find a curve x = l (t) > 0 
on [0, eo) and a function u = u (x, t) on [0, eo) x [0, eo) , satisfying 

U1-Uxx=0 for O<x<l(t) and O<t<co, 

u(x,O)=u0 (x) for O<x< eo, 

ux (0+ , t)Eabr (u (0, t)) for 0 < t < eo, 

u (x, t) = 0 for l (t)~ x < eo and 0 < t < eo , 

l
l' (t)( = d~;t)) = -ux (l (t)-, t) for 0 < t <eo , 

l (0) = 10 , 

(0.1) 

(0.2) 

(0.3) . 

(0.4) 

(0.5) 

where 10 is a given positive number, u0 is a given function on [0, eo) and 
ab' stands for the subdifferential of a given proper lower semicontinuous 
convex function b1 on R, for each t ~ 0. This is a one phase Stefan problem 
With the flux Ux (0+ , t) governed by the SUbdifferential ab' (u (0 , t)) on the 
fixed boundary x = 0. 

*) Dedicated to Professor I. Miyadera on his 60th birthday. 
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This type of Stefan problems was earlier studied by Y otsutani [ 15, 16] ; 
in fact, he treated the case when br is independent of t, i.e. b1 

(.) = b (. ), 
and employed a difference method to obtain some results on the existence
-uniqueness of global solutions and their asymptotic behaviour. However, the 
treatment for the time-dependent case of br seems to be complicated because 
of the nonlinearity in the boundary condition (0.3). Recently, the author 
(cf. [10]) has proposed a new method for Stefan problems of the type 
mentioned above, gi~ing rise to an easy treatment of the boundary condition 
(0.3), and showed that the problem (0.1}-(0.5) has a global solution. This 
method exploits techniques of the theory of nonlinear evolution equations 
in Hilbert spaces, involving time-dependent subdifferential operators. 

The purpose of this paper is to discuss the following three subjects: 
(a) The monotone dependence of solutions on W, 10 , u0 } and the uniqueness 

of solutions. 
(b) The asymptotic behaviour of the free boundary x = l (t); an sufficient 

conditions on thr} in orde~ that limr .... oo l (t) is finite. 
(c) The asymptotic behaviour of u = u (x, t); and evaluation of 

lim infr .... oo u (x , t) and lim supr .... oo u (x , t) in terms of W}. 
In [10; Theorem 1.3] , the uniqueness of the solution was verified for 
a specific class of initial values. In section 4 of this paper we show the . 
uniqueness for a more general class of initial values as an immediate 
consequence of the monotone dependence of solutions on br , 10 , u0 . In [11] 
the author dealt with a special case of b1 of the form 

. br (r) = {0 if r ~ g (t), 
oo if r < g (t), 

for a given non-negative function g on [0, oo ), and gave some results 
about (a), (b) and (c) . In this paper we establish some theorems concerning 
(a), (b) and (c) for our general problem (0.1}-(0.5) by employing the same 
techniques as in [11]. 

Not at ion. For a general (real) Banach space X we denote by l·lx the norm. 
Also, for a Hilbert space H we denote by ( ·, · )H the inner product. Given 
a proper lower semi-continuous (l.s.c.) convex function q> on a Hilbert space, 
we denote by ocp the subdifferential operator of q>, by D (ocp) its domain and 
by D (cp) the effective domain of cp. For these notations and general properties 
we refer to Bn':zis [1]. 

1. Quasi-variational formulation 

In this section we formulate a parabolic quasi-variational problem asso
ciated with system (0.1 )-{0.5). 
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Existence and uniqueness of a solution to our system are discussed for 
:b1

} in the class Br ({30 , fJd (or B00 ({3 0 , /3 1)) given below. For 0 < T < oo, 
j30 EW1·2 (0,1) and {J1EW1·1 (0,1) we denote by Br(/30 ,{31) the set of all 
{bl} = {b1

; 0 ~ t ~ T} of proper l.s.c. convex functions on R satisfying the 
following (b 1) and (b2): 

(bl) ob1 lr) c l- 00' 0] if 0 ~ t ~ T and rED (ob1
) n (- 00' 0). 

(b2) For each s, tE[O, T] with s ~ t and each rED (b 5
) there is rED (b1

), 

such that 

lr- rl ~ lfJo (t)- fJo (s)l (1 + lrl + lbs (r)l 112
) 

and 

bt (r)- bs (r) ~ lfJ1 (t)- fJ1 (s)l (1 + lrl 2 + lbs (r)l). 

Also, we denote by B00 ({30 ,{Jd with {J0 E~~~2 ([0,oo)) and fJ~.EH{~~1 ([0,oo)) 
the set of all {b1}={b1 ;0~t<oo}, such that {Y}EBr(fJ0 ,{J1 ) for every 
finite T> 0. 

For simplicity, we set H = L2 (0, oo), X= W1·2 (0, oo), 

Ar = {IEC ([0, 1]); lis positive and non-decreasing on [0, 1]}, 0 < T< oo, 

and 

A 00 = {IEC ([0, oo)); lis positive and non-decreasing on [0, oo)} . 

Given a family {b1
} in Br ({30 , /3 1 ) or Boo ({30 , /3 1), we define a function <Pl 

on H for each lE Ar or A 00 and each t ~ 0 as follows: 

<Pl (z) = j: ~ lz,l/, + b' (z (0)) if z E K, (t), 

oo otherwise, 

(1.1) 

where Kz(t)= {zEX;z=O on [l(t),oo),z(O)ED(b1
)}. Clearly it is proper, 

l.s.c. and convex on H and D (cpl) = K 1 (t). We then consider the Cauchy 
problem CP (cpl; u0 ) tE[O, T] in H: 

1 ) {-u' (t)Eocpl (u (t)), 0 < t < T, 
CP (<pz; uo : (O) _ u - u0 , 

where 0 < T< oo, I EAr and u0 EH are given; the unknown u is an H-valued 
function on [0, T], which is identified with the function u = u (x; t) on 
[0, oo) x [0, T] by [u (t)] (x) = u (x, t), and u' (t) = (d/dt) u (t) in H. By a 
solution of CP (cp1; u0 ) on [0, 1] we mean an H-valued function u on 
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[0, T], satisfying 

t - t<pl(u (t)) is integrable on [0, T], · (1.2) lu EC ([0, T]; )/)n W1
•
2 (b, T; H) for every 0 < b < T, 

t ___,; (f>i (u (t)) is bounded on [b, T] for every 0 < b < T, 
' 

u (0) = u0 (1.3) 

and 

- u' (t)E8(/)i (u (t)) for a.e. t E[O, T]. (1.4) 

Also, u: [0, oo) ____,. H is called a solution to CP ( (f>i; u0 ) on [0, oo), if it is 
a solution to CP ( (/)i; u0 ) on every finite interval [0, T]. 

We are now in a position to give a quasi-variational formulation 
corresponding to system (0.1H0.5) . 

DEFINITION 1.1. Let 0 < T< oo, W} EBr ({30 , fJd , 0 < 10 < oo and u0 EH. 
Then a pair {1, u} EAT x C ([0, T]; H) is called a solution to QV W;10 ,u0 ) 

on [0, T], if the following conditions (QVl) and (QV2) are fulfilled: 

(QVl) u is a solution to CP ((f>i; u0 ) on [0, 1]. 
(QV2) lE W 1

•
2 (b, T) for every 0 <b < T, 1 (0) = 10 and 

l'(t) = - ux(l(t) - ,t) for a.e. tE[O , T]. (1.5) 

Also, given {b1}EBro(fJ0 ,{J1), 0<l0 <oo and u0 EH, a pair {l,u} in 
AroxC([O,oo);H) is called a solution to QVW;10 ,u0 ) on [O,oo), when it 
is a solution to QV (b1

; 10 , u0 ) on every finite interval [0, T]. 
I 

REMARK 1.1. (a) (cf. [10; Lemma 1.2]) For every lEAr and every 
t E [0, 1], z* E D(/)i (z) if and only if the following (1.6) and (1.7) hold: 

z*EH and zEK1 (t) . (1.6) 

. Also, under (1.6), (1.7) is equivalent to the system {(1.8), (1.9)} below : 

ZxxE/3 {0, l (t)) and z* = - Zxx on (0, 1 (t)). 

Zx (0 + )EOb1 {z (0)) . 

(1.8) 

(1.9) 

We note by (1.8) that zx is absolutely, continuous on (0, l (t)), and hence 
/zx(O + ) and zx(1(t) - ) exist. 
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(b) According to the part (a), under (1.2), system {(1.3), (1.4)} is 
equivalent to 

l
u1 (-,t) -uxx(·,t)=O in I3(0,l(t)) for a.e. tE[O, T]. 
u ( ·, 0) = u0 in H, (1.10) 
ux(O+,t)E8b1 (u(O,t)) for a.e. tE[O, T], 
u(·,t)=O on [l(t),oo) for all tE(O,T]. 

Therefore QV W; 10 , u0 ) may be regarded as a weak formulation for problem 
(0.1 )---{0.5). 

(c)· Let {1, u} be a solution to QV W; 10 , u0 ) on [0, T]. Then, by definition, 
u is continuous in (x, t) E [0, oo) x (0, T]; more precisely, u E W 1

•
2 (6, T; H) n 

n L00 (6, T; X) ( c: C ([0, oo) x [6, TJ)) for every 0 < 6 < T, which is infered 
from the boundedness of t--+ cpl (u (t)) on [6, T] for every 0 < 6 < T and 
(ii) of Lemma 2.1, proved in the next section. 

(d) Observe (cf. [2, 3, 5]), that (1.5) of Definition 1.1 is equivalent to 
each of the following (1.11) and (1.12): 

l(s) l(t) t 

l(t)=l(s)+J u(x,s)dx-J u(x,t)dx-Jux(O+,r)dr, (1.11) 
0 0 s 

for every 0 < s ~ t ~ T. 
l(s) l(t) t 

l(tf=l(s)2 +2J xu(x,s)dx~2J xu(x,t)dx+2Ju(O,r)dr, (1.12) 
0 0 s 

for every 0 ~ s ~ t ~ T. 

These representations of the free boundary x = l (t) appear useful in the sequel. 
We recall an existence result for QV (b1

; 10 , u0 ). 

THEOREM 1.1 (cf. [10; Theorem 1.1]). Let 0< T< oo, W}EBr(fJ0 ,fJd, 
0 < 10 < oo and u0 EH such that u0 ~ 0 a. e. on [0, oo) and u0 = 0 a. e. on 
[10 , oo). Then there exists at least one solution {l, u} to QV (b1; 10 , u0 ) on 
[0, T], such that 

and 

Jt l' EL2 (0, T), 

t--+ t<pj (u (t)) is bounded on (0, T], 

jt u' EL2 (0, T; H) 

u ~ 0 on [0, oo) x (0, T]. 

In addition, if Uo EX and Uo (O)ED (b0
), then lE W 1

•
2 (0, T), t -t cpl(u (t)) is 

bounded on [0, T] and uE W 1
•
2 (0, T; H). 

REMARK 1.2. Let {l, u} be the solution to QV W; 10 , u0 ) obtained by 
Theorem 1. L and denote u (0. t) by f(t) for 0 < t< T. Then {1, u} is the 
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solution to the usual Stefan problem which is described as a system with the 
boundary condition u (0 , t) = f(t) instead of (0.3). Therefore the solution {l, u} 
has the following properties (i) and (ii) (cf. [4, 14]): (i) u1 and Uxx are 
continuous on {(x , t);O<x<l(t),O<t~T} , and (ii) l EC00 ((0 , T]) and 
l' (t) = - ux (l (t)- , t) for all tE(O , T]. For the systematic study of the usual 
Stefan problem, see [6, 13]. 

2. Some leinmas on { cpl} 

LEMMA 2.1 . Let W} E B 00 (/30 , /3d and suppose 

b1 -+ b00 on R as t -+ oo in the sense of M osco (see the Appendix) (2.1) 
for a proper l.s.c. convex function b00 on R. Then we have: 

(i) There is a constant C 1 ~ 0, depending only on {3 0 , /3 1 and b00
, such that 

b1 (r) + C 1 lri+C 1 ~ 0 for any tE[O, oo) and rER. (2.2) 

(ii) There is a constant C2 ;;?; 0 , depending only -on the constant C 1 of (i), 
such that 

lb1 (z (0))1 ~ cpl (z)+CzlziH+Cz, and 

~ l zx l~ ~ <"Pl (z)+CzlziH+Cz 

for all lE A00 , tE[O, oo) and zEK1 (t) . 

(2.3) 

(2.4) 

(iii) Let L be a positive number. Then there are constants C3 ~ 0, C3 ~ 0 , 
C4 ;;?; 0 and C~ ~ 0, depending only on Land C2 of (ii) , such that 

lzl~ ~ C3 cpl(z)+C3, (2.5) 

lcpl (z)l ~ c4 <"Pl (z) + c~ (2.6) 

for all lE A-y with lim,_ 'X) l (t) ~ L, tE[O, oo) and zEK1 (t). 

Proof. According to [9; §1.5]), there is a constant c ~ 0 corresponding 
to given T> 0 , {30 , /3 1 such that 

b1 (r)+c lrl+c ~ 0 for any tE[O, T] and rER . 

Besides, by using a result in [7; Lemma 3.1] we can find reals T > 0 and 
c' ~ 0 , depending only on {30 , /3 1 and b00

, such that 

b1 (t)+c' l rl + c'~O for any tE[T,oo) and rER . 

Therefore (i) holds. 
Now, let zEK1 (t) . Then we observe 

1 

lz (0)1 ~ J 1{(1 - x) z}xl dx ~ lzxiH+ lziH· 
0 
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Hence, by (2.2), 

·1y (z (0))1 ~ b' (z (0))+2C 1 lz (O)I+2C1 ~ 
1 . 

~ b' (z (0))+21zx i~+2Cl lzln+2Cf+2Cl ~ 

~ <t>l (z)+Czlz iH+ Cz 

with C2 = 2C1 (1 + Cd, and 

! l zxl~~ ~ {q>l(z) + lb'(z(O))I}~<t>l(z)+CzlziH+Cz. 

Thus 0.3) and (2.4) hold, and (ii) is proved. 

Next, let I EA 00 with limr-+ oo I (t) ~ L. Then, since 
I 

lziH~L i zx ln for any tE[O,oo) and zEK1 (t), 

it follows from (2.4) that (2.5) and (2.6) hold for some non-negative constants 
C3 , C~, C4 , C~ depending only on Land C 2 . • 

LEMMA 2.2. Let lEA 00 and {b1}EB00 (/3 0 ,f3d, and suppose (2.1) holds. Then 
<t>l-+ (/) 00 on H CfS t ~ oo in the sense of Mosco (see the Apendix), where 

., ~ l zx l~+b00 (z(O))if ZEX,z(O)ED(b 00
) and z = O on [1 00 ,00), 

q> 00 (z) = (2.7) 
, oo otherwise, . 

with [00 = limr-+oo l (t); note in (2.7) that the restriction z = 0 on [100 , oo) is to 
be deleted if 100 = oo. 

Proof. Let {tn} be any sequence with tn ~ oo (as n ~ oo), and {zn} be 
any sequence in H such that Zn ~ z weakly in Hand A = lim infr-+oo <t>l"(zn) < 00 . 
Then we see from (2.4) of Lemma 2.1 that there is a subsequence {n'} of {n} 
such that <t>l"' (zn·) ~A and Zn· ~ z weakly in X, hence Zn· (0) ~ z (0) as n' ~ oo. 
Therefore A~ q> 00 (z). Next, let z be any element of D (q> 00

) . Then, by our 
assumptions, there is a sequence {r n} such that r n ~ z (0) and b1

" (r n) ~ 
~ b00 (z (0)). Here, using a smooth function ( on R such that 0 ~ ( ~ 1 on 

· R, ( = 1 on ( - oo, - 1] , ( = 0 on [O,oo), we define 

with a smooth function z0 on [0, oo ), satisfying z0 (0) = 1 and z0 = 0 on 
[l (0), oo ). It is easy to see that Zn E D (q>j"), Zn ~ z in X and <t>l" (zn) ~ q> 00 (z) . 
Thus we have the conclusion of the lemma. 

------------------------------------------------------------------
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LEMMA 2.3. Let lE A 00 and In E A 00 , n = 1, 2, ... , such that ln---" I pointwise 

on [0, oo) as n ___,. oo. Also, let W} E Boo (/3 0 , {3 1). Then for each t ~ 0, 

cpl_ ___,. q>j on H as n ___,. oo in the sense of Mosco. 
' 

We omit the proof of this lemma, as it can be shown by a modification 
of that of Lemma 2.2. 

Given numbers 0 < b < L ~ oo, we denote by A 00 (b; L) the subclass 
{IEA00 ; b ~ l (0), limt-+oo l (t) ~ L} of A 00 • We also consider the class 
C/J ({ao,r}, {a1,r}) of families {cp'} of proper l.s.c. convex functions on H 
(see the Appendix for the definition of C/J ({a0 ,r}, {a1,r}). 

LEMMA 2.4. (i) Let W}EB00 ({30 , /31) with {30EL1 (0, oo) and 0 < b ~ 1. 
Then there is a constant C5 ~ 0, depending only on b, {30 and {31 , such that 

{cpl}Ec!J ({ao,r}, {a1,r}) for all lEA 00 (b, oo), 

where 
t t 

ao,r (t) = Cs (1 + r) J lf3'o (r)l dr, a1,r (t) = Cs (1 + r2) J {lfJ'o (r)l + 1/31 (r)l} dr 
0 0 

for all r ~ 0. 

(ii) Let W}EB00 ({30 , {3J) with {30EL1 (0, oo) and 0 < b < 1 < L< oo. Then 
there is a constant C6 ~ 0, depending only on b, L, {30 and {31, such that 

{cpl} Ec!J ({ZX0,r}, {a1,r}) for all lEA 00 (b, L), 

where 
l t 

Zio,r (t) = c6 s lf3'o (r)l dr, i1,r (t) = c6 s {lf3'o (r)l + 1{3'1 (r)l} dr 
0 0 

for all r ~ 0; note in this case that Zio,r and Cl 1,r are independent of r ~ 0. 

Proof. Let 1EA00 (b, oo), 0 ~ s ~ t < oo and zEK1 (s). Since z (O)ED (b5
), 

using condition (b2), we can find rED W) such that 

t 

lr- z (0)1 ~ (J lf3'o (r)l dr) ( 1 + lz (0)1 + lbs (z (0))1 112) 

and 
t 

. b' (r)- bs (z (0)) ~ (J lfJ'd r)l dr) ( 1 + lz (0)1 2 + lbs (z (0))1). 
s 

We then consider the function 

z (x) = z (x)+(r-z (0)) za (x), 

-- -----------------
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where 

for 0 ~ x ~ f>, 

for b < x < oo . 

Clearly, ZEK, (t) with i (0) =rED W). We also observe that 

t 

li-zlu == lr-z (O)IIz~lu ~ (J l/3o ('r)l d•) (1 +lz (0)1+ lbs (z (0))! 112
) 

s 

and 

<t>l (i)-q>l(z) = ~ lix~- ~ lzx~+b1 (r)-bs (z (0)) ~ 

~ f {lr-z(O)IIz~(x)llzx(x)l+ ~ lr-z(OW lz~(x)l 2}dx+b1 (r)-b5 (z(O))~ 
. 1 t {J 

~~(S l/3o(•)ld-r)(1+1z(O)I+Ibs(z(0))! 112
) f lzx(x)ldx+ 

u s 0 

1 t 

+2c5(} lf3o (•)I d•) l/3obo,ooJ ( 1 + lz (0)1 + lbs (z (0))! 1
1
2

)
2 + 

t 

+ (J 1/3~ (•)I d1:) ( 1 + lz (OW + lbs (z (0))!). 
s 

By making use of the inequalities in Lemma 2.1, we derive from the above 
inequalities that 

t 

li- zlu ~ c (f lf3o (-r)l d-r) (1 + lzlu + l<t>l (z)l 112
) 

s 

and 
t 

<t>l (i)- q>f (z) ~ c (f {l/3o (•)I + 1/31 (•)I} d•) (1 + lzl~ + l<t>i (z)l) (2.8) 
s 

for some constant c ~ 0 depending only on b, /30 and /3 1 . Therefore we can 
take this c as C 5 . Also it is not difficult to derive the conclusion of (ii) 
of the lemma from (2.8) and (2.5) of Lemma 2.1. • 

3. Some lemmas on CP ( <t>i; u0 ) 

The lemmas, which have been proved in the previous section, allow us to 
apply the abstract results of the Appendix to problem CP (q>l; u0 ) . 

The following comparison lemma is useful. 
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LEMMA 3.1 (cf. [11; Lemma 2.1]) . Lee 0 < T < oo, k be a constant, 
lEC ([0, T]) with l > 0 on [0 , T] , and v, w be functions in C ([0, T]; H)n 
n W1

•
2 (6, T; H) n L00 (6, T; X) with Vxx • Wxx in L2 (Do), Do = {(x, t); 0 <X< 

< l(t) , 6 < t < T}, for every 0 < b < T, such that · 

Then 

Wr-Wxx ~ Vr-Vxx a.~. on {(x , t); 0 <X< l (t), 0 < t < T}, 
w (x , 0) ~ v (x, O)+k for a.e. x ~ 0, 

w ~ v+k on {(x, t); l (t) ~ x < oo , 0 < t ~ T}, and 

(wx (0+, t)-vx (0+ , t)) (w (O ; t) - v (0, t) - kt ~ 0 for a.e. tE[O, T]. 

W ~ V+ k on [0 , 00) X (0, T]. 

'CoROLLARY 1. Let 0 < T< oo, lEAr, W}EBr(/30 , /3 1), and {et u0 be a 
-non-negative function in H. Then the solution u to CP (cpl; u0 ) on [0 , T] is 

: ·· non-negative on [0 , Cf.._ ) x (0, T]. 
, ' This corollary is a direct consequence of Lemma 3.1 with w = 0, v = u · 

and k = 0 . -

. CoROLLARY 2. Let 0 < T < oo, lE/1y, lE Ay, u0 EH with u0 ~ 0 a.e. on [0. -r _) 
and u0 = 0 a. e. on [l (0), oo ), u0 EH with u0 ~ 0 a. e. on [0, oo) and ii0 = 0 tl.l'. 

on [f (0) , oo ), W} E Br(/30 , /3 1) and {l/} E Br(P0 , P 1) . Further let u and ii be the 
solutions to CP (cpl; u0 ) and CP (1/Jl; ii0 ) on [0, T], respectively, where 1/Jl is the 
function on H given by (l.i) with l and b1 replaced by T and ll. Suppose 

l ~Ton [0 , T], u0 ~ u0 a.e. on [0, oo ) 

and 

and r 1 , r 2 ER , (3.1) 

whe~e r 1 v r 2 = max {r1 , r 2 } and r 1 1\ r2 = min {r1 , r 2 } . Then we have 

u ~ ii on [0 , oo) x (0, T]. 

Proof. From (hl of Remark 1.1 and Corollary 1, we see fhat 

U1- Uxx = 0- u, - !lxx a.e. on tV.I);O <X< l (t), 0 < t < T:, 

u (x , 0) = llo (x) ~ U(j (x) = a (x, 0) for a .. e. X~ 0 ; and 
u=O~{i on {(x,t);l(t)~x<oo,O<t~T} . 

(3.2) 
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Also, as it is easily seen from (3.1), (r!-r~)(r 1 -r2)+ ~ 0 for any tE[O, T], 
r! E 8b1 (rt) and r~ E 8b1 (r 2 ), from which it follows that 

(ux(O+,t)-ux(O+ , t))(u(O,t)-u(O,t))+ ~0 for a.e. tE[O,T], 

because ux (0+, t)E8b1 (u (0, t)) and ux (0+, t)E8b1 (u(O, t)) for a.e. tE[O, T]. 
Thus all the assumptions of Lemma 3.1 are satisfied for the case where w = u, 
V= U and k = 0, SO that We get (3.2). 

LEMMA · 3.2. Let lE A 00 with 100 = limt-+oo l (t) < 00, and W} E Boo (/30 , /3 1) 

with f3'o E L1 (0, oo) n L2 (0, oo) and /3'1 E L1 (0, oo) such that b1 ---+ b00 on R as 
t---+ oo in the · sense of Mosco for a proper l.s.c. convex function b00 on R. 
Let u0 be a non-negative function in H such that u0 = 0 a.e. on [l (0), oo ). 
Then CP ( <t>l; u0 ) has one and only one solution u on [0, oo) and u ( t) ---+ u00 

in X as t ~ oo, where u00 is the function given by 

I c(1-~) Uoo (x) = 0 loo (3.3) 

forl 00 <X<OO , 

with the constant c satisfying 

-{-Eaboo (c). 
00 

(3.4) 

Proof. First we show u E L00 (0, oo; H). By (iii) of Lemma 2.1 and (ii) of 
Lemma 2.4, we can apply Theorem A.1 of the Appendix to problem 
CP (q>l; u0 ), and obtain that CP (q>l; u0 ) has one and only one solution u on 
[0, oo), and 

t 

<t>l (u (t))-<pr (u (s)) ~ J k ('r) (M<t>! (u (t))+M') d< 
s . 

for every 0 < s ~ t < oo, where M and M' are constants, and 

k (<) = l/3'o (•)1 2 -t 1/3'o (<)I+ 1/31 (<)1. 
Therefore, by Gronwall's inequality, t---+ <t>l (u (t)) is bounded on [1, oo), so 

.· that (iii)of Lemma 2.1 implies uEL00 (l,oo;H). Since uEC([O,l];H), it 
follows that uEL00 (0, oo; H). Next, on account of Lemma 2 .2, <t>l---+ q> 00 on 
H as t---+ oo in the sense of Mosco, where q> 00 is as in Lemma 2.2. 
Accordingly, applying Theorem A.3 in the Appendix to problem CP (q>l; u0 ) 

on [0 , oo ), we obtain that 

u (t) -+ _u,;, weakly in H 

and 
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for some u00 EX. From these convergences we conclude that u (t) ~ U00 in X; 
and also, due to the relation 0E8q> 00 (u00 ) (cf. (a) of Remark 1.1), that (3.3) 
holds with (3.4). • 

LEMMA 3.3. Let {Y}EB00 ({30 ,{3 1),lEA 00 and lnEA 00 , n=1,2, ... , such 
that ln ~I pointwise on [0, oo) as n ~ oo. Further, let u0 EH with u0 ~ 0 a. e.· 
on [0, oo) and u0 = 0 a.e. on [I (0), oo), and u0 .nEH with Uo,n ~ 0 a.e. on [0, oo) 

and u0 ,n = 0 a.e. on [ln(O), oo), n = 1, 2, ... ,such that Uo,n~ u0 in Has n~ oo. 
Then, denoting by u and Un the solutions to CP (cpl; u0 ) and CP (cpl_; u0 ,n) on 
[0, oo ), respectively, we have 

un ~ u in C ([0, T] ; H) and in L2 (0, T; X) 

as n ~ oo for every finite T > 0. 

Proof. Let 0 < T< oo. Then, by Lemma 2.3 and (i) of Lemma 2.4, we 
can apply Theorem A.2 in the Appendix to obtain 

T T 

un ~ u in C ([0, T]; H) and J cpl.(un (t)) dt ~ J cpl(u (t)) dt. 
0 0 

From this we get the conclusion of the lemma. • 
4. Monotone dependence 

In this section we prove 

THEOREM 4.1. Let 0 < T < oo, 0 < 10 < 00,0 < l0 < 00, u0 EH with Uo ~ 0 
a. e. on [0, oo) and u0 = 0 a. e. on [10 , oo ), and u0 EH with u0 ~ 0 a. e. on 
[O,oo) and u0 =0 a.e. on [l0 ,oo). Further let W}EBr(f30 ,{3 1) and {b1}E 
EBr ((30 , fJd such that 

b1 (r 1 Ar2 )+b1 (r 1 vr2)~b1 (r 1)+b1 (r2)for any tE[O,T] and r1,r2ER . 

Ift0 ~l0 and u0 ~u0 a.e. on [O,oo), then 

l ~ l on [0, T] and u ~ u on [0, oo)x(O, T], (4.1) 

where {l, u} and {l, u} are respectively the solutions to QV W; 10 , u0 ) ·and 
QV (b1

; l0 , u0 ) on [0, T]. 

Proof. First, assuming 10 < l0 , we show that l < l on [0, T] and u ~ u 
on [0, oo) x (0, T]. To get a contradiction, suppose there is 0 < t0 ~ T such 
that 

1 (t 0 ) = T (t0 ), and 1 < 1 on [0, t0 ). 
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Then, on account of Corollary 2 to Lemma 3.1, we have 

u~u on [O,oo)x(O,t0]. 
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(4.2) 

Now, denote u (0, t) and u (0, t) by f(t) and /(t), respectively. As it has been 
noticed in Remark 1.2, {l, u} (resp. {T, u}) is the solution to the usual Stefan 
problem with the boundary condition u (0, t) = f(t) (resp. u (0, t) = /(t)) . 
Since f~f by (4.2), it follows from the result on the monotone dependence 
(cf. [2; Theorem 6]) that l <Ton [0, t0 ], which is a contradiction. Thus 
we get 

l < T on [0, T], u ~ u on [0, oo) x (0, T]. 

~ N~xt, assume 10 = T0 , and take a sequence {To .. n} ~so that To,n > T0 and 
lf1n t 10 (as n ---+ oo) . By virtue of Theorem 1.1, QV W; l0 ,n, u0 ) has a solution 
{ln, un} on [0, T]. Also, from the above argument it follows that 

1 < Tn on [0, T], u ~ u" on [0, oo)x(O, T] 

and 

T < Tn on [0, T] , u ~ Un on [0, oo) x (0, T]. 

Furthermore, on account of (1.11) in (d) of Remark 1.1, 

0 < Tn (t) - T(t) ~ 
00 t 

~ Tn (b) - [(b)+ J {un (x, b) - u(x, b)} dx - J {un,x (O + , -r) - ux (O + , -r)} d-. 
0 b 

for every 0 < b ~ t ~ T. Here we note that 

un,x (0+ , -r);?: ux (0+, -r) for a.e. -rE[O, T]. (4.3) 

In fact, it follows from the monotonicity of oh' that un,x (0 +, -r) ;?: ux (0 +, -r) 
for a.e. -rE [0, T] with Un (0, -r) > u (0, -r) . Also, if un (0, -r) = u (0;--.) and 
Un,x (0 + , -r) and ux (0, -r) exist, then 

~ (O ) _ 1. un (x, -r) - un (0, -r) ::2: 1' u (x , -r) - u (0, -r) _ ~ ( ) 
Un x +, 'r - liD _ liD - Ux 0 + , 'r . 

' x!O X x!O X 

Therefore we obtain (4.3) and for every t E [b, T] 

00 

0 < T" (t) - l(t) ~ Tn (b) - l(b)+ J {un (x, b) - u(x, 6)} dx . 
0 

Letting b t 0 in this inequality, we get 

0 < l" (t) - l(t) ~ l0 .n-lo for any tE[O, T]. 

This implies that fn---+ T in C ([0, T]), and, by Lemma 3.3, that un---+ u in 
C ([0 , T]; H) . Consequently we get (4.1). • 
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. CoROLLARY. Let 0 < 10 < oo and u0 EH such that u0 ~ 0 a. e. on [0 , oo) and 
Uo =~ 0 a. e. on [lo' 00) . Then QV w; lo' u~) has at most one solution on [0' T] 
for each {b1}EBr(/30,{31)· 

5. Asymptotic behaviour 

In this section we investigate the asymptotic behaviour of the solution 
to QV (b1

; 10 , u0) on [0, oo ). 

THEOREM 5.1. Let {b1
} EB00 ({30 , {31) and suppose there are two functions g 

and g* on [0, oo), such that 

and 

g is non-negative and non-increasing on [0, oo ), 

gEL1 (0, oo), g*EL00 (0, oo)nL1 (0, oo) 

g*(t)Eob1 (g(t))Jor all tE[O,oo). (5.1) 

Let 0 < 10 < oo and u0 EH such that u0 ~ 0 a.e. on [0, oo) and u0 = 0 a.e. 
on [10 , oo), and let {l, u} be the solution to QV W; 10 , u0 ) on [0, oo). Then 

100 = lim l (t) < 00. 
t-+ ro 

In order to show this theorem we prepare two lemmas. Let {b1
} and g 

be as in Theorem 5.1, and define a function ll on R by 

ll (r) ={~ (r) if rED(b1
) and r~g(t), 

if r < g (t), 
(5.2) 

for each t E [0 , oo ). Evidently, ll is proper, l.s.c. and convex on R. Besides, 
we have t?e following lemma. 

LEMMA 5.1. Let W}, g and g* be as in 'Theorem 5.1, and {b1
} be as 

given by (5.2). Then we have: 

(i) b1 (r 1 A r2)+b1 (r 1 v r 2) ~ b1 (rt)+b1 (r 2)for any tE[O, oo) and rt.r2 ER . 
. (ii) If rED (b1

) and r > g (t), then ob1 (r) = ob1 (r)'. 
(iii) If we put 

t 

P1 (t) = J {3 lg*IL~ (O. roJ lf3o ('r)l + lfi'1 (r)l} dr for t ~ 0, 
. 0 

then {h'~ E B-n (f3o, Pt) · 

Pro or (i) and (ii) can be immediately derived from the definition of b1
, 

and clearly ob1 (r) = ~ for r < 0 . Now, let 0 < s ~ t < oo and rED (b•), i.e. 
rED(b•) with r~ g(s). Then, by assumption, there is rED(b1

) such that 
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If- rl ~ IPo (t)- Po (s)l ( 1 + lrl + lbs (r)l112) (5.3) 

and 

h' (F)- lJs (r) ~ l/11 (t)- P 1 (s)l(1 + lrl 2 + ibs (r)l). (5.4) 

Putting r 1 = rv g (t), we are going to show 

lrt- rl ~ IPo (t)- f3o (s)l (1+ lrl + ibs (r)l 112) (5.5) 

and 

(5.6) 

Indeed, in case r~ g (t), (5.5) and (5.6) obviously hold by (5.3) and (5.4). Next, 
assume r < g (t), i.e. r 1 = g (t). Then, since r < g (t) ~ g (s) ~ r, (5.5) follows 
immediately from (5.3), and 

ir-g (t)i ~ ir-rl ~ IPo (t)- Po (s)l (1 + lrl + ibs (r)l 112). 

Also, by (5.1), 

g* (t) (r-g (t)) ~ b1 (r)-br (g (t)) 

and hence it follows from (5.4) that 

b1 (rt)-bs (r) ( = b1 (g (t))- _bs (r)) ~ . 
~ {3 lg* (t)IIPo (t)- Po (s)l + l/11 (t)- P 1 (s)l} (1 + lrl2 + ibs (r)l). 

Thus (5.5) and (5.6) hold, and {b1
} EB00 (/10 , P1). 

For the moment we postulate all the assumptions of Theorem 5.1. Now, 
choose a number T0 satisfying T0 > 10 . Then, on account of Lemma 5.1, we 
see by applying Theorems 1.1 and 4.1 that QV (b1

; T0 , u0 ) has a unique 
solution {T,u} on [0, oo) and 

l~Ton [O ,oo), u~u on [O,<Xl)x(O;oo). (5.7) 

Moreover, we have 

LEMMA 5). If u (0, t)> g (t) for .t in a set with positive linear measure, then 
there :are ~ii.mbers T> 0 and 0 < b < T0 , such that 

u(x, t) ~( 1 ~ ~) g (t) for (x, t)E [0, b] X [T, oo). . (5.8) 

Pro of. First, take T > 0 so that u (0, T) > g (T)· and iix (x, ·r) is absolutely 
continuous in xE(O,T(T)), and. choose 0<b<T0 so that · 

u(x, T) ~( 1-:- ~) g (T) for X E [0, b]. . 

Next, take a sequence {gn} of smooth functions on .[0, oo) such that. g, is 
non-increasing on [0, oo), gn~ g on [0, ex;) and gn (t)~ g (t) as n .,.-+ oo for 
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a. e. t ~ 0. Then, putting 

vn(x, t)=(1-~)gn(t) on [O,b]x[T,oo), 

we see that 

Vn,t-vn, xx = (1-~)g~(t)~O = itr-itxx a.e. on [O,b]x[T,oo), 

vn(x, T)=(1- ~)gn(T)~(1- ~)g(T)~it(x , T) for O ~ x~ b, 

Vn (0, t) = 9n (t) ~ g (t) ~it (0, t) for T~ t < <X>, 

Vn (b, t) = 0 ~ it(b, t) for T;;;_ t <<X> , 

so that by the maximum principle for the linear heat equation we have 
it~ v" on [0, b] x [T, oo). Letting n--+ <X> yields (5.8). 

Proof of Theorem 5.1. First assume that it (0, t) = g (t) for a.e. t ~ 0. 
Then, it follows from (1.12) of (d) in Remark 1.1 that 

00 00 

~ = lim l(t)2
;;;. ~ + 2 J xu0 (x)dx+2 J g (1:)d1: < <X> . 

t-+oo 0 0 

Therefore, noting (5.7), we get /00 < oo. Next, assume that it (0, t) > g (t) for 
t in a set with positive linear measure. Then, by Lemma 5.2, for some 
T> 0 and 0 < b < l0 we have 

it (x, t) - g (t) 1 
x ~-~g(t) for (x,t)E[O,b]x[T,oo) . (5,9) 

Note that [T, oo) can be divided into two sets J = {t ~ T; it(O, t) = g (t)} 
and J' = {t~ T;it(O,t)>g(t)}, since it(O,t)~g(t) for all t ~ T. If tEJ and 
itx (0 +, t) exists, then we infer from (5.9) that 

Also, if t EJ' and itx(O+,t)E8b1 (it(O,t)) , then we have by the monotonicity 
of 8b1 with (5.1) and (ii) of Lemma 5.1 

itx (0+ ; t) ~ g* (t). 

Therefore, 

- itx (0+, t) ~ -~ g (t)+\g* (t)\ for a.e. t ~ T. 
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Using (1.11) of (d) in Remark 1.1, we obtain 

00 00 

Too~ l(T)+ f u(x, T) dx+ f { ~ g (t)+ig* (t)l} dt < oo, 

0 T 

so that 100 < 00. 

THEOREM. 5.2. Let Wt}EB00 (/31, 0 ,/31, 1),0<l1, 0 <oo, and u1, 0 EH such 
that u1, 0 ~ 0 a.e. on [0, oo) and u1, 0 = 0 a.e. on [/1, 0 , oo). Suppose that 
corresponding to these {Yt},l1, 0 and u1, 0 there exist {b1

}, g , g*,l0 and u0 , 

such that all the assumptions of Theorem 5.1 are satisfied, and moreover 

l1 ,o ~ 10 , u 1,0 ~ u0 a.e. on [0, oo) 

and 

b1
1 (r1 1\ r2)+b1 h v r2) ~ b11 (rd+b1 (r2) for any tE[O, oo) and r 1 , r2ER . 

Then 

l1 oo = lim 11 ( t) < oo , 
' t-+ 00 

where {11, ud is the solution to QV (Y1; l1. 0 , u1,0) on [0, oo). 

Proof. By Theorems 1.1 and 4.1, QV (b1
; 10 , u0 ) has a unique solution · 

{l, u} on [0, oo) and 11 ~ l on [0, oo). Besides, by Theorem 5.1, lim l (t) < oo, 
t-+oo , 

so that l1,oo < 00. • 

Next, under the assumption 100 < oo, we investigate the asymptotic 
behaviour of u. 

THEOREM 5.3. Let {b1}EB00 (f30 ,f31) with /3~EL1 (0,oo)nL2 (0,oo) and 
f3{ E L1 (0, oo ), and suppose b1 ~ b00 on R as t ~ oo in the sense of Mosco for 
a proper l.s.c. convex function b00 on R. Also. let 0 < 10 < oo and u0 EH with 
u0 ~0 a.e. on [O,oo) and u0 =0 a.e. on [!~,oo), and let {l,u} be the 
solution to QV W; 10 , u0 ) on [0 , oo). If 100 < oo, then 

u ( · , t) ~ 0 in X as t ~ oo 

and 

Proof. By virtue of Lemma 3.2, u (t) converges in X as t ~ oo and the 
limit u00 is given by 

I ( X) c 1--
Uoo (x) = 0 oo loo 

for 100 < x < 00, 
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with the non~negative constant cCJ:) satisfying 

If cCJ:) = 0 were shown, the proof of the theorem would be complete. Suppose 
for a contradiction that cCJ:) > 0. Then, since u (t) ~ uCJ:) in X and l (t) ~ lCJ:) 
as t ~ oo, for each positive number e with < e < cCJ:) there is te > 0 such that 

l (t) l(s) t 

e > l (t)2 + 2 J xu (x, t) dx - 1 (s)2 - 2 J xu (x, s) dx ( = 2 Ju (0 , r)dr) 
0 0 s 

and 

u(O,s)~cCJ:) - e 

for all s, t with te ~ s ~ t < oo . Hence 

e>2(cCJ:) - e)(t-s) 

for all s, t with te ~ s ~ t < oo, which is impossible. Thus cCJ:) = 0 must 
be true. • 

6. Further investigations of the asymptotic behaviour 

In this section we investigate the asymptotic behaviour of u in the case 
where lim l (t) may be infinite. 

t--+ CJ:J 

THEOREM 6.1. Let W}EBCJ:) ({30 , fJd with {30EL1 (0, oo)n/3 (0, cti) and 
{3~ E L1 (0 , oo), and suppose bl ~ bCJ:) on R as t ~ oo in the sense of M osco 
for a proper l.s.c. convex function bCJ:) on R. Let 0 < 10 < oo, u0 EH with 
u0 ~ 0 a.e. on [0, oo) and u0 = 0 a.e. on [10 , oo), and let {1, u} be the solution 
to QV W; 10 , u0 ) on [0, oo). 
Then we have: · 

(i) If 0 rt U ob (X) (r), then u (x, t) ~ oo as t ~ oo uniformly on each bounded 
r~ O 

interval of x. 
(ii) If 0 E U ob (X) (r), then lim inf u (x, t) ~ c* uniformly on each bounded 

r~O t-+oo , 

interval of x where ' 
c* = inf {r ~ 0; 0Eoboo (r)} (note that OE obCJ:) (c*)). 

In our proof of Theorem 6.1 we consider an auxiliary Cauchy problem 
for given 0 < t0 < oo and 0 < L < oo: 

{
- v' (t)Eol/fi(v (t)), t0 < t < oo, 

v(t0 ) = 0, 
(6.1) 
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where l/Ji is a proper l.s.c. convex function on H given by 

- 1 

1 

z = - l~lzx l~ + b1 (z(O)) if zEX,z(O)EDW) al}d z = O on [L,oo), 

l/1 L ( ) 00 otherwise . · 

LEMMA 6.1. Let { b1
} E Boo (/30 , /31) with f3'o E I3 (0, oo )n L1 (0, oo) and /3'1 E 

E L1 (0 , oo) and b00 be a proper l.s.c. convex function on R such that b1 ---+ b00 

on R as t ---t oo in the sense of Mosco. Then problem (6.1) has a unique 
solution v on [t 0 , oo ), and v (t) ---t vL in X as t ---t oo, where 

for 0 ~ x ~ L, 

for L< x < oo , 
(6.2) 

with the constant cL satisfying -cdLE 8b00 (cL) . 

This lemma is a direct consequence of Lemma 3.2. • 
Proof of Theorem 6.1. On account of Theorem 5.3, it suffices to prove 

the theorem in the case of loo = lim l (t) = oo. In the rest of the proof, 
[-+ 00 

suppose that 100 = oo. Let t0 be any positive number and take l (t0 ) as L. 
Then, by Corollary 2 to Lemma 3.1, 

v~u on [O ,oo)x(t0 ,oo), (6.3) 

where v is the solution to (6.1). Hence, by Lemma 6.1, 

vL (x) ~ lim inf u (x, t) uniformly in x E [0, oo ). 
t-+ oo 

(6.4) 

Now, in addition, suppose OE u 8b00 (r) . Then we have 0 ~CL~ c* by the 
r<i;O 

monotonicity of aboo , where cL is as in (6.2) . Also, let c' be any cluster point 
of cL as L---t oo. Then 0 ~ c' ~ c* and 0E8b00 (c'), so that c' = c*' 1.e. 

(6.5) 

We can derive (ii) of Theorem 6.1 from (6.2), (6.4) and (6.5) . Next, suppose 
0 et U a boo (r) . In this case, we see easily that cL ---t oo as L---t oo, so that (i) 

r<i;O 

of the theorem fo~lows from (6.3) and (6.4) . 
We have given the asymptotic evaluation of u from below. In the next 

theorem we evaluate it from above. 

THEOREM 6.2. Let W} EB00 ({30 . /3d, and suppose there are two functions 
g and g* on [0, oo) such that 

g ~ 0 on [0, oo), g*EW1
•
1 (0, oo) 

----·---------------------------------------------------------------
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and 

g* (t)E ob1 (g (t)) for all t ~ 0. 

Let 0<l0 <oo, u0 EH such that u0 ~0 a.e. on [O , oo) and u0 = 0 a.e. on 
[10 , oo), and let {l, u} be the solution to QV W; 10 , u0 ) on [0, oo). Then 

lim sup u (x, t) ~ gco uniformly in x E [0, oo ), (6.6) 
t-+ co 

where gco = lim sup g (t) . 
t-+ CO 

In order to prove· this theorem, we consider the following problem: 

{
- .. w' (t)Eotf/ (w (t)), t0 < t < oo, 
w·(t

0
) = u (t

0
) , (

6.7) 

where {l , u} is the solution to QV W; 10 , u0 ) on [0 , oo), 0 < t0 < oo and 

I
~ lzxl~-lg*(t) l z(O) if zEX, z(O)~O and z = O on [l(t),oo) , 

r/1
1 

(z) = oo otherwise. (6·8) 

LEMMA 6.2. Under the same assumptions and notations as in Theorem 6.2, 
problem (6.7) has a unique solution w on [t0 , oo) such that w ~ 0 on 
[0, oo)x(t0 , oo) and 

w (x , t)--+0 as t-+ oo uniformly in xE[O, oo). 

Proof. We set 

b~ (r) = {: Jg* (t)l r if r ~ 0, 

if r < 0 

for each t ~ 0 and 

/ b':(r) = {~ if r ~ 0, 
if r < 0. 

Since g* (t)--+ 0 as t--+ oo , itfollows easily that { b~} E B00 (0, g*) and b~ --+ b': 
on R as t--+ oo in the sense of Mosco, so that r/11 --+ r/J 00 on H as t--+ oo 
in the sense of Mosco (cf. Lemma 2.2), where r/11 is as given by (6.8) and 

l
l 2 

2 1zxiH if zEX, z (0) ~ 0 and z = 0 on [l 00 , oo), 
rjl co (z) = 

oo otherwise, 

with l 00 = lim l (t); note here that the restriction z = 0 on [l 00 , oo) is deleted 1-+ eo 
if 100 = oo . Also, by (i) of Lemma 2.4 and (i) of Theorem A.l in the Appendix, 
(6.7) has a unique solution won [t0 , oo). Since -w'(r)Eor/J'(w(r)) for a.e. 
r ~ t0 , we have 
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~ ~ lw ('r)l~ = (w' (r), w (r))H ~ --' lwx ( ·, r)l~ + ig* (r)l w (0, r) (6.9) 

for a.e. r ~ t0 . We note here that 

(6.10) 

From (6.9) and (6.10) it follows that 

d 0 

. dr lw (r)l~ ~ ig* (r)llw (r)l~+ lg* (rW + ig* (r)l for a.e. r ~ t0. 

Since lg*IEL1 (0, oo) and lg*I 2 EL1 (0, oo), we have wEe (t 0 , oo; H) by 
Gronwall's inequality. Accordingly, Theorem A.3 in the Appendix implies 
that w (t) ___. w CX) weakly in H and t/11 (w (t)) ___.t/ICXJ (w CX)) = min lj!CX) ( = 0) as t ___. oo 
for some woo EX . It is not difficult to see that w CX) = 0 and w (x, t) ___. 0 as 
t ___. oo uniformly in x E [0, oo). • 

Proof of Theorem 6.2. It suffices to show (6.6) in the case of g* < oo. 
In this case, let e be an arbitrary positive number, and choose t, > 0 so that 

g (t) < g00 +a for all t ~ t, . 

Also, consider problem (6.7) with t0 = t8 and denote by w, its solution on 
[t., oo). Then, by Lemma 6.2, 

w, (x, t) ___. 0 as t ___. oo uniformly in x E [0, oo). 

Now we are going to show that u ~ w,+gCX)+e on [0, oo)x(t., oo). Infact, we 
have 

U1 -Uxx = W,, 1-We,xx = 0 a.e. On {(x, t); 0 <X< [ (t), t, < t < 00}, 
u (x, t,) = w, (x, t,) for a.e. x ~ 0, 

u = w, = 0 on {(x, t); l (t) ~ x < oo, t, < t < oo}. 

Besides~ if t > t., u (0, t) > w, (0, t)+gCX) +e (> g (t)) and Ux (0 +' t) E 8b1 (u(O; t)), 
then we see from the monotonicity of 8b1 that 

Ux (0+, t) ~ g* (t). 

Also we note 

w,,x (0 +, t) ~ -lg* (t)l for a. e. t ~ t, . 

Hence 

(ux (0+, t)-w,,x (O+t)} (u (0, t)-w, (0, t)-g 00 -a)+ ~ 0 for a.e. t ~ i,, 

so that on account of Lemma 3.1 
u~w,+gCX)+e on [O,oo)x(t.,oo). 

16 Cllntwl and Cybernetics 
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Hence 

lim sup u (x, t)::::;; lim w, (x, t)+g oo +s = 9 00 +s uniformly in x E [0, oo ). 
t-+ oo t-+ oo 

Since s is arbitrary, we get (6.6). • 
Appendix Some abstract results on nonlinear evolution equations 

Let H be an abstract Hilbert space and { cp1
} = { cp1

; 0 ::::;; t < oo} be a family 
of propefl' l.s.c. convex functions on H. Consider the Cauchy problem 
CP ( cp1

; u0 ) on [0, 1], 0 < T < oo: 

CP (cpt; uo): { - u' (t)Eocpt (u (t)}, 0 < t < T, 
u (0) = u0 , 

where u0 is given in H . A function u: [0, T]--+ H is called a solution to 
CP ( cpt; u0 ) on [0, T], if it fulfills: 

(a) uEC([0,1];H)nW 1
•
2 (<5,T;H) for every O<b<Tand u(O)=u0 , 

(b) t --+ cp1 (u (t)) is integrable on [0, T] and is bounded on [<5, T] for 
every 0 < <5 < T, and 

(c) -u' (t)E ocpt (u (t)} for a.e. tE[O, 1]. 

Also, u:[O ,oo)-+H is called a solution to CP(cp1 ;u0 ) on [O,oo), if it is 
a solution to CP ( cpt; u0 ) on every finite interval [0, T]. 

Let u0 ,;EH and u; be a solution to CP(cp1 ;u0 ) on [0, T], i= 1,2. Then 
we have (cf. [9; §1.1]) · 

iu 1 (t)-u 2 (t)IH::::;; iu 1 (s)-u 2 (s)IH for every 0::::;; s::::;; t::::;; T, 

and therefore u0 , 1 = u0 , 2 implies u 1 = u2 on [0, T]. This shows that 
CP ( cp1

; u0 ) has at most one solution for each u0 EH. 
The existence of a solution to CP ( cp1

; u0 ) is shown for { cp1
} belonging to 

the following class cP ( { o:o,r} , { o: 1 ,r}): given two families { o:0 ,,} = { O:o,r; 0 ::::;; r < 
< oo} c ft;;; 2 ([0, oo)} and {o: 1,r} = {o: 1,,; 0::::;; r < oo} c ft;;; 1 ([0, oo)}, we 
denote by cP ({o:0 ,r}, {o: 1.r}) the set of all {cpt} having the property 

(*) 

for each 0::::;; s::::;; t < oo and each zED (cp8
) with iziH::::;; r there is zED(cp') 

such that 

and 
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THEOREM A.1 (cf. [9; §1.1, §2.8]). Let {cp1
} EIP ({a0 ), {a1,r}) and u0 ED (cp 0). 

Then we have: 
(i) CP (cp1

; u0 ) admits one and only one solution u on [0, oo) such that 

.jt u' El! (0, T; H) for every finite T> 0 

and 

t--+ tq>1 (u (t)) is bounded on (0, T] for every finite T > 0. 

In particular, if u0 E D (cp0), then u' E I3 (0, T; H) and t--+ q/ (u (t)) i~ bounded 
on [0, T] for every .finite T > 0. 

(ii) The solution u to CP (cp1
; u0 ) on [0, oo) satisfies 

I I 

q/(u(t))-cp•(u(s))+ ~ J lu'('r) l ~d-r~ I kr(t)(1+lcp'(u(-r))l)d-r 

s s 

for every 0 < s s t < oo with sup lu (-r)IH < r, where 
O:::Or:::Ot 

kr (-r) = 4 lao,r (-rW + la'l,r (-r)l for -r ~ 0 and r ~ 0. 

Next, we recall a notion of the convergence of convex functions due to 
Mosco [12]. Given a sequence {l/tn} of proper l.s.c. convex functions on H 
and -a proper l.s.c. convex function ljt on H, we say that l/tn converges to 
ljt on H as n--+ oo in the sense of Mosco if the following (a) and (b) are 
satisfied: 

(a) If zn--+ z weakly in H (as n--+ oo ), then 

lim inf l/tn (zn) ~ l/t (z) . 
n--+oo 

(b) For each zED (l/t) there is a sequence { zn} such that zn--+ z in H and 
l/tn (zn)--+ l/t (z). 

With this notion we give a convergence result of solutions to our Cauchy 
problems. 

THEOREM A.2 (cf. [7; Theorem 1] or [9; §2. 7]). Let { cp1
} and { cp~}, n = 

= 1, 2, .. . , be in lP ({a0 ,r}, {a1,r}) such that 

cp~--+ cp1 on H as n--+ oo in the sense ofMosco for each t ~ 0 . 
. -- -- . 

Let u0 E D (cp 0
) and Uo,n E D (cp~), n = 1, 2, .. . , such that Uo,n--+ u0 in H . Then, 

denoting by u and un the solutions to CP (cp1
; u0 ) and CP (cp~; u0 ,n) on [0, oo), 
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respectively, we have 

Un ---+ u in C ([0, T] ; H) 

and 

T T 

J cp~ (un (t)) dt---+ J cp1 (u (t)) dt 
0 . 0 . 

as n ---+ oo for each finite T > 0. 

Finally we mention a result concerning the asymptotic behaviour of the 
solution to CP ( cp1

; u0 ) on [0 , oo) . Given a family { cp1
} and a proper l.s.c. 

convex function cp 00 on H, we say that cp1 ---+ cp 00 on H as t---+ oo in the sense 
of Mosco, if cp1"---+ cp 00 on H as n---+ oo in the sense of Mosco for every 
sequence {tn} with tn---+ oo as n ---+ oo. · 

THEOREM A.3 (cf. [8; Theorem 1]). Let {cp1
} E<l> ({cto,r}, {a1,r}) with 

a'o,rEL2 (0, oo) and a~,, E L1 (0, oo) for any r ~ 0, and suppose that cp1 ---+ cp 00 -t.. 
on H as t---+ oo in the sense of Mosco for a proper l.s.c. convex function 
cp 00 on H. Further, let u0 ED (cp0

) , and u be the solution to CP (cp1;u0 ) on [0, oo). 
If <p 00 is strictly convex on D (cp 00

) and sup lu (t)IH < oo, then there exists 
0;\;t< OO 

U00 E D ( cp 00
) such that u (t)---+ U 00 weakly in H, cp1 (u (t))---+ cp 00 (u00 ) as t---+ oo 

and (j) 00 (u00 ) = min (j) 00
, i.e. 0 E 8cp 00 (u 00 ). 

REMARK. In applying [8; Theorem 1], for each zED (cp 00
) it is necessary to 

show the existence of a function w: [0 , oo)---+ H such that w (t)---+ z in H 
and cp1 (w (t))---+ cp 00 (z) as t---+ oo. Under the assumptions of Theorem A.3, 
given z in D (cp 00

), such a function w can be constructed as follows: 
First, take a sequence {zn} in H such that Zn---+ z in H and cp" (zn)---+ cp 00 (z) 
as n---+ oo. Let r and L be non-negative numbers satisfying lzniH ~ r and · 
lcp" (zn)l ~ L for all n, respectively. Then, by assumption, for each t E [n, n + 1), 
n = 0, 1, ... , there exists w (t)ED (cp1

) such that 

lw (t) - ZniH ~ lcto,r (t) - cto,r (n)l (1 + L112
) 

and 

cp1 (w (t))- cp" (zn) ~ lctl,r (t) - ctl,r (n)l (1 + L). 

It is easy to see that this function w has the desired property. 
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Jednofazowe zagadnienia Stefana 
z nieliniowymi warunkami brzegowymi na ustalonym brzegu 

W pracy rozwa:i:a si~ jednowymiarowe jednofazowe zagadnienia Stefana z jednostronnymi 
warunkami brzegowymi na ustalonym brzegu. Dowodzi si~ istnienia globalnego rozwi~zania 
takiego. zagadnienia odpowiadaj~cego jego sformulowaniu quasi-wariacyjnemu. Dyskutowane Sl! 
nast~pujl!ce problemy: 

\'loa) monotoniczna zale:i:nosc rozwil!zania od warunk6w brzegowych i poc~tkowych, jedno
znaczriosc rozwil!Zania: 

b) asymptotyczne zachowanie swobodnej granicy x = l (t) , warunki dostateczne na dane 
brzegowe, zapewniajl!ce skonczonosc l (t) przy t--+ CXJ ; 

c) asymptotyczne zachowanie rozwil!zania u = u (x, t), zale:i:nosc lim inf u (x, t) i limsupu(x,t), 
przy t --+ CXJ od danych brzegowych. 
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0AnotaJuaH npo6JieMa Cn~aua 
C HeJIHHeHHb~H KpaeBb~H YCJIOBHHMH Ha .HKCHpoB3HHOM Kpae 

B pa6oTe paccylK.[IaeTcH O.LIHOMepHyiO O.LIHO<jla3HYIO rrpo6neMy CTe<jlaHa c O.LIHOCTopoHHhiMH 

KpaeBbiMH yCJIOBHHMH Ha <lJHKCHpOBaHHOM Kpae. )J,oKa3biBaeTCH CyiiJeCTBOBaHHe fJI06aJibHOfO 

peiiieHHH TaKOH rrpo6JieMbl, OTBeTCTBYIOIIJefO ee KBa3H-BapHaUHOHHOH IIOCTaHO~Ke . PaccylK,LieHhl 

CJie,!lyiOIIJHe BOIIpOCbl: 

a) MOHOTOHHaH 3aBHCHMOCJ;l> peiiieHHH OT KpaeBhiX H Ha'!aJibHbiX YCJIOBHH, 0,[1H03Ha'!HOCTb 

peweHHH, 

b) aCHMIITOTH'!eCKOe IIOBe,!leHHe CB060,!IHOH rpaHHUbl X= [ (t) , ,!IOCTaTO'!Hbie ycJIOBHH ,!\JIH 

KpaeBhiX YCJIOBHH, rrpH KOTOpb!X Jim { (t) IIpH t ~ CA) KOHe'!HaH, 

C) aCHMIITOTH'!eCKOe IIOBe,[leHHe peiiieHHH U = U (X , t), 3aBHCHMOCTb Jim inf U (x, t) H 

Jim sup U (x , t) IIpH t ~ CA) OT KpaeBhiX ycJIOBHH. 


