Control and Cybernetics VOL. 14 (1985) No. 1—3

One phase Stefan problems with a class of nonlinear boundary conditions on the fixed boundary*)

by

NOBUYUKI KENMOCHI

Department of Mathematics Faculty of Education Chiba University Chiba, Japan

0. Introduction

In this paper we consider the following problem: Find a curve x = l(t) > 0on $[0, \infty)$ and a function u = u(x, t) on $[0, \infty) \times [0, \infty)$, satisfying

 $u_t - u_{xx} = 0$ for 0 < x < l(t) and $0 < t < \infty$, (0.1)

$$u(x, 0) = u_0(x)$$
 for $0 < x < \infty$, (0.2)

$$u_x (0+, t) \in \partial b^t (u (0, t)) \text{ for } 0 < t < \infty,$$
 (0.3)

$$u(x,t) = 0 \text{ for } l(t) \le x < \infty \text{ and } 0 < t < \infty, \tag{0.4}$$

$$\begin{cases} l'(t) \left(= \frac{dl(t)}{dt} \right) = -u_x \left(l(t) - , t \right) \text{ for } 0 < t < \infty, \\ l(0) = l_0, \end{cases}$$
(0.5)

where l_0 is a given positive number, u_0 is a given function on $[0, \infty)$ and ∂b^t stands for the subdifferential of a given proper lower semicontinuous convex function b^t on **R**, for each $t \ge 0$. This is a one phase Stefan problem with the flux $u_x(0+, t)$ governed by the subdifferential $\partial b^t (u(0, t))$ on the fixed boundary x = 0.

*) Dedicated to Professor I. Miyadera on his 60th birthday.

N. KENMOCHI

This type of Stefan problems was earlier studied by Yotsutani [15, 16]; in fact, he treated the case when b^t is independent of t, i.e. $b^t(\cdot) = b(\cdot)$, and employed a difference method to obtain some results on the existenceuniqueness of global solutions and their asymptotic behaviour. However, the treatment for the time-dependent case of b^t seems to be complicated because of the nonlinearity in the boundary condition (0.3). Recently, the author (cf. [10]) has proposed a new method for Stefan problems of the type mentioned above, giving rise to an easy treatment of the boundary condition (0.3), and showed that the problem (0.1)-(0.5) has a global solution. This method exploits techniques of the theory of nonlinear evolution equations in Hilbert spaces, involving time-dependent subdifferential operators.

The purpose of this paper is to discuss the following three subjects:

- (a) The monotone dependence of solutions on $\{b^t, l_0, u_0\}$ and the uniqueness of solutions.
- (b) The asymptotic behaviour of the free boundary x = l(t); an sufficient conditions on $\{b^t\}$ in order that $\lim_{t\to\infty} l(t)$ is finite.
- (c) The asymptotic behaviour of u = u(x, t); and evaluation of $\lim \inf_{t \to \infty} u(x, t)$ and $\limsup_{t \to \infty} u(x, t)$ in terms of $\{b^t\}$.

In [10; Theorem 1.3], the uniqueness of the solution was verified for a specific class of initial values. In section 4 of this paper we show the uniqueness for a more general class of initial values as an immediate consequence of the monotone dependence of solutions on b^t , l_0 , u_0 . In [11] the author dealt with a special case of b^t of the form

$$b^{t}(r) = \begin{cases} 0 & \text{if } r \ge g(t), \\ \infty & \text{if } r < g(t), \end{cases}$$

for a given non-negative function g on $[0, \infty)$, and gave some results about (a), (b) and (c). In this paper we establish some theorems concerning (a), (b) and (c) for our general problem (0.1)-(0.5) by employing the same techniques as in [11].

Notation. For a general (real) Banach space X we denote by $|\cdot|_X$ the norm. Also, for a Hilbert space H we denote by $(\cdot, \cdot)_H$ the inner product. Given a proper lower semi-continuous (l.s.c.) convex function φ on a Hilbert space, we denote by $\partial \varphi$ the subdifferential operator of φ , by $D(\partial \varphi)$ its domain and by $D(\varphi)$ the effective domain of φ . For these notations and general properties we refer to Brézis [1].

1. Quasi-variational formulation

In this section we formulate a parabolic quasi-variational problem associated with system (0.1)-(0.5).

Existence and uniqueness of a solution to our system are discussed for $\{b^i\}$ in the class $B_T(\beta_0, \beta_1)$ (or $B_{\infty}(\beta_0, \beta_1)$) given below. For $0 < T < \infty$, $\beta_0 \in W^{1,2}(0, T)$ and $\beta_1 \in W^{1,1}(0, T)$ we denote by $B_T(\beta_0, \beta_1)$ the set of all $\{b^i\} = \{b^i; 0 \le t \le T\}$ of proper l.s.c. convex functions on **R** satisfying the following (b1) and (b2):

- (b1) $\partial b^{t}(r) \subset (-\infty, 0]$ if $0 \leq t \leq T$ and $r \in D(\partial b^{t}) \cap (-\infty, 0)$.
- (b2) For each $s, t \in [0, T]$ with $s \le t$ and each $r \in D(b^s)$ there is $\tilde{r} \in D(b^t)$, such that

$$|\tilde{r} - r| \leq |\beta_0(t) - \beta_0(s)| (1 + |r| + |b^s(r)|^{1/2})$$

and

$$b^{t}(\tilde{r}) - b^{s}(r) \leq |\beta_{1}(t) - \beta_{1}(s)| (1 + |r|^{2} + |b^{s}(r)|).$$

Also, we denote by $B_{\infty}(\beta_0, \beta_1)$ with $\beta_0 \in W_{\text{loc}}^{1,2}([0, \infty))$ and $\beta_1 \in W_{\text{loc}}^{1,1}([0, \infty))$ the set of all $\{b^t\} = \{b^t; 0 \le t < \infty\}$, such that $\{b^t\} \in B_T(\beta_0, \beta_1)$ for every finite T > 0.

For simplicity, we set $H = L^2(0, \infty)$, $X = W^{1,2}(0, \infty)$,

 $\Lambda_T = \{l \in C ([0, T]); l \text{ is positive and non-decreasing on } [0, T]\}, 0 < T < \infty,$ and

 $\Lambda_{\infty} = \{l \in C ([0, \infty)); l \text{ is positive and non-decreasing on } [0, \infty)\}.$

Given a family $\{b^t\}$ in $B_T(\beta_0, \beta_1)$ or $B_{\infty}(\beta_0, \beta_1)$, we define a function φ_l^t on *H* for each $l \in \Lambda_T$ or Λ_{∞} and each $t \ge 0$ as follows:

$$\varphi_{l}^{t}(z) = \begin{cases} \frac{1}{2} |z_{x}|_{H}^{2} + b^{t}(z(0)) & \text{if } z \in K_{l}(t), \\ \infty & \text{otherwise,} \end{cases}$$
(1.1)

where $K_l(t) = \{z \in X; z = 0 \text{ on } [l(t), \infty), z(0) \in D(b^t)\}$. Clearly it is proper, l.s.c. and convex on H and $D(\varphi_l^t) = K_l(t)$. We then consider the Cauchy problem CP $(\varphi_l^t; u_0) t \in [0, T]$ in H:

$$CP(\varphi_{l}^{t}; u_{0}): \begin{cases} -u'(t) \in \partial \varphi_{l}^{t}(u(t)), & 0 < t < T, \\ u(0) = u_{0}, \end{cases}$$

where $0 < T < \infty$, $l \in A_T$ and $u_0 \in H$ are given; the unknown u is an H-valued function on [0, T], which is identified with the function u = u(x, t) on $[0, \infty) \times [0, T]$ by [u(t)](x) = u(x, t), and u'(t) = (d/dt)u(t) in H. By a solution of CP $(\varphi_l^t; u_0)$ on [0, T] we mean an H-valued function u on

[0, T], satisfying

$$\begin{cases} u \in C ([0, T]; H) \cap W^{1,2} (\delta, T; H) \text{ for every } 0 < \delta < T, \\ t \to \varphi_t^i (u(t)) \text{ is integrable on } [0, T], \\ t \to \varphi_t^i (u(t)) \text{ is bounded on } [\delta, T] \text{ for every } 0 < \delta < T. \end{cases}$$
(1.2)

$$u(0) = u_0$$
 (1.3)

and

$$-u'(t) \in \partial \varphi_l^t(u(t)) \text{ for a.e. } t \in [0, T].$$
(1.4)

Also, $u:[0,\infty) \to H$ is called a solution to $CP(\varphi_i^t; u_0)$ on $[0,\infty)$, if it is a solution to $CP(\varphi_i^t; u_0)$ on every finite interval [0, T].

We are now in a position to give a quasi-variational formulation corresponding to system (0.1)-(0.5).

DEFINITION 1.1. Let $0 < T < \infty$, $\{b^t\} \in B_T(\beta_0, \beta_1)$, $0 < l_0 < \infty$ and $u_0 \in H$. Then a pair $\{l, u\} \in A_T \times C([0, T]; H)$ is called a solution to QV $(b^t; l_0, u_0)$ on [0, T], if the following conditions (QV1) and (QV2) are fulfilled:

(QV1) u is a solution to CP (φ_l^t ; u_0) on [0, T]. (QV2) $l \in W^{1,2}(\delta, T)$ for every $0 < \delta < T$, $l(0) = l_0$ and

$$l'(t) = -u_x(l(t) - t)$$
 for a.e. $t \in [0, T]$. (1.5)

Also, given $\{b^t\} \in B_{\infty}(\beta_0, \beta_1), 0 < l_0 < \infty$ and $u_0 \in H$, a pair $\{l, u\}$ in $\Lambda_{\infty} \times C([0, \infty); H)$ is called a solution to $QV(b^t; l_0, u_0)$ on $[0, \infty)$, when it is a solution to $QV(b^t; l_0, u_0)$ on every finite interval [0, T].

REMARK 1.1. (a) (cf. [10; Lemma 1.2]) For every $l \in \Lambda_T$ and every $t \in [0, T]$, $z^* \in \partial \varphi_l^t(z)$ if and only if the following (1.6) and (1.7) hold:

 $z^* \in H$ and $z \in K_l(t)$. (1.6)

$$(z^*, z_1^{-z})_H \leq (z_x, z_{1,x} - z_x)_H + b^t (z_1(0)) - b^t (z(0))$$
 for all $z_1 \in K_l(t)$. (1.7)

Also, under (1.6), (1.7) is equivalent to the system $\{(1.8), (1.9)\}$ below:

$$z_{xx} \in L^2(0, l(t)) \text{ and } z^* = -z_{xx} \text{ on } (0, l(t)).$$
 (1.8)

 $z_{\mathbf{x}}\left(0+\right) \in \partial b^{t}\left(z\left(0\right)\right). \tag{1.9}$

We note by (1.8) that z_x is absolutely, continuous on (0, l(t)), and hence $z_x(0+)$ and $z_x(l(t)-)$ exist.

224

(b) According to the part (a), under (1.2), system $\{(1.3), (1.4)\}$ is equivalent to

$$\begin{cases} u_t(\cdot, t) - u_{xx}(\cdot, t) = 0 \text{ in } L^2(0, l(t)) \text{ for a.e. } t \in [0, T]. \\ u(\cdot, 0) = u_0 \text{ in } H, \\ u_x(0+, t) \in \partial b^t(u(0, t)) \text{ for a.e. } t \in [0, T], \\ u(\cdot, t) = 0 \text{ on } [l(t), \infty) \text{ for all } t \in (0, T]. \end{cases}$$
(1.10)

Therefore QV $(b^t; l_0, u_0)$ may be regarded as a weak formulation for problem (0.1)-(0.5).

(c) Let $\{l, u\}$ be a solution to QV $(b^t; l_0, u_0)$ on [0, T]. Then, by definition, u is continuous in $(x, t) \in [0, \infty) \times (0, T]$; more precisely, $u \in W^{1,2}(\delta, T; H) \cap \cap L^{\infty}(\delta, T; X) (\subset C([0, \infty) \times [\delta, T]))$ for every $0 < \delta < T$, which is inferred from the boundedness of $t \to \varphi_l^t(u(t))$ on $[\delta, T]$ for every $0 < \delta < T$ and (ii) of Lemma 2.1, proved in the next section.

(d) Observe (cf. [2, 3, 5]), that (1.5) of Definition 1.1 is equivalent to each of the following (1.11) and (1.12):

$$l(t) = l(s) + \int_{0}^{l(s)} u(x, s) dx - \int_{0}^{l(t)} u(x, t) dx - \int_{s}^{t} u_{x}(0+, \tau) d\tau,$$
(1.11)
for every $0 < s \le t \le T$.

$$l(t)^{2} = l(s)^{2} + 2 \int_{0}^{l(s)} xu(x, s) dx - 2 \int_{0}^{l(t)} xu(x, t) dx + 2 \int_{s}^{t} u(0, \tau) d\tau, \qquad (1.12)$$

for every $0 \le s \le t \le T.$

These representations of the free boundary x = l(t) appear useful in the sequel. We recall an existence result for QV $(b^t; l_0, u_0)$.

THEOREM 1.1 (cf. [10; Theorem 1.1]). Let $0 < T < \infty$, $\{b^t\} \in B_T(\beta_0, \beta_1)$, $0 < l_0 < \infty$ and $u_0 \in H$ such that $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$. Then there exists at least one solution $\{l, u\}$ to QV $(b^t; l_0, u_0)$ on [0, T], such that

$$\sqrt{t} \ l' \in L^2(0, T),$$

$$t \to t \varphi_l^t(u(t)) \ is \ bounded \ on \ (0, T],$$

$$\sqrt{t} \ u' \in L^2(0, T; H)$$

and

$$u \ge 0$$
 on $[0, \infty) \times (0, T]$

In addition, if $u_0 \in X$ and $u_0(0) \in D(b^0)$, then $l \in W^{1,2}(0, T)$, $t \to \varphi_l^t(u(t))$ is bounded on [0, T] and $u \in W^{1,2}(0, T; H)$.

REMARK 1.2. Let $\{l, u\}$ be the solution to $QV(b^t; l_0, u_0)$ obtained by Theorem 1.1. and denote u(0, t) by f(t) for 0 < t < T. Then $\{l, u\}$ is the solution to the usual Stefan problem which is described as a system with the boundary condition u(0, t) = f(t) instead of (0.3). Therefore the solution $\{l, u\}$ has the following properties (i) and (ii) (cf. [4, 14]): (i) u_t and u_{xx} are continuous on $\{(x, t); 0 < x < l(t), 0 < t \le T\}$, and (ii) $l \in C^{\infty}((0, T])$ and $l'(t) = -u_x(l(t), -, t)$ for all $t \in (0, T]$. For the systematic study of the usual Stefan problem, see [6, 13].

2. Some lemmas on $\{\varphi_l^t\}$

LEMMA 2.1. Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$ and suppose

 $b^t \to b^{\infty}$ on \mathbb{R} as $t \to \infty$ in the sense of Mosco (see the Appendix) (2.1) for a proper l.s.c. convex function b^{∞} on \mathbb{R} . Then we have:

(i) There is a constant $C_1 \ge 0$, depending only on β_0 , β_1 and b^{∞} , such that

$$b^{t}(r) + C_{1} |r| + C_{1} \ge 0 \quad \text{for any } t \in [0, \infty) \text{ and } r \in \mathbb{R}.$$

$$(2.2)$$

(ii) There is a constant $C_2 \ge 0$, depending only on the constant C_1 of (i), such that

$$|b^{t}(z(0))| \le \varphi_{1}^{t}(z) + C_{2} |z|_{H} + C_{2}, \text{ and}$$
 (2.3)

$$\frac{1}{4} |z_x|_H^2 \le \varphi_l^t(z) + C_2 |z|_H + C_2$$
(2.4)

for all $l \in A_{\infty}$, $t \in [0, \infty)$ and $z \in K_{l}(t)$.

(iii) Let L be a positive number. Then there are constants $C_3 \ge 0$, $C'_3 \ge 0$, $C_4 \ge 0$ and $C'_4 \ge 0$, depending only on L and C_2 of (ii), such that

 $|z|_{H}^{2} \leq C_{3} \varphi_{l}^{t}(z) + C_{3}^{\prime}, \qquad (2.5)$

$$|\varphi_{l}^{t}(z)| \leq C_{4} \varphi_{l}^{t}(z) + C_{4}^{\prime}$$
(2.6)

for all $l \in \Lambda_{\gamma}$ with $\lim_{t \to \infty} l(t) \leq L$, $t \in [0, \infty)$ and $z \in K_{l}(t)$.

Proof. According to [9; §1.5]), there is a constant $c \ge 0$ corresponding to given T > 0, β_0 , β_1 such that

$$b^t(r) + c|r| + c \ge 0$$
 for any $t \in [0, T]$ and $r \in \mathbf{R}$.

Besides, by using a result in [7; Lemma 3.1] we can find reals T > 0 and $c' \ge 0$, depending only on β_0, β_1 and b^{∞} , such that

$$b^{t}(t) + c'|r| + c' \ge 0$$
 for any $t \in [T, \infty)$ and $r \in \mathbb{R}$.

Therefore (i) holds.

Now, let $z \in K_l(t)$. Then we observe

$$|z(0)| \leq \int_{0}^{1} |\{(1-x) z\}_{x}| dx \leq |z_{x}|_{H} + |z|_{H}.$$

One phase Stefan problem

Hence, by (2.2),

$$\begin{aligned} b^{t}(z(0)) &| \leq b^{t}(z(0)) + 2C_{1} |z(0)| + 2C_{1} \leq \\ &\leq b^{t}(z(0)) + \frac{1}{2} |z_{x}|_{H}^{2} + 2C_{1} |z|_{H} + 2C_{1}^{2} + 2C_{1} \leq \\ &\leq \varphi_{l}^{t}(z) + C_{2} |z|_{H} + C_{2} \end{aligned}$$

with $C_2 = 2C_1 (1 + C_1)$, and

$$\frac{1}{4} |z_x|_H^2 \leq \frac{1}{2} \left\{ \varphi_l^t(z) + \left| b^t(z(0)) \right| \right\} \leq \varphi_l^t(z) + C_2 |z|_H + C_2.$$

Thus (2.3) and (2.4) hold, and (ii) is proved.

Next, let $l \in \Lambda_{\infty}$ with $\lim_{t\to\infty} l(t) \leq L$. Then, since

$$|z|_{H} \leq L |z_{x}|_{H}$$
 for any $t \in [0, \infty)$ and $z \in K_{l}(t)$,

it follows from (2.4) that (2.5) and (2.6) hold for some non-negative constants C_3, C'_3, C_4, C'_4 depending only on L and C_2 .

LEMMA 2.2. Let $l \in A_{\infty}$ and $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$, and suppose (2.1) holds. Then $\varphi_1^{t \to} \varphi^{\infty}$ on H as $t \to \infty$ in the sense of Mosco (see the Apendix), where

$$\varphi^{\infty}(z) = \begin{cases} \frac{1}{2} |z_{x}|_{H}^{2} + b^{\infty}(z(0)) \text{ if } z \in X, \ z(0) \in D(b^{\infty}) \text{ and } z = 0 \text{ on } [l_{\infty}, \infty), \\ \infty & \text{otherwise}, \end{cases}$$
(2.7)

with $l_{\infty} = \lim_{t \to \infty} l(t)$; note in (2.7) that the restriction z = 0 on $[l_{\infty}, \infty)$ is to be deleted if $l_{\infty} = \infty$.

Proof. Let $\{t_n\}$ be any sequence with $t_n \to \infty$ (as $n \to \infty$), and $\{z_n\}$ be any sequence in H such that $z_n \to z$ weakly in H and $A \equiv \lim \inf_{t \to \infty} \varphi_l^{t_n}(z_n) < \infty$. Then we see from (2.4) of Lemma 2.1 that there is a subsequence $\{n'\}$ of $\{n\}$ such that $\varphi_l^{t_n'}(z_{n'}) \to A$ and $z_{n'} \to z$ weakly in X, hence $z_{n'}(0) \to z(0)$ as $n' \to \infty$. Therefore $A \ge \varphi^{\infty}(z)$. Next, let z be any element of $D(\varphi^{\infty})$. Then, by our assumptions, there is a sequence $\{r_n\}$ such that $r_n \to z(0)$ and $b^{t_n}(r_n) \to$ $\to b^{\infty}(z(0))$. Here, using a smooth function ζ on \mathbf{R} such that $0 \le \zeta \le 1$ on $\mathbf{R}, \zeta = 1$ on $(-\infty, -1], \zeta = 0$ on $[0, \infty)$, we define

$$z_{n}(x) = \begin{cases} z \left(\frac{l_{\infty}}{l(t_{n})} x \right) + (r_{n} - z(0)) z^{0}(x) \text{ if } l_{\infty} < \infty, \\ \zeta (x - l(t_{n})) z(x) + (r_{n} - z(0)) z^{0}(x) \text{ if } l_{\infty} = \infty \end{cases}$$

with a smooth function z^0 on $[0, \infty)$, satisfying $z^0(0) = 1$ and $z^0 = 0$ on $[l(0), \infty)$. It is easy to see that $z_n \in D(\varphi_l^{t_n}), z_n \to z$ in X and $\varphi_l^{t_n}(z_n) \to \varphi^{\infty}(z)$. Thus we have the conclusion of the lemma.

LEMMA 2.3. Let $l \in \Lambda_{\infty}$ and $l_n \in \Lambda_{\infty}$, n = 1, 2, ..., such that $l_n \to l$ pointwise on $[0, \infty)$ as $n \to \infty$. Also, let $\{b^i\} \in B_{\infty}(\beta_0, \beta_1)$. Then for each $t \ge 0$,

 $\varphi_{l_n}^t \rightarrow \varphi_l^t$ on H as $n \rightarrow \infty$ in the sense of Mosco.

We omit the proof of this lemma, as it can be shown by a modification of that of Lemma 2.2.

Given numbers $0 < \delta < L \leq \infty$, we denote by $\Lambda_{\infty}(\delta, L)$ the subclass $\{l \in \Lambda_{\infty}; \delta \leq l(0), \lim_{t \to \infty} l(t) \leq L\}$ of Λ_{∞} . We also consider the class $\Phi(\{\alpha_{0,r}\}, \{\alpha_{1,r}\})$ of families $\{\varphi^t\}$ of proper l.s.c. convex functions on H (see the Appendix for the definition of $\Phi(\{\alpha_{0,r}\}, \{\alpha_{1,r}\})$.

LEMMA 2.4. (i) Let $\{b^i\} \in B_{\infty}(\beta_0, \beta_1)$ with $\beta'_0 \in L^1(0, \infty)$ and $0 < \delta \leq 1$. Then there is a constant $C_5 \geq 0$, depending only on δ, β_0 and β_1 , such that

$$\{\varphi_l^t\} \in \Phi\left(\{\alpha_{0,r}\}, \{\alpha_{1,r}\}\right) \text{ for all } l \in \Lambda_{\infty}\left(\delta, \infty\right),$$

where

$$\alpha_{0,r}(t) = C_5 (1+r) \int_0^t |\beta'_0(\tau)| d\tau, \ \alpha_{1,r}(t) = C_5 (1+r^2) \int_0^t \{|\beta'_0(\tau)| + |\beta'_1(\tau)|\} d\tau$$

for all $r \ge 0$.

(ii) Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$ with $\beta'_0 \in L^1(0, \infty)$ and $0 < \delta < 1 < L < \infty$. Then there is a constant $C_6 \ge 0$, depending only on δ , L, β_0 and β_1 , such that

$$\{\varphi_l^t\} \in \Phi\left(\{\widetilde{\alpha}_{0,r}\}, \{\alpha_{1,r}\}\right) \text{ for all } l \in \Lambda_{\infty}\left(\delta, L\right),$$

where

$$\widetilde{\alpha}_{0,r}(t) = C_6 \int_0^t |\beta'_0(\tau)| d\tau, \quad \widetilde{\alpha}_{1,r}(t) = C_6 \int_0^t \left\{ |\beta'_0(\tau)| + |\beta'_1(\tau)| \right\} d\tau$$

for all $r \ge 0$; note in this case that $\tilde{\alpha}_{0,r}$ and $\tilde{\alpha}_{1,r}$ are independent of $r \ge 0$.

Proof. Let $l \in \Lambda_{\infty}(\delta, \infty)$, $0 \leq s \leq t < \infty$ and $z \in K_l(s)$. Since $z(0) \in D(b^s)$, using condition (b2), we can find $\tilde{r} \in D(b^t)$ such that

$$|\tilde{r} - z(0)| \le \left(\int_{s}^{t} |\beta'_{0}(\tau)| d\tau\right) \left(1 + |z(0)| + |b^{s}(z(0))|^{1/2}\right)$$

and

$$b^{t}(\tilde{r}) - b^{s}(z(0)) \leq \left(\int_{s}^{t} |\beta_{1}'(\tau)| d\tau\right) \left(1 + |z(0)|^{2} + |b^{s}(z(0))|\right).$$

We then consider the function

$$\widetilde{z}(x) = z(x) + (\widetilde{r} - z(0)) z^{\delta}(x),$$

One phase Stefan problem

where

$$z^{\delta}(x) = \begin{cases} 1 - \frac{x}{\delta} & \text{for } 0 \le x \le \delta, \\ 0 & \text{for } \delta < x < \infty. \end{cases}$$

Clearly, $\tilde{z} \in K_l(t)$ with $\tilde{z}(0) = \tilde{r} \in D(b^t)$. We also observe that

$$|\tilde{z} - z|_{H} = |\tilde{r} - z(0)| |z^{\delta}|_{H} \le \left(\int_{s}^{t} |\beta_{0}'(\tau)| d\tau\right) \left(1 + |z(0)| + |b^{s}(z(0))|^{1/2}\right)$$

and

$$\begin{split} \varphi_{l}^{t}\left(\tilde{z}\right) &- \varphi_{l}^{s}\left(z\right) = \frac{1}{2} \left|\tilde{z}_{x}\right|_{H}^{2} - \frac{1}{2} \left|z_{x}\right|_{H}^{2} + b^{t}\left(\tilde{r}\right) - b^{s}\left(z\left(0\right)\right) \leqslant \\ &\leq \int_{0}^{\delta} \left\{\left|\tilde{r} - z\left(0\right)\right| \left|z_{x}^{\delta}\left(x\right)\right| \left|z_{x}\left(x\right)\right| + \frac{1}{2} \left|\tilde{r} - z\left(0\right)\right|^{2} \left|z_{x}^{\delta}\left(x\right)\right|^{2}\right\} dx + b^{t}\left(\tilde{r}\right) - b^{s}\left(z\left(0\right)\right) \leqslant \\ &\leq \frac{1}{\delta} \left(\int_{s}^{t} \left|\beta_{0}'\left(\tau\right)\right| d\tau\right) \left(1 + \left|z\left(0\right)\right| + \left|b^{s}\left(z\left(0\right)\right)\right|^{1/2}\right) \int_{0}^{\delta} \left|z_{x}\left(x\right)\right| dx + \\ &+ \frac{1}{2\delta} \left(\int_{s}^{t} \left|\beta_{0}'\left(\tau\right)\right| d\tau\right) \left|\beta_{0}'\right|_{L^{1}(0,\infty)} \left(1 + \left|z\left(0\right)\right| + \left|b^{s}\left(z\left(0\right)\right)\right|^{1/2}\right)^{2} + \\ &+ \left(\int_{s}^{t} \left|\beta_{1}'\left(\tau\right)\right| d\tau\right) \left(1 + \left|z\left(0\right)\right|^{2} + \left|b^{s}\left(z\left(0\right)\right)\right|\right). \end{split}$$

By making use of the inequalities in Lemma 2.1, we derive from the above inequalities that

$$|\tilde{z} - z|_{H} \leq c \left(\int_{s} |\beta'_{0}(\tau)| d\tau \right) \left(1 + |z|_{H} + |\varphi^{s}_{l}(z)|^{1/2} \right)$$

and

$$\varphi_{l}^{t}(\tilde{z}) - \varphi_{l}^{s}(z) \leq c \left(\int_{s}^{1} \left\{ |\beta_{0}'(\tau)| + |\beta_{1}'(\tau)| \right\} d\tau \right) \left(1 + |z|_{H}^{2} + |\varphi_{l}^{s}(z)| \right)$$
(2.8)

for some constant $c \ge 0$ depending only on δ , β_0 and β_1 . Therefore we can take this c as C_5 . Also it is not difficult to derive the conclusion of (ii) of the lemma from (2.8) and (2.5) of Lemma 2.1.

3. Some lemmas on CP (φ_l^t ; u_0)

The lemmas, which have been proved in the previous section, allow us to apply the abstract results of the Appendix to problem CP ($\varphi_i^t; u_0$).

The following comparison lemma is useful.

LEMMA 3.1 (cf. [11; Lemma 2.1]). Let $0 < T < \infty$, k be a constant, $l \in C$ ([0, T]) with l > 0 on [0, T], and v, w be functions in C ([0, T]; H) $\cap \cap W^{1,2}(\delta, T; H) \cap L^{\infty}(\delta, T; X)$ with v_{xx}, w_{xx} in $L^2(D_{\delta}), D_{\delta} = \{(x, t); 0 < x < < l(t), \delta < t < T\}$, for every $0 < \delta < T$, such that

$$\begin{split} w_t - w_{xx} &\leq v_t - v_{xx} \ a.e. \ on \ \{(x, t); \ 0 < x < l \ (t), \ 0 < t < T\}, \\ w \ (x, 0) &\leq v \ (x, 0) + k \ for \ a.e. \ x \geq 0, \\ w &\leq v + k \ on \ \{(x, t); \ l \ (t) \leq x < \infty, \ 0 < t \leq T\}, \ and \\ (w_x \ (0+, t) - v_x \ (0+, t)) \ (w \ (0, t) - v \ (0, t) - k)^+ \geq 0 \ for \ a.e. \ t \in [0, T] \\ Then \end{split}$$

$$w \leq v + k$$
 on $[0, \infty) \times (0, T]$.

COROLLARY 1. Let $0 < T < \infty$, $l \in A_T$, $\{b^t\} \in B_T(\beta_0, \beta_1)$, and let u_0 be a non-negative function in H. Then the solution u to $CP(\varphi_l^t; u_0)$ on [0, T] is non-negative on $[0, \infty) \times (0, T]$.

This corollary is a direct consequence of Lemma 3.1 with w = 0, v = u and k = 0.

COROLLARY 2. Let $0 < T < \infty$, $l \in \Lambda_T$, $\hat{l} \in \Lambda_T$, $u_0 \in H$ with $u_0 \ge 0$ a.e. on $[0, \tau)$ and $u_0 = 0$ a.e. on $[l(0), \infty)$, $\hat{u}_0 \in H$ with $\hat{u}_0 \ge 0$ a.e. on $[0, \infty)$ and $\hat{u}_0 = 0$ a.e. on $[\hat{l}(0), \infty)$, $\{b^t\} \in B_T(\beta_0, \beta_1)$ and $\{\hat{b}^t\} \in B_T(\hat{\beta}_0, \hat{\beta}_1)$. Further let u and \hat{u} be the solutions to $CP(\varphi_l^t; u_0)$ and $CP(\psi_l^t; \hat{u}_0)$ on [0, T], respectively, where ψ_l^t is the function on H given by (1.1) with l and b^t replaced by \hat{l} and \hat{b}^t . Suppose

 $l \leq \hat{l}$ on [0, T], $u_0 \leq \hat{u}_0$ a.e. on $[0, \infty)$

and

$$b^{t}(r_{1} \wedge r_{2}) + \hat{b}^{t}(r_{1} \vee r_{2}) \leq b^{t}(r_{2})$$
 for any $r \in [0, T]$

and $r_1, r_2 \in \mathbf{R}$, (3.1)

where $r_1 \vee r_2 = \max\{r_1, r_2\}$ and $r_1 \wedge r_2 = \min\{r_1, r_2\}$. Then we have $u \le \hat{u} \text{ on } [0, \infty) \times (0, T].$ (3.2)

Proof. From (b) of Remark 1.1 and Corollary 1, we see that

$$u_t - u_{xx} = 0 - u_t - \hat{u}_{xx} \quad \text{a.e. on } \{(x, t); 0 < x < l(t), 0 < t < T\}$$

$$u(x, 0) = u_0(x) \le \hat{u}_0(x) = \hat{u}(x, 0) \text{ for a.e. } x \ge 0, \text{ and}$$

$$u = 0 \le \hat{u} \text{ on } \{(x, t); l(t) \le x < \infty, 0 < t \le T\}.$$

Also, as it is easily seen from (3.1), $(r_1^* - r_2^*)(r_1 - r_2)^+ \ge 0$ for any $t \in [0, T]$, $r_1^* \in \partial b^t(r_1)$ and $r_2^* \in \partial b^t(r_2)$, from which it follows that

$$(u_x(0+,t)-\hat{u}_x(0+,t))(u(0,t)-\hat{u}(0,t))^+ \ge 0$$
 for a.e. $t \in [0,T]$,

because $u_x(0+, t) \in \partial b^t(u(0, t))$ and $\hat{u}_x(0+, t) \in \partial \hat{b}^t(\hat{u}(0, t))$ for a.e. $t \in [0, T]$. Thus all the assumptions of Lemma 3.1 are satisfied for the case where w = u, $v = \hat{u}$ and k = 0, so that we get (3.2).

LEMMA 3.2. Let $l \in \Lambda_{\infty}$ with $l_{\infty} \equiv \lim_{t \to \infty} l(t) < \infty$, and $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$ with $\beta'_0 \in L^1(0, \infty) \cap L^2(0, \infty)$ and $\beta'_1 \in L^1(0, \infty)$ such that $b^t \to b^{\infty}$ on \mathbb{R} as $t \to \infty$ in the sense of Mosco for a proper l.s.c. convex function b^{∞} on \mathbb{R} . Let u_0 be a non-negative function in H such that $u_0 = 0$ a.e. on $[l(0), \infty)$. Then CP $(\varphi_l^t; u_0)$ has one and only one solution u on $[0, \infty)$ and $u(t) \to u_{\infty}$ in X as $t \to \infty$, where u_{∞} is the function given by

$$u_{\infty}(x) = \begin{cases} c \left(1 - \frac{x}{l_{\infty}} \right) & \text{for } 0 \leq x \leq l_{\infty}, \\ 0 & \text{for } l_{\infty} < x < \infty, \end{cases}$$
(3.3)

with the constant c satisfying

$$-\frac{c}{l_{\infty}} \in \partial b^{\infty} (c).$$
(3.4)

Proof. First we show $u \in L^{\infty}(0, \infty; H)$. By (iii) of Lemma 2.1 and (ii) of Lemma 2.4, we can apply Theorem A.1 of the Appendix to problem CP $(\varphi_i^t; u_0)$, and obtain that CP $(\varphi_i^t; u_0)$ has one and only one solution u on $[0, \infty)$, and

$$\varphi_{l}^{t}\left(u\left(t\right)\right) - \varphi_{l}^{s}\left(u\left(s\right)\right) \leq \int_{s}^{t} k\left(\tau\right) \left(M\varphi_{l}^{\tau}\left(u\left(\tau\right)\right) + M'\right) d\tau$$

for every $0 < s \le t < \infty$, where M and M' are constants, and

$$k(\tau) = |\beta'_0(\tau)|^2 + |\beta'_0(\tau)| + |\beta'_1(\tau)|.$$

Therefore, by Gronwall's inequality, $t \to \varphi_l^t(u(t))$ is bounded on $[1, \infty)$, so that (iii) of Lemma 2.1 implies $u \in L^{\infty}(1, \infty; H)$. Since $u \in C([0, 1]; H)$, it follows that $u \in L^{\infty}(0, \infty; H)$. Next, on account of Lemma 2.2, $\varphi_l^t \to \varphi^{\infty}$ on H as $t \to \infty$ in the sense of Mosco, where φ^{∞} is as in Lemma 2.2. Accordingly, applying Theorem A.3 in the Appendix to problem CP ($\varphi_l^t; u_0$) on $[0, \infty)$, we obtain that

$$u(t) \rightarrow u_{\infty}$$
 weakly in H

and

$$\varphi_l^t(u(t)) \to \varphi^\infty(u_\infty) = \min \varphi^\infty$$
 (hence $0 \in \partial \varphi^\infty(u_\infty)$)

for some $u_{\infty} \in X$. From these convergences we conclude that $u(t) \to u_{\infty}$ in X, and also, due to the relation $0 \in \partial \varphi^{\infty}(u_{\infty})$ (cf. (a) of Remark 1.1), that (3.3) holds with (3.4).

LEMMA 3.3. Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1), l \in \Lambda_{\infty}$ and $l_n \in \Lambda_{\infty}, n = 1, 2, ...,$ such that $l_n \to l$ pointwise on $[0, \infty)$ as $n \to \infty$. Further, let $u_0 \in H$ with $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l(0), \infty)$, and $u_{0,n} \in H$ with $u_{0,n} \ge 0$ a.e. on $[0, \infty)$ and $u_{0,n} = 0$ a.e. on $[l_n(0), \infty)$, n = 1, 2, ..., such that $u_{0,n} \to u_0$ in H as $n \to \infty$. Then, denoting by u and u_n the solutions to $CP(\varphi_l^t; u_0)$ and $CP(\varphi_{l_n}^t; u_{0,n})$ on $[0, \infty)$, respectively, we have

 $u_n \rightarrow u$ in C([0, T]; H) and in $L^2(0, T; X)$

as $n \to \infty$ for every finite T > 0.

Proof. Let $0 < T < \infty$. Then, by Lemma 2.3 and (i) of Lemma 2.4, we can apply Theorem A.2 in the Appendix to obtain

$$u_n \to u$$
 in $C([0, T]; H)$ and $\int_0^T \varphi_{l_n}^t(u_n(t)) dt \to \int_0^T \varphi_{l}^t(u(t)) dt$.

From this we get the conclusion of the lemma.

4. Monotone dependence

In this section we prove

THEOREM 4.1. Let $0 < T < \infty$, $0 < l_0 < \infty$, $0 < \hat{l}_0 < \infty$, $u_0 \in H$ with $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$, and $\hat{u}_0 \in H$ with $\hat{u}_0 \ge 0$ a.e. on $[0, \infty)$ and $\hat{u}_0 = 0$ a.e. on $[\hat{l}_0, \infty)$. Further let $\{b^t\} \in B_T(\beta_0, \beta_1)$ and $\{\hat{b}^t\} \in B_T(\hat{\beta}_0, \hat{\beta}_1)$ such that

 $b^{t}(r_{1} \wedge r_{2}) + \hat{b}^{t}(r_{1} \vee r_{2}) \leq b^{t}(r_{1}) + \hat{b}^{t}(r_{2})$ for any $t \in [0, T]$ and $r_{1}, r_{2} \in \mathbb{R}$.

If $t_0 \leq \hat{l}_0$ and $u_0 \leq \hat{u}_0$ a.e. on $[0, \infty)$, then

 $l \leq \hat{l} \text{ on } [0, T] \text{ and } u \leq \hat{u} \text{ on } [0, \infty) \times (0, T], \tag{4.1}$

where $\{l, u\}$ and $\{\hat{l}, \hat{u}\}$ are respectively the solutions to $QV(b'; l_0, u_0)$ and $QV(\hat{b}'; \hat{l}_0, \hat{u}_0)$ on [0, T].

Proof. First, assuming $l_0 < \hat{l}_0$, we show that $l < \hat{l}$ on [0, T] and $u \leq \hat{u}$ on $[0, \infty) \times (0, T]$. To get a contradiction, suppose there is $0 < t_0 \leq T$ such that

$$l(t_0) = \hat{l}(t_0)$$
, and $l < \hat{l}$ on $[0, t_0)$.

Then, on account of Corollary 2 to Lemma 3.1, we have

$$u \le \hat{u} \text{ on } [0, \infty) \times (0, t_0].$$
 (4.2)

Now, denote u(0, t) and $\hat{u}(0, t)$ by f(t) and $\hat{f}(t)$, respectively. As it has been noticed in Remark 1.2, $\{l, u\}$ (resp. $\{\hat{l}, \hat{u}\}$) is the solution to the usual Stefan problem with the boundary condition u(0, t) = f(t) (resp. $\hat{u}(0, t) = \hat{f}(t)$). Since $f \leq \hat{f}$ by (4.2), it follows from the result on the monotone dependence (cf. [2; Theorem 6]) that $l < \hat{l}$ on $[0, t_0]$, which is a contradiction. Thus we get

$$l < l \text{ on } [0, T], u \le \hat{u} \text{ on } [0, \infty) \times (0, T].$$

Next, assume $l_0 = \hat{l}_0$, and take a sequence $\{\hat{l}_{0,n}\}$ so that $\hat{l}_{0,n} > \hat{l}_0$ and $\hat{l}_{0,n} \downarrow \hat{l}_0$ (as $n \to \infty$). By virtue of Theorem 1.1, QV $(\hat{b}^t; \hat{l}_{0,n}, \hat{u}_0)$ has a solution $\{\hat{l}_n, \hat{u}_n\}$ on [0, T]. Also, from the above argument it follows that

 $l < \hat{l}_n$ on [0, T], $u \leq \hat{u}_n$ on $[0, \infty) \times (0, T]$

and

 $\hat{l} < \hat{l}_n$ on [0, T], $\hat{u} \leq \hat{u}_n$ on $[0, \infty) \times (0, T]$.

Furthermore, on account of (1.11) in (d) of Remark 1.1,

$$0 < \hat{l}_n(t) - \hat{l}(t) \leq \\ \leq \hat{l}_n(\delta) - \hat{l}(\delta) + \int_0^\infty \left\{ \hat{u}_n(x, \delta) - \hat{u}(x, \delta) \right\} dx - \int_\delta^t \left\{ \hat{u}_{n,x}(0+, \tau) - \hat{u}_x(0+, \tau) \right\} d\tau$$

for every $0 < \delta \leq t \leq T$. Here we note that

$$\hat{u}_{n,x}(0+,\tau) \ge \hat{u}_x(0+,\tau) \text{ for a.e. } \tau \in [0,T].$$
 (4.3)

In fact, it follows from the monotonicity of $\partial \hat{b}^{\tau}$ that $\hat{u}_{n,x}(0+,\tau) \ge \hat{u}_x(0+,\tau)$ for a.e. $\tau \in [0, T]$ with $\hat{u}_n(0, \tau) > \hat{u}(0, \tau)$. Also, if $\hat{u}_n(0, \tau) = \hat{u}(0, \tau)$ and $\hat{u}_{n,x}(0+,\tau)$ and $\hat{u}_x(0, \tau)$ exist, then

$$\hat{u}_{n,x}\left(0+,\tau\right) = \lim_{x\downarrow 0} \frac{\hat{u}_n\left(x,\tau\right) - \hat{u}_n\left(0,\tau\right)}{x} \ge \lim_{x\downarrow 0} \frac{\hat{u}\left(x,\tau\right) - \hat{u}\left(0,\tau\right)}{x} = \hat{u}_x\left(0+,\tau\right).$$

Therefore we obtain (4.3) and for every $t \in [\delta, T]$

$$0 < \hat{l}_n(t) - \hat{l}(t) \le \hat{l}_n(\delta) - \hat{l}(\delta) + \int_0^\infty \left\{ \hat{u}_n(x, \delta) - \hat{u}(x, \delta) \right\} dx.$$

Letting $\delta \downarrow 0$ in this inequality, we get

$$0 < \hat{l}_n(t) - \hat{l}(t) \le \hat{l}_{0,n} - \hat{l}_0$$
 for any $t \in [0, T]$.

This implies that $\hat{l}_n \to \hat{l}$ in C([0, T]), and, by Lemma 3.3, that $\hat{u}_n \to \hat{u}$ in C([0, T]; H). Consequently we get (4.1).

COROLLARY. Let $0 < l_0 < \infty$ and $u_0 \in H$ such that $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$. Then QV $(b^t; l_0, u_0)$ has at most one solution on [0, T]for each $\{b^t\} \in B_T(\beta_0, \beta_1)$.

5. Asymptotic behaviour

In this section we investigate the asymptotic behaviour of the solution to QV $(b^t; l_0, u_0)$ on $[0, \infty)$.

THEOREM 5.1. Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$ and suppose there are two functions g and q^* on $[0, \infty)$, such that

g is non-negative and non-increasing on
$$[0, \infty)$$
,
 $a \in L^1(0, \infty), a^* \in L^{\infty}(0, \infty) \cap L^1(0, \infty)$

and

$$g^*(t) \in \partial b^t(g(t)) \text{ for all } t \in [0, \infty).$$

$$(5.1)$$

Let $0 < l_0 < \infty$ and $u_0 \in H$ such that $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$, and let $\{l, u\}$ be the solution to $QV(b^t; l_0, u_0)$ on $[0, \infty)$. Then

$$l_{\infty} \equiv \lim_{t \to \infty} l(t) < \infty$$

In order to show this theorem we prepare two lemmas. Let $\{b^i\}$ and g be as in Theorem 5.1, and define a function \hat{b}^t on **R** by

$$\hat{b}^{t}(r) = \begin{cases} b^{t}(r) & \text{if } r \in D(b^{t}) \text{ and } r \ge g(t), \\ \infty & \text{if } r < g(t), \end{cases}$$
(5.2)

for each $t \in [0, \infty)$. Evidently, \hat{b}^t is proper, l.s.c. and convex on **R**. Besides, we have the following lemma.

LEMMA 5.1. Let $\{b^i\}$, g and g^* be as in Theorem 5.1, and $\{\hat{b}^i\}$ be as given by (5.2). Then we have:

- (i) $b^t (r_1 \wedge r_2) + \hat{b}^t (r_1 \vee r_2) \leq b^t (r_1) + \hat{b}^t (r_2)$ for any $t \in [0, \infty)$ and $r_1, r_2 \in \mathbb{R}$. (ii) If $r \in D(b^t)$ and r > g(t), then $\partial \hat{b}^t(r) = \partial b^t(r)$.

(iii) If we put

$$\widehat{\beta}_{1}(t) = \int_{0}^{t} \left\{ 3 |g^{*}|_{L^{\infty}(0,\infty)} |\beta'_{0}(\tau)| + |\beta'_{1}(\tau)| \right\} d\tau \text{ for } t \ge 0,$$

then $\{\hat{b}^t\} \in B_{\infty}(\beta_0, \hat{\beta}_1)$.

Proof. (i) and (ii) can be immediately derived from the definition of \hat{b}^t , and clearly $\partial \hat{b}^t(r) = \emptyset$ for r < 0. Now, let $0 < s \le t < \infty$ and $r \in D(\hat{b}^s)$, i.e. $r \in D(b^s)$ with $r \ge g(s)$. Then, by assumption, there is $\tilde{r} \in D(b^t)$ such that One phase Stefan problem

$$|\tilde{r} - r| \le |\beta_0(t) - \beta_0(s)| \left(1 + |r| + |\hat{b}^s(r)|^{1/2}\right)$$
(5.3)

and

$$b^{t}(\tilde{r}) - \hat{b}^{s}(r) \leq |\beta_{1}(t) - \beta_{1}(s)| \left(1 + |r|^{2} + |\hat{b}^{s}(r)|\right).$$
(5.4)

Putting $r_1 = \tilde{r} \lor g(t)$, we are going to show

$$|r_1 - r| \le |\beta_0(t) - \beta_0(s)| \left(1 + |r| + |\hat{b}^s(r)|^{1/2}\right)$$
(5.5)

and

$$\hat{b}^{t}(r_{1}) - \hat{b}^{s}(r) \leq |\hat{\beta}_{1}(t) - \hat{\beta}_{1}(s)| \left(1 + |r|^{2} + |\hat{b}^{s}(r)|\right).$$
(5.6)

Indeed, in case $\tilde{r} \ge g(t)$, (5.5) and (5.6) obviously hold by (5.3) and (5.4). Next, assume $\tilde{r} < g(t)$, i.e. $r_1 = g(t)$. Then, since $\tilde{r} < g(t) \le g(s) \le r$, (5.5) follows immediately from (5.3), and

$$|\tilde{r} - g(t)| \le |\tilde{r} - r| \le |\beta_0(t) - \beta_0(s)| (1 + |r| + |\hat{b}^s(r)|^{1/2}).$$

Also, by (5.1),

$$g^{*}(t)\left(\tilde{r} - g(t)\right) \leq b^{t}\left(\tilde{r}\right) - b^{t}\left(g(t)\right)$$

and hence it follows from (5.4) that

$$\hat{b}^{t}(r_{1}) - \hat{b}^{s}(r) \left(= \hat{b}^{t}(g(t)) - \hat{b}^{s}(r) \right) \leq \\ \leq \{3 | g^{*}(t) | | \beta_{0}(t) - \beta_{0}(s) | + |\beta_{1}(t) - \beta_{1}(s) | \} \left(1 + |r|^{2} + |\hat{b}^{s}(r)| \right).$$

Thus (5.5) and (5.6) hold, and $\{\hat{b}^t\} \in B_{\infty}(\beta_0, \hat{\beta}_1)$.

For the moment we postulate all the assumptions of Theorem 5.1. Now, choose a number \hat{l}_0 satisfying $\hat{l}_0 > l_0$. Then, on account of Lemma 5.1, we see by applying Theorems 1.1 and 4.1 that $QV(\hat{b}^t; \hat{l}_0, u_0)$ has a unique solution $\{\hat{l}, \hat{u}\}$ on $[0, \infty)$ and

$$l \leq \hat{l} \text{ on } [0, \infty), \ u \leq \hat{u} \text{ on } [0, \infty) \times (0; \infty).$$
(5.7)

Moreover, we have

LEMMA 5.2. If $\hat{u}(0, t) > g(t)$ for t in a set with positive linear measure, then there are numbers T > 0 and $0 < \delta < \hat{l}_0$, such that

$$\hat{u}(x,t) \ge \left(1 - \frac{x}{\delta}\right) g(t) \text{ for } (x,t) \in [0,\delta] \times [T,\infty).$$
(5.8)

Proof. First, take T > 0 so that $\hat{u}(0, T) > g(T)$ and $\hat{u}_x(x, T)$ is absolutely continuous in $x \in (0, \hat{l}(T))$, and choose $0 < \delta < \hat{l}_0$ so that

$$\hat{u}(x, T) \ge \left(1 - \frac{x}{\delta}\right) g(T) \text{ for } x \in [0, \delta].$$

Next, take a sequence $\{g_n\}$ of smooth functions on $[0, \infty)$ such that g_n is non-increasing on $[0, \infty)$, $g_n \leq g$ on $[0, \infty)$ and $g_n(t) \rightarrow g(t)$ as $n \rightarrow \infty$ for

a.e. $t \ge 0$. Then, putting

$$w_n(x,t) = \left(1 - \frac{x}{\delta}\right) g_n(t) \text{ on } [0,\delta] \times [T,\infty),$$

we see that

$$\begin{aligned} v_{n,t} - v_{n,xx} &= \left(1 - \frac{x}{\delta}\right) g'_n(t) \le 0 = \hat{u}_t - \hat{u}_{xx} \text{ a.e. on } [0, \delta] \times [T, \infty), \\ v_n(x, T) &= \left(1 - \frac{x}{\delta}\right) g_n(T) \le \left(1 - \frac{x}{\delta}\right) g(T) \le \hat{u}(x, T) \text{ for } 0 \le x \le \delta, \\ v_n(0, t) &= g_n(t) \le g(t) \le \hat{u}(0, t) \text{ for } T \le t < \infty, \\ v_n(\delta, t) &= 0 \le \hat{u}(\delta, t) \text{ for } T \le t < \infty, \end{aligned}$$

so that by the maximum principle for the linear heat equation we have $\hat{u} \ge v_n$ on $[0, \delta] \times [T, \infty)$. Letting $n \to \infty$ yields (5.8).

Proof of Theorem 5.1. First assume that $\hat{u}(0, t) = g(t)$ for a.e. $t \ge 0$. Then, it follows from (1.12) of (d) in Remark 1.1 that

$$\hat{l}_{\infty}^{2} \equiv \lim_{t \to \infty} \hat{l}(t)^{2} \leq \hat{l}_{\infty}^{2} + 2 \int_{0}^{\infty} x u_{0}(x) dx + 2 \int_{0}^{\infty} g(\tau) d\tau < \infty.$$

Therefore, noting (5.7), we get $l_{\infty} < \infty$. Next, assume that $\hat{u}(0, t) > g(t)$ for t in a set with positive linear measure. Then, by Lemma 5.2, for some T > 0 and $0 < \delta < \hat{l}_0$ we have

$$\frac{\hat{u}(x,t)-g(t)}{x} \ge -\frac{1}{\delta}g(t) \text{ for } (x,t)\in[0,\delta]\times[T,\infty).$$
(5.9)

Note that $[T, \infty)$ can be divided into two sets $J = \{t \ge T; \hat{u}(0, t) = g(t)\}$ and $J' = \{t \ge T; \hat{u}(0, t) > g(t)\}$, since $\hat{u}(0, t) \ge g(t)$ for all $t \ge T$. If $t \in J$ and $\hat{u}_x(0+, t)$ exists, then we infer from (5.9) that

$$\hat{u}_x(0+,t) \ge -\frac{1}{\delta}g(t).$$

Also, if $t \in J'$ and $\hat{u}_x(0+, t) \in \partial \hat{b}^t(\hat{u}(0, t))$, then we have by the monotonicity of $\partial \hat{b}^t$ with (5.1) and (ii) of Lemma 5.1

$$\hat{u}_x\left(0+,\,t\right) \ge g^*\left(t\right).$$

Therefore,

$$-\hat{u}_x(0+,t) \leq \frac{1}{\delta} g(t) + |g^*(t)| \text{ for a.e. } t \geq T.$$

Using (1.11) of (d) in Remark 1.1, we obtain

$$\hat{l}_{\infty} \leq \hat{l}(T) + \int_{0}^{\infty} \hat{u}(x, T) \, dx + \int_{T}^{\infty} \left\{ \frac{1}{\delta} g(t) + |g^{*}(t)| \right\} dt < \infty,$$

so that $l_{\infty} < \infty$.

THEOREM 5.2. Let $\{b_1^t\} \in B_{\infty}(\beta_{1,0}, \beta_{1,1}), 0 < l_{1,0} < \infty$, and $u_{1,0} \in H$ such that $u_{1,0} \ge 0$ a.e. on $[0, \infty)$ and $u_{1,0} = 0$ a.e. on $[l_{1,0}, \infty)$. Suppose that corresponding to these $\{b_1^t\}, l_{1,0}$ and $u_{1,0}$ there exist $\{b^t\}, g, g^*, l_0$ and u_0 , such that all the assumptions of Theorem 5.1 are satisfied, and moreover

$$l_{1,0} \leq l_0, u_{1,0} \leq u_0 \text{ a.e. on } [0,\infty)$$

and

 $b_1^t (r_1 \wedge r_2) + b^t (r_1 \vee r_2) \leq b_1^t (r_1) + b^t (r_2)$ for any $t \in [0, \infty)$ and $r_1, r_2 \in \mathbb{R}$. Then

$$l_{1,\infty} \equiv \lim_{t \to \infty} l_1(t) < \infty,$$

where $\{l_1, u_1\}$ is the solution to QV $(b_1^t; l_{1,0}, u_{1,0})$ on $[0, \infty)$.

Proof. By Theorems 1.1 and 4.1, QV $(b^t; l_0, u_0)$ has a unique solution $\{l, u\}$ on $[0, \infty)$ and $l_1 \leq l$ on $[0, \infty)$. Besides, by Theorem 5.1, $\lim_{t \to \infty} l(t) < \infty$, so that $l_{1,\infty} < \infty$.

Next, under the assumption $l_{\infty} < \infty$, we investigate the asymptotic behaviour of u.

THEOREM 5.3. Let $\{b^i\} \in B_{\infty}(\beta_0, \beta_1)$ with $\beta'_0 \in L^1(0, \infty) \cap L^2(0, \infty)$ and $\beta'_1 \in L^1(0, \infty)$, and suppose $b^i \to b^{\infty}$ on \mathbb{R} as $t \to \infty$ in the sense of Mosco for a proper l.s.c. convex function b^{∞} on \mathbb{R} . Also, let $0 < l_0 < \infty$ and $u_0 \in H$ with $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$, and let $\{l, u\}$ be the solution to QV $(b^i; l_0, u_0)$ on $[0, \infty)$. If $l_{\infty} < \infty$, then

$$u(\cdot, t) \to 0$$
 in X as $t \to \infty$

and

$$0 \in \partial b^{\infty}$$
 (0).

Proof. By virtue of Lemma 3.2, u(t) converges in X as $t \to \infty$ and the limit u_{∞} is given by

$$u_{\infty}(x) = \begin{cases} c_{\infty} \left(1 - \frac{x}{l_{\infty}} \right) & \text{for } 0 \leq x \leq l_{\infty}, \\ 0 & \text{for } l_{\infty} < x < \infty, \end{cases}$$

with the non-negative constant c_{∞} satisfying

$$-\frac{c_{\infty}}{l_{\infty}}\in\partial b^{\infty}(c_{\infty}).$$

If $c_{\infty} = 0$ were shown, the proof of the theorem would be complete. Suppose for a contradiction that $c_{\infty} > 0$. Then, since $u(t) \rightarrow u_{\infty}$ in X and $l(t) \rightarrow l_{\infty}$ as $t \rightarrow \infty$, for each positive number ε with $\varepsilon < c_{\infty}$ there is $t_{\varepsilon} > 0$ such that

$$\varepsilon > l(t)^2 + 2\int_0^{l(t)} xu(x, t) \, dx - l(s)^2 - 2\int_0^{l(s)} xu(x, s) \, dx \, \left(= 2\int_s^t u(0, \tau) \, d\tau \right)$$

and

$$u(0,s) \ge c_{\infty} - \varepsilon$$

for all s, t with $t_{\varepsilon} \leq s \leq t < \infty$. Hence

$$\varepsilon > 2 (c_{\infty} - \varepsilon) (t - s)$$

for all s, t with $t_{\varepsilon} \leq s \leq t < \infty$, which is impossible. Thus $c_{\infty} = 0$ must be true.

6. Further investigations of the asymptotic behaviour

In this section we investigate the asymptotic behaviour of u in the case where $\lim l(t)$ may be infinite.

THEOREM 6.1. Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$ with $\beta'_0 \in L^1(0, \infty) \cap L^2(0, \infty)$ and $\beta'_1 \in L^1(0, \infty)$, and suppose $b^t \to b^{\infty}$ on \mathbb{R} as $t \to \infty$ in the sense of Mosco for a proper l.s.c. convex function b^{∞} on \mathbb{R} . Let $0 < l_0 < \infty, u_0 \in H$ with $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$, and let $\{l, u\}$ be the solution to QV $(b^t; l_0, u_0)$ on $[0, \infty)$. Then we have:

(i) If $0 \notin \bigcup_{r \ge 0} \partial b^{\infty}(r)$, then $u(x, t) \to \infty$ as $t \to \infty$ uniformly on each bounded

interval of x.

(ii) If $0 \in \bigcup_{r \ge 0} \partial b^{\infty}(r)$, then $\liminf_{t \to \infty} u(x, t) \ge c_*$ uniformly on each bounded interval of x where

 $c_* = \inf \{ r \ge 0; 0 \in \partial b^{\infty}(r) \} \text{ (note that } 0 \in \partial b^{\infty}(c_*) \text{)}.$

In our proof of Theorem 6.1 we consider an auxiliary Cauchy problem for given $0 < t_0 < \infty$ and $0 < L < \infty$:

$$\begin{cases} -v'(t) \in \partial \psi_L^t(v(t)), \ t_0 < t < \infty, \\ v(t_0) = 0, \end{cases}$$
(6.1)

where ψ_L^t is a proper l.s.c. convex function on H given by

$$\psi_{L}^{t}(z) = \begin{cases} \frac{1}{2} |z_{x}|_{H}^{2} + b^{t}(z(0)) \text{ if } z \in X, z(0) \in D(b^{t}) \text{ and } z = 0 \text{ on } [L, \infty), \\ \infty & \text{otherwise.} \end{cases}$$

LEMMA 6.1. Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$ with $\beta'_0 \in L^2(0, \infty) \cap L^1(0, \infty)$ and $\beta'_1 \in L^1(0, \infty)$ and b^{∞} be a proper l.s.c. convex function on \mathbb{R} such that $b^t \to b^{\infty}$ on \mathbb{R} as $t \to \infty$ in the sense of Mosco. Then problem (6.1) has a unique solution v on $[t_0, \infty)$, and $v(t) \to v_L$ in X as $t \to \infty$, where

$$v_L(x) = \begin{cases} c_L \left(1 - \frac{x}{L}\right) & \text{for } 0 \le x \le L, \\ 0 & \text{for } L < x < \infty, \end{cases}$$
(6.2)

with the constant c_L satisfying $-c_L/L \in \partial b^{\infty}(c_L)$.

This lemma is a direct consequence of Lemma 3.2.

Proof of Theorem 6.1. On account of Theorem 5.3, it suffices to prove the theorem in the case of $l_{\infty} \equiv \lim_{t \to \infty} l(t) = \infty$. In the rest of the proof, suppose that $l_{\infty} = \infty$. Let t_0 be any positive number and take $l(t_0)$ as L. Then, by Corollary 2 to Lemma 3.1,

$$v \le u \text{ on } [0, \infty) \times (t_0, \infty), \tag{6.3}$$

where v is the solution to (6.1). Hence, by Lemma 6.1,

$$v_L(x) \le \liminf u(x, t) \text{ uniformly in } x \in [0, \infty).$$
 (6.4)

Now, in addition, suppose $0 \in \bigcup_{r \ge 0} \partial b^{\infty}(r)$. Then we have $0 \le c_L \le c_*$ by the monotonicity of ∂b^{∞} , where c_L is as in (6.2). Also, let c' be any cluster point of c_L as $L \to \infty$. Then $0 \le c' \le c_*$ and $0 \in \partial b^{\infty}(c')$, so that $c' = c_*$, i.e.

$$c_* = \lim_{L \to \infty} c_L. \tag{6.5}$$

We can derive (ii) of Theorem 6.1 from (6.2), (6.4) and (6.5). Next, suppose $0 \notin \bigcup_{\substack{r \ge 0 \\ r \ge 0}} \partial b^{\infty}(r)$. In this case, we see easily that $c_L \to \infty$ as $L \to \infty$, so that (i)

of the theorem follows from (6.3) and (6.4).

We have given the asymptotic evaluation of u from below. In the next theorem we evaluate it from above.

THEOREM 6.2. Let $\{b^t\} \in B_{\infty}(\beta_0, \beta_1)$, and suppose there are two functions g and g^* on $[0, \infty)$ such that

$$g \ge 0$$
 on $[0, \infty), g^* \in W^{1,1}(0, \infty)$

Let $0 < l_0 < \infty$, $u_0 \in H$ such that $u_0 \ge 0$ a.e. on $[0, \infty)$ and $u_0 = 0$ a.e. on $[l_0, \infty)$, and let $\{l, u\}$ be the solution to $QV(b^t; l_0, u_0)$ on $[0, \infty)$. Then

$$\limsup u(x,t) \le g^{\infty} \text{ uniformly in } x \in [0,\infty), \tag{6.6}$$

where $g^{\infty} = \limsup_{t \to \infty} g(t)$.

In order to prove this theorem, we consider the following problem:

$$\begin{cases} -w'(t) \in \partial \psi^{t}(w(t)), \ t_{0} < t < \infty, \\ w'(t_{0}) = u(t_{0}), \end{cases}$$
(6.7)

where $\{l, u\}$ is the solution to QV $(b^t; l_0, u_0)$ on $[0, \infty)$, $0 < t_0 < \infty$ and

$$\psi^{t}(z) = \begin{cases} \frac{1}{2} |z_{x}|_{H}^{2} - |g^{*}(t)| z(0) \text{ if } z \in X, \ z(0) \ge 0 \text{ and } z = 0 \text{ on } [l(t), \infty), \\ \infty & \text{otherwise.} \end{cases}$$
(6.8)

LEMMA 6.2. Under the same assumptions and notations as in Theorem 6.2, problem (6.7) has 'a unique solution w on $[t_0, \infty)$ such that $w \ge 0$ on $[0, \infty) \times (t_0, \infty)$ and

$$w(x, t) \rightarrow 0$$
 as $t \rightarrow \infty$ uniformly in $x \in [0, \infty)$.

Proof. We set

$$b_{*}^{t}(r) = \begin{cases} -|g^{*}(t)| \ r & \text{if } r \ge 0, \\ \infty & \text{if } r < 0 \end{cases}$$

for each $t \ge 0$ and

$$b_*^{\infty}(r) = \begin{cases} 0 & \text{if } r \ge 0, \\ \infty & \text{if } r < 0. \end{cases}$$

Since $g^*(t) \to 0$ as $t \to \infty$, it follows easily that $\{b_*^t\} \in B_{\infty}(0, g^*)$ and $b_*^t \to b_*^{\infty}$ on **R** as $t \to \infty$ in the sense of Mosco, so that $\psi^t \to \psi^{\infty}$ on *H* as $t \to \infty$ in the sense of Mosco (cf. Lemma 2.2), where ψ^t is as given by (6.8) and

$$b^{\infty}(z) = \begin{cases} \frac{1}{2} |z_x|_H^2 & \text{if } z \in X, \ z(0) \ge 0 \text{ and } z = 0 \text{ on } [l_{\infty}, \infty), \\ \infty & \text{otherwise,} \end{cases}$$

with $l_{\infty} \equiv \lim_{t \to \infty} l(t)$; note here that the restriction z = 0 on $[l_{\infty}, \infty)$ is deleted if $l_{\infty} = \infty$. Also, by (i) of Lemma 2.4 and (i) of Theorem A.1 in the Appendix, (6.7) has a unique solution w on $[t_0, \infty)$. Since $-w'(\tau) \in \partial \psi^{\tau}(w(\tau))$ for a.e. $\tau \ge t_0$, we have

and

$$\frac{1}{2} \frac{d}{d\hat{\tau}} |w(\tau)|_{H}^{2} = (w'(\tau), w(\tau))_{H} \leq -|w_{x}(\cdot, \tau)|_{H}^{2} + |g^{*}(\tau)| w(0, \tau)$$
(6.9)

for a.e. $\tau \ge t_0$. We note here that

$$|w(0,\tau)| \le |w_x(\cdot,\tau)|_H + |w(\cdot,\tau)|_H \text{ for a.e. } \tau \ge t_0.$$
(6.10)

From (6.9) and (6.10) it follows that

$$\frac{d}{d\tau} |w(\tau)|_{H}^{2} \leq |g^{*}(\tau)| |w(\tau)|_{H}^{2} + |g^{*}(\tau)|^{2} + |g^{*}(\tau)| \text{ for a.e. } \tau \geq t_{0}.$$

Since $|g^*| \in L^1(0, \infty)$ and $|g^*|^2 \in L^1(0, \infty)$, we have $w \in L^{\infty}(t_0, \infty; H)$ by Gronwall's inequality. Accordingly, Theorem A.3 in the Appendix implies that $w(t) \to w_{\infty}$ weakly in H and $\psi^t(w(t)) \to \psi^{\infty}(w_{\infty}) = \min \psi^{\infty}(=0)$ as $t \to \infty$ for some $w_{\infty} \in X$. It is not difficult to see that $w_{\infty} \equiv 0$ and $w(x, t) \to 0$ as $t \to \infty$ uniformly in $x \in [0, \infty)$.

Proof of Theorem 6.2. It suffices to show (6.6) in the case of $g^* < \infty$. In this case, let ε be an arbitrary positive number, and choose $t_{\varepsilon} > 0$ so that

$$g(t) < g^{\infty} + \varepsilon$$
 for all $t \ge t_{\varepsilon}$.

Also, consider problem (6.7) with $t_0 = t_{\varepsilon}$ and denote by w_{ε} its solution on $[t_{\varepsilon}, \infty)$. Then, by Lemma 6.2,

 $w_{\varepsilon}(x,t) \to 0$ as $t \to \infty$ uniformly in $x \in [0,\infty)$.

Now we are going to show that $u \leq w_{\varepsilon} + g^{\infty} + \varepsilon$ on $[0, \infty) \times (t_{\varepsilon}, \infty)$. In fact, we have

$$u_t - u_{xx} = w_{\varepsilon,t} - w_{\varepsilon,xx} = 0 \text{ a.e. on } \{(x, t); 0 < x < l(t), t_{\varepsilon} < t < \infty\},$$
$$u(x, t_{\varepsilon}) = w_{\varepsilon}(x, t_{\varepsilon}) \text{ for a.e. } x \ge 0,$$
$$u = w_{\varepsilon} = 0 \text{ on } \{(x, t); l(t) \le x < \infty, t_{\varepsilon} < t < \infty\}.$$

Besides, if $t > t_{\varepsilon}$, $u(0, t) > w_{\varepsilon}(0, t) + g^{\infty} + \varepsilon (> g(t))$ and $u_{x}(0+, t) \in \partial b^{t}(u(0, t))$, then we see from the monotonicity of ∂b^{t} that

 $u_x\left(0+,t\right) \ge g^*\left(t\right).$

Also we note

$$w_{\varepsilon,x}(0+,t) \leq -|g^*(t)|$$
 for a.e. $t \geq t_{\varepsilon}$.

Hence

$$(u_{x}(0+,t)-w_{\varepsilon,x}(0+t))(u(0,t)-w_{\varepsilon}(0,t)-g^{\infty}-\varepsilon)^{+} \ge 0 \text{ for a.e. } t \ge t_{\varepsilon},$$

so that on account of Lemma 3.1

 $u \leq w_{\varepsilon} + g^{\infty} + \varepsilon$ on $[0, \infty) \times (t_{\varepsilon}, \infty)$.

16 Control and Cybernetics

Hence

 $\limsup_{t \to \infty} u(x, t) \leq \lim_{t \to \infty} w_{\varepsilon}(x, t) + g^{\infty} + \varepsilon = g^{\infty} + \varepsilon \text{ uniformly in } x \in [0, \infty).$ Since ε is arbitrary, we get (6.6).

Appendix Some abstract results on nonlinear evolution equations

Let *H* be an abstract Hilbert space and $\{\varphi^t\} = \{\varphi^t; 0 \le t < \infty\}$ be a family of proper l.s.c. convex functions on *H*. Consider the Cauchy problem CP $(\varphi^t; u_0)$ on $[0, T], 0 < T < \infty$:

$$\operatorname{CP}(\varphi^{t}; u_{0}) : \begin{cases} -u'(t) \in \partial \varphi^{t}(u(t)), \ 0 < t < T, \\ u(0) = u_{0}, \end{cases}$$

where u_0 is given in H. A function $u: [0, T] \rightarrow H$ is called a solution to $CP(\varphi^t; u_0)$ on [0, T], if it fulfills:

- (a) $u \in C([0, T]; H) \cap W^{1,2}(\delta, T; H)$ for every $0 < \delta < T$ and $u(0) = u_0$,
- (b) $t \to \varphi^t(u(t))$ is integrable on [0, T] and is bounded on $[\delta, T]$ for every $0 < \delta < T$, and
- (c) $-u'(t) \in \partial \varphi^t(u(t))$ for a.e. $t \in [0, T]$.

Also, $u: [0, \infty) \to H$ is called a solution to $CP(\varphi^t; u_0)$ on $[0, \infty)$, if it is a solution to $CP(\varphi^t; u_0)$ on every finite interval [0, T].

Let $u_{0,i} \in H$ and u_i be a solution to CP $(\varphi^t; u_{0,i})$ on [0, T], i = 1, 2. Then we have (cf. [9; §1.1])

$$|u_1(t) - u_2(t)|_H \le |u_1(s) - u_2(s)|_H$$
 for every $0 \le s \le t \le T$,

and therefore $u_{0,1} = u_{0,2}$ implies $u_1 = u_2$ on [0, T]. This shows that CP $(\varphi^t; u_0)$ has at most one solution for each $u_0 \in H$.

The existence of a solution to CP (φ^t ; u_0) is shown for { φ^t } belonging to the following class $\Phi(\{\alpha_{o,r}\}, \{\alpha_{1,r}\})$: given two families $\{\alpha_{0,r}\} = \{\alpha_{0,r}; 0 \le r < \infty \} \subset W_{\text{loc}}^{1,2}([0,\infty))$ and $\{\alpha_{1,r}\} = \{\alpha_{1,r}; 0 \le r < \infty \} \subset W_{\text{loc}}^{1,1}([0,\infty))$, we denote by $\Phi(\{\alpha_{0,r}\}, \{\alpha_{1,r}\})$ the set of all $\{\varphi^t\}$ having the property

for each $0 \le s \le t < \infty$ and each $z \in D(\varphi^s)$ with $|z|_H \le r$ there is $\tilde{z} \in D(\varphi')$ such that

$$|\tilde{z}-z|_{H} \leq |\alpha_{0,r}(t)-\alpha_{0,r}(s)| (1+|\varphi^{s}(z)|^{1/2})$$

and

(*)

$$\varphi^{t}(\tilde{z}) - \varphi^{s}(z) \leq |\alpha_{1,r}(t) - \alpha_{1,r}(s)| (1 + |\varphi^{s}(z)|).$$

THEOREM A.1 (cf. [9; §1.1, §2.8]). Let $\{\varphi^i\} \in \Phi(\{\alpha_{0,r}\}, \{\alpha_{1,r}\})$ and $u_0 \in \overline{D(\varphi^0)}$. Then we have:

(i) CP (φ^t ; u_0) admits one and only one solution u on $[0, \infty)$ such that $\sqrt{t} u' \in L^2(0, T; H)$ for every finite T > 0

and

$$t \rightarrow t \varphi^t (u(t))$$
 is bounded on $(0, T]$ for every finite $T > 0$.

In particular, if $u_0 \in D(\varphi^0)$, then $u' \in L^2(0, T; H)$ and $t \to \varphi^t(u(t))$ is bounded on [0, T] for every finite T > 0.

(ii) The solution u to CP (φ^t ; u_0) on $[0, \infty)$ satisfies

$$\varphi^{t}(u(t)) - \varphi^{s}(u(s)) + \frac{1}{2} \int_{s}^{t} |u'(\tau)|_{H}^{2} d\tau \leq \int_{s}^{t} k_{r}(t) \left(1 + |\varphi^{\tau}(u(\tau))|\right) d\tau$$

for every $0 < s \le t < \infty$ with $\sup_{0 \le \tau \le t} |u(\tau)|_{H} < r$, where

$$k_r(\tau) = 4 |\alpha'_{0,r}(\tau)|^2 + |\alpha'_{1,r}(\tau)|$$
 for $\tau \ge 0$ and $r \ge 0$.

Next, we recall a notion of the convergence of convex functions due to Mosco [12]. Given a sequence $\{\psi_n\}$ of proper l.s.c. convex functions on H and a proper l.s.c. convex function ψ on H, we say that ψ_n converges to ψ on H as $n \to \infty$ in the sense of Mosco if the following (a) and (b) are satisfied:

(a) If $z_n \to z$ weakly in H (as $n \to \infty$), then

$$\liminf_{n \to \infty} \psi_n(z_n) \ge \psi(z).$$

(b) For each $z \in D(\psi)$ there is a sequence $\{z_n\}$ such that $z_n \to z$ in H and $\psi_n(z_n) \to \psi(z)$.

With this notion we give a convergence result of solutions to our Cauchy problems.

THEOREM A.2 (cf. [7; Theorem 1] or [9; §2.7]). Let $\{\varphi^t\}$ and $\{\varphi^t_n\}, n = 1, 2, ..., be in \Phi(\{\alpha_{0,r}\}, \{\alpha_{1,r}\})$ such that

 $\varphi_n^t \to \varphi^t$ on H as $n \to \infty$ in the sense of Mosco for each $t \ge 0$.

Let $u_0 \in \overline{D(\phi^0)}$ and $u_{0,n} \in \overline{D(\phi_n^0)}$, n = 1, 2, ..., such that $u_{0,n} \to u_0$ in H. Then, denoting by u and u_n the solutions to CP $(\phi^t; u_0)$ and CP $(\phi_n^t; u_{0,n})$ on $[0, \infty)$, respectively, we have

 $u_n \rightarrow u$ in C([0, T]; H)

and

$$\int_{0}^{T} \varphi_{n}^{t}\left(u_{n}\left(t\right)\right) dt \rightarrow \int_{0}^{T} \varphi^{t}\left(u\left(t\right)\right) dt$$

as $n \to \infty$ for each finite T > 0.

Finally we mention a result concerning the asymptotic behaviour of the solution to CP (φ^t ; u_0) on $[0, \infty)$. Given a family { φ^t } and a proper l.s.c. convex function φ^{∞} on H, we say that $\varphi^t \to \varphi^{\infty}$ on H as $t \to \infty$ in the sense of Mosco, if $\varphi^{t_n} \to \varphi^{\infty}$ on H as $n \to \infty$ in the sense of Mosco for every sequence { t_n } with $t_n \to \infty$ as $n \to \infty$.

THEOREM A.3 (cf. [8; Theorem 1]). Let $\{\varphi^t\} \in \Phi(\{\alpha_{0,r}\}, \{\alpha_{1,r}\})$ with $\alpha'_{0,r} \in L^2(0, \infty)$ and $\alpha'_{1,r} \in L^1(0, \infty)$ for any $r \ge 0$, and suppose that $\varphi^t \to \varphi^\infty$, on H as $t \to \infty$ in the sense of Mosco for a proper l.s.c. convex function φ^∞ on H. Further, let $u_0 \in \overline{D(\varphi^0)}$, and u be the solution to CP $(\varphi^t; u_0)$ on $[0, \infty)$. If φ^∞ is strictly convex on $D(\varphi^\infty)$ and $\sup_{0 \le t < \infty} |u(t)|_H < \infty$, then there exists $u_\infty \in D(\varphi^\infty)$ such that $u(t) \to u_\infty$ weakly in H, $\varphi^t(u(t)) \to \varphi^\infty(u_\infty)$ as $t \to \infty$ and $\varphi^\infty(u_\infty) = \min \varphi^\infty$, i.e. $0 \in \partial \varphi^\infty(u_\infty)$.

REMARK. In applying [8; Theorem 1], for each $z \in D(\varphi^{\infty})$ it is necessary to show the existence of a function $w: [0, \infty) \to H$ such that $w(t) \to z$ in Hand $\varphi^t(w(t)) \to \varphi^{\infty}(z)$ as $t \to \infty$. Under the assumptions of Theorem A.3, given z in $D(\varphi^{\infty})$, such a function w can be constructed as follows: First, take a sequence $\{z_n\}$ in H such that $z_n \to z$ in H and $\varphi^n(z_n) \to \varphi^{\infty}(z)$ as $n \to \infty$. Let r and L be non-negative numbers satisfying $|z_n|_H \leq r$ and $|\varphi^n(z_n)| \leq L$ for all n, respectively. Then, by assumption, for each $t \in [n, n+1)$, n = 0, 1, ..., there exists $w(t) \in D(\varphi^t)$ such that

$$|w(t) - z_n|_H \leq |\alpha_{0,r}(t) - \alpha_{0,r}(n)| (1 + L^{1/2})$$

and

$$\varphi^{t}(w(t)) - \varphi^{n}(z_{n}) \leq |\alpha_{1,r}(t) - \alpha_{1,r}(n)| (1+L).$$

It is easy to see that this function w has the desired property.

References

- BRÉZIS H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert., Math. Studies 5, Amsterdam-London, North-Holland, 1973.
- [2] CANNON J. R., HILL C. D. Existence, uniqueness, stability and monotone dependence in a Stefan problem for the heat equation. J. Math. Mech. 17 (1967), 1-19.
- [3] CANNON J. R., HILL C. D. Remarks on a Stefan problem. J. Math. Mech. 17 (1967), 433-441.
- [4] CANNON J. R., HILL C. D. On the infinite differentiability of the free boundary in a Stefan problem. J. Math. Anal. Appl. 22 (1967), 385-397.
- [5] CANNON J. R., PRIMICERIO M. Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary. J. Math. Anal. Appl. 35 (1971), 361-373.
- [6] FFIEDMAN A. Partial differential equations of parabolic type. Englewood Cliffs, New Jersey, Prentice-Hall, 1964.
- [7] FUJIYAMA N., WATANABE J. Convergence of subdifferentials and the penalty method. Rep. Univ. Electro-Comm. Sci. Tech. Sect. 28 (1978), 245-258.
- [8] FURUYA H., MIYASHIBA K., KENMOCHI N. Asymptotic behaviour of solutions to a class of nonlinear evolution equations (to appear in *J. Differential Equations*).
- [9] KENMOCHI N. Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull. Fac. Education, Chiba Univ. 30 (1981), 1–87.
- [10] KENMOCHI N. Subdifferential operator approach to a class of free boundary problems. Analysis 3 (1983), 251–281.
- [11] KENMOCHI N. Asymptotic behaviour of the solution to a Stefan-type problem with obstacles on the fixed boundary. *Hiroshima Math. J.* 14 (1984), 1-13.
- [12] Mosco U. Convergence of convex sets and of solutions of variational inequalities. Advances Math. 3 (1969), 510-585.
- [13] RUBINSTEIN L. I. The Stefan problem. Translations of Mathematical Monographs 27, Providence, Rhode Island, Amer. Math. Soc. 1971.
- [14] SCHAEFFER D. G. A new proof of the infinite differentiability of the free boundary in the Stefan problem. J. Differential Equations 20 (1976), 266-269.
- [15] YOTSUTANI S. Stefan problems with the unilateral boundary condition on the fixed boundary I. Osaka J. Math. 19 (1982), 365-403.
- [16] YOTSUTANI S. Stefan problems with the unilateral boundary condition on the fixed boundary III. Osaka J. Math. 20 (1983), 845–862.

Jednofazowe zagadnienia Stefana

z nieliniowymi warunkami brzegowymi na ustalonym brzegu

W pracy rozważa się jednowymiarowe jednofazowe zagadnienia Stefana z jednostronnymi warunkami brzegowymi na ustalonym brzegu. Dowodzi się istnienia globalnego rozwiązania takiego zagadnienia odpowiadającego jego sformułowaniu quasi-wariacyjnemu. Dyskutowane są następujące problemy:

ka) monotoniczna zależność rozwiązania od warunków brzegowych i początkowych, jednoznaczność rozwiązania:

b) asymptotyczne zachowanie swobodnej granicy x = l(t), warunki dostateczne na dane brzegowe, zapewniające skończoność l(t) przy $t \to \infty$;

c) asymptotyczne zachowanie rozwiązania u = u(x, t), zależność lim inf u(x, t) i lim sup u(x, t), przy $t \to \infty$ od danych brzegowych.

Однофазная проблема Стефана

с нелинейными краевыми условиями на фиксированном крае

В работе рассуждается одномерную однофазную проблему Стефана с односторонными краевыми условиями на фиксированном крае. Доказывается существование глобального решения такой проблемы, ответствующего ее квази-вариационной постановке. Рассуждены следующие вопросы:

- а) монотонная зависимость решения от краевых и начальных условий, однозначность решения,
- b) асимптотическое поведение свободной границы x = l(t), достаточные условия для краевых условий, при которых $\lim l(t)$ при $t \to \infty$ конечная,
- с) асимптотическое поведение решения u = u(x, t), зависимость lim inf u(x, t) и lim sup u(x, t) при $t \to \infty$ от краевых условий.