Control

and Cybernetics

One phase Stefan problems with a class of nonlinear boundary conditions on the fixed boundary*)

by

NOBUYUKI KENMOCHI
 Department, of Mathematics
 Faculty of Education
 Chiba University
 Chiba, Japan

0. Introduction

In this paper we consider the following problem: Find a curve $x=l(t)>0$ on $[0, \infty)$ and a function $u=u(x, t)$ on $[0, \infty) \times[0, \infty)$, satisfying

$$
\begin{gather*}
u_{t}-u_{x x}=0 \text { for } 0<x<l(t) \text { and } 0<t<\infty, \tag{0.1}\\
u(x, 0)=u_{0}(x) \text { for } 0<x<\infty, \tag{0.2}\\
u_{x}(0+, t) \in \partial b^{t}(u(0, t)) \text { for } 0<t<\infty, \tag{0.3}\\
u(x, t)=0 \text { for } l(t) \leqq x<\infty \text { and } 0<t<\infty, \tag{0.4}\\
\left\{\begin{array}{l}
l^{\prime}(t)\left(=\frac{d l(t)}{d t}\right)=-u_{x}(l(t)-, t) \text { for } 0<t<\infty, \\
l(0)=l_{0},
\end{array}\right. \tag{0.5}
\end{gather*}
$$

where l_{0} is a given positive number, u_{0} is a given function on $[0, \infty)$ and ∂b^{t} stands for the subdifferential of a given proper lower semicontinuous convex function b^{t} on \mathbf{R}, for each $t \geqq 0$. This is a one phase Stefan problem with the flux $u_{x}(0+, t)$ governed by the subdifferential $\partial b^{t}(u(0, t))$ on the fixed boundary $x=0$.

[^0]This type of Stefan problems was earlier studied by Yotsutani [15, 16]; in fact, he treated the case when b^{t} is independent of t, i.e. $b^{t}(\cdot)=b(\cdot)$, and employed a difference method to obtain some results on the existence--uniqueness of global solutions and their asymptotic behaviour. However, the treatment for the time-dependent case of b^{t} seems to be complicated because of the nonlinearity in the boundary condition (0.3). Recently, the author (cf. [10]) has proposed a new method for Stefan problems of the type mentioned above, giving rise to an easy treatment of the boundary condition (0.3), and showed that the problem $(0.1)-(0.5)$ has a global solution. This method exploits techniques of the theory of nonlinear evolution equations in Hilbert spaces, involving time-dependent subdifferential operators.

The purpose of this paper is to discuss the following three subjects:
(a) The monotone dependence of solutions on $\left\{b^{t}, l_{0}, u_{0}\right\}$ and the uniqueness of solutions.
(b) The asymptotic behaviour of the free boundary $x=l(t)$; an sufficient conditions on $\left\{b^{t}\right\}$ in order that $\lim _{t \rightarrow \infty} l(t)$ is finite.
(c) The asymptotic behaviour of $u=u(x, t)$; and evaluation of $\lim \inf _{t \rightarrow \infty} u(x, t)$ and $\lim \sup _{t \rightarrow \infty} u(x, t)$ in terms of $\left\{b^{t}\right\}$.
In [10; Theorem 1.3], the uniqueness of the solution was verified for a specific class of initial values. In section 4 of this paper we show the uniqueness for a more general class of initial values as an immediate consequence of the monotone dependence of solutions on b^{t}, l_{0}, u_{0}. In [11] the author dealt with a special case of b^{t} of the form

$$
b^{t}(r)= \begin{cases}0 & \text { if } r \geqq g(t), \\ \infty & \text { if } r<g(t),\end{cases}
$$

for a given non-negative function g on $[0, \infty)$, and gave some results about $(a),(b)$ and (c). In this paper we establish some theorems concerning $(a),(b)$ and (c) for our general problem (0.1)-(0.5) by employing the same techniques as in [11].

Notation. For a general (real) Banach space X we denote by $|\cdot|_{X}$ the norm. Also, for a Hilbert space H we denote by $(\cdot, \cdot)_{H}$ the inner product. Given a proper lower semi-continuous (1.s.c.) convex function φ on a Hilbert space, we denote by $\partial \varphi$ the subdifferential operator of φ, by $D(\partial \varphi)$ its domain and by $D(\varphi)$ the effective domain of φ. For these notations and general properties we refer to Brézis [1].

1. Quasi-variational formulation

In this section we formulate a parabolic quasi-variational problem associated with system $(0.1)-(0.5)$.

Existence and uniqueness of a solution to our system are discussed for $\left\{b^{t}\right\}$ in the class $B_{T}\left(\beta_{0}, \beta_{1}\right)$ (or $B_{\infty}\left(\beta_{0}, \beta_{1}\right)$) given below. For $0<T<\infty$, $\beta_{0} \in W^{1,2}(0, T)$ and $\beta_{1} \in W^{1,1}(0, T)$ we denote by $B_{T}\left(\beta_{0}, \beta_{1}\right)$ the set of all $\left\{b^{t}\right\}=\left\{b^{t} ; 0 \leqq t \leqq T\right\}$ of proper 1.s.c. convex functions on \mathbf{R} satisfying the following (b1) and (b2):
(b1) $\partial b^{t}(r) \subset(-\infty, 0]$ if $0 \leqq t \leqq T$ and $r \in D\left(\partial b^{t}\right) \cap(-\infty, 0)$.
(b2) For each $s, t \in[0, T]$ with $s \leqq t$ and each $r \in D\left(b^{s}\right)$ there is $\tilde{r} \in D\left(b^{t}\right)$, such that

$$
|\tilde{r}-r| \leqq\left|\beta_{0}(t)-\beta_{0}(s)\right|\left(1+|r|+\left|b^{s}(r)\right|^{1 / 2}\right)
$$

and

$$
b^{t}(\tilde{r})-b^{s}(r) \leqq\left|\beta_{1}(t)-\beta_{1}(s)\right|\left(1+|r|^{2}+\left|b^{s}(r)\right|\right) .
$$

Also, we denote by $B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0} \in W_{\mathrm{loc}}^{1,2}([0, \infty))$ and $\beta_{1} \in W_{\mathrm{loc}}^{1,1}([0, \infty))$ the set of all $\left\{b^{t}\right\}=\left\{b^{t} ; 0 \leqq t<\infty\right\}$, such that $\left\{b^{t}\right\} \in B_{T}\left(\beta_{0}, \beta_{1}\right)$ for every finite $T>0$.

For simplicity, we set $H=L^{2}(0, \infty), X=W^{1,2}(0, \infty)$, $\Lambda_{T}=\{l \in C([0, T]) ; l$ is positive and non-decreasing on $[0, T]\}, 0<T<\infty$, and

$$
\Lambda_{\infty}=\{l \in C([0, \infty)) ; l \text { is positive and non-decreasing on }[0, \infty)\} .
$$

Given a family $\left\{b^{t}\right\}$ in $B_{T}\left(\beta_{0}, \beta_{1}\right)$ or $B_{\infty}\left(\beta_{0}, \beta_{1}\right)$, we define a function φ_{l}^{t} on H for each $l \in \Lambda_{T}$ or Λ_{∞} and each $t \geqq 0$ as follows:

$$
\varphi_{l}^{t}(z)=\left\{\begin{array}{l}
\frac{1}{2}\left|z_{x}\right|_{H}^{2}+b^{t}(z(0)) \text { if } z \in K_{l}(t) \tag{1.1}\\
\infty \quad \text { otherwise }
\end{array}\right.
$$

where $K_{l}(t)=\left\{z \in X ; z=0\right.$ on $\left.[l(t), \infty), z(0) \in D\left(b^{t}\right)\right\}$. Clearly it is proper, 1.s.c. and convex on H and $D\left(\varphi_{l}^{t}\right)=K_{l}(t)$. We then consider the Cauchy problem CP $\left(\varphi_{l}^{t} ; u_{0}\right) t \in[0, T]$ in H :

$$
\mathrm{CP}\left(\varphi_{l}^{t} ; u_{0}\right):\left\{\begin{array}{l}
-u^{\prime}(t) \in \partial \varphi_{l}^{t}(u(t)), 0<t<T, \\
u(0)=u_{0},
\end{array}\right.
$$

where $0<T<\infty, l \in \Lambda_{T}$ and $u_{0} \in H$ are given; the unknown u is an H-valued function on $[0, T]$, which is identified with the function $u=u(x, t)$ on $[0, \infty) \times[0, T]$ by $[u(t)](x)=u(x, t)$, and $u^{\prime}(t)=(d / d t) u(t)$ in H. By a solution of $\mathrm{CP}\left(\varphi_{1}^{t} ; u_{0}\right)$ on $[0, T]$ we mean an H-valued function u on
$[0, T]$, satisfying

$$
\left\{\begin{array}{l}
u \in C([0, T] ; H) \cap W^{1,2}(\delta, T ; H) \text { for every } 0<\delta<T, \\
t \rightarrow \varphi_{l}^{t}(u(t)) \text { is integrable on }[0, T], \\
t \rightarrow \varphi_{l}^{t}(u(t)) \text { is bounded on }[\delta, T] \text { for every } 0<\delta<T, \\
u(0)=u_{0} \tag{1.3}
\end{array}\right.
$$

and

$$
\begin{equation*}
-u^{\prime}(t) \in \partial \varphi_{l}^{t}(u(t)) \text { for a.e. } t \in[0, T] . \tag{1.4}
\end{equation*}
$$

Also, $u:[0, \infty) \rightarrow H$ is called a solution to $\mathrm{CP}\left(\varphi_{l}^{i} ; u_{0}\right)$ on $[0, \infty)$, if it is a solution to $\mathrm{CP}\left(\varphi_{l}^{t} ; u_{0}\right)$ on every finite interval $[0, T]$.

We are now in a position to give a quasi-variational formulation corresponding to system (0.1)-(0.5).

Definition 1.1. Let $0<T<\infty,\left\{b^{t}\right\} \in B_{T}\left(\beta_{0} ; \beta_{1}\right), 0<l_{0}<\infty$ and $u_{0} \in H$. Then a pair $\{l, u\} \in \Lambda_{T} \times C([0, T] ; H)$ is called a solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on [$0, T$], if the following conditions $(\mathrm{QV} 1)$ and $(\mathrm{QV} 2)$ are fulfilled:
(QV1) u is a solution to $\mathrm{CP}\left(\varphi_{i}^{t} ; u_{0}\right)$ on $[0, T]$.
$(\mathrm{QV} 2) l \in W^{1,2}(\delta, T)$ for every $0<\delta<T, l(0)=l_{0}$ and

$$
\begin{equation*}
l^{\prime}(t)=-u_{x}(l(t)-, t) \text { for a.e. } t \in[0, T] . \tag{1.5}
\end{equation*}
$$

Also, given $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right), 0<l_{0}<\infty$ and $u_{0} \in H$, a pair $\{l, u\}$ in $\Lambda_{\infty} \times C([0, \infty) ; H)$ is called a solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty)$, when it is a solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on every finite interval $[0, T]$.

Remark 1.1. (a) (cf. [10; Lemma 1.2]) For every $l \in \Lambda_{T}$ and every $t \in[0, T], z^{*} \in \partial \varphi_{l}^{t}(z)$ if and only if the following (1.6) and (1.7) hold:

$$
\begin{gather*}
z^{*} \in H \text { and } z \in K_{l}(t) . \tag{1.6}\\
\left(z^{*}, z_{1}^{-z}\right)_{H} \leqq\left(z_{x}, z_{1, x}-z_{x}\right)_{H}+b^{t}\left(z_{1}(0)\right)-b^{t}(z(0)) \text { for all } z_{1} \in K_{l}(t) . \tag{1.7}
\end{gather*}
$$

Also, under (1.6), (1.7) is equivalent to the system $\{(1.8),(1.9)\}$ below:

$$
\begin{gather*}
z_{x x} \in L^{2}(0, l(t)) \text { and } z^{*}=-z_{x x} \text { on }(0, l(t)) . \tag{1.8}\\
z_{x}(0+) \in \partial b^{t}(z(0)) . \tag{1.9}
\end{gather*}
$$

We note by (1.8) that z_{x} is absolutely, continuous on $(0, l(t))$, and hence $z_{x}(0+)$ and $z_{x}(l(t)-)$ exist.
(b) According to the part (a), under (1.2), system $\{(1.3),(1.4)\}$ is equivalent to

$$
\left\{\begin{array}{l}
u_{t}(\cdot, t)-u_{x x}(\cdot, t)=0 \text { in } L^{2}(0, l(t)) \text { for a.e. } t \in[0, T] . \tag{1.10}\\
u(\cdot, 0)=u_{0} \text { in } H, \\
u_{x}(0+, t) \in \partial b^{t}(u(0, t)) \text { for a.e. } t \in[0, T] \\
u(\cdot, t)=0 \text { on }[l(t), \infty) \text { for all } t \in(0, T]
\end{array}\right.
$$

Therefore QV $\left(b^{t} ; l_{0}, u_{0}\right)$ may be regarded as a weak formulation for problem (0.1)-(0.5).
(c) Let $\{l, u\}$ be a solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, T]$. Then, by definition, u is continuous in $(x, t) \in[0, \infty) \times(0, T]$; more precisely, $u \in W^{1,2}(\delta, T ; H) \cap$ $\cap L^{\infty}(\delta, T ; X)(\subset C([0, \infty) \times[\delta, T]))$ for every $0<\delta<T$, which is infered from the boundedness of $t \rightarrow \varphi_{l}^{t}(u(t))$ on [$\left.\delta, T\right]$ for every $0<\delta<T$ and (ii) of Lemma 2.1, proved in the next section.
(d) Observe (cf. [2, 3, 5]), that (1.5) of Definition 1.1 is equivalent to each of the following (1.11) and (1.12):

$$
\begin{array}{r}
l(t)=i(s)+\int_{0}^{l(s)} u(x, s) d x-\int_{0}^{l(t)} u(x, t) d x-\int_{s}^{t} u_{x}(0+, \tau) d \tau \\
\quad \text { for every } 0<s \leqq t \leqq T . \\
l(t)^{2}=l(s)^{2}+2 \int_{0}^{l(s)} x u(x, s) d x-2 \int_{0}^{l(t)} x u(x, t) d x+2 \int_{s}^{t} u(0, \tau) d \tau \tag{1.12}\\
\text { for every } 0 \leqq s \leqq t \leqq T .
\end{array}
$$

These representations of the free boundary $x=l(t)$ appear useful in the sequel.
We recall an existence result for $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$.
Theorem 1.1 (cf. [10; Theorem 1.1]). Let $0<T<\infty,\left\{b^{t}\right\} \in B_{T}\left(\beta_{0}, \beta_{1}\right)$, $0<l_{0}<\infty$ and $u_{0} \in H$ such that $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$. Then there exists at least one solution $\{l, u\}$ to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on [$0, T]$, such that

$$
\begin{gathered}
\sqrt{t} l^{\prime} \in L^{2}(0, T), \\
t \rightarrow t \varphi_{l}^{t}(u(t)) \text { is bounded on }(0, T], \\
\sqrt{t} u^{\prime} \in L^{2}(0, T ; H)
\end{gathered}
$$

and

$$
u \geqq 0 \text { on }[0, \infty) \times(0, T] .
$$

In addition, if $u_{0} \in X$ and $u_{0}(0) \in D\left(b^{0}\right)$, then $l \in W^{1,2}(0, T), t \rightarrow \varphi_{l}^{t}(u(t))$ is bounded on $[0, T]$ and $u \in W^{1,2}(0, T ; H)$.

Remark 1.2. Let $\{l, u\}$ be the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ obtained by Theorem 1.1. and denote $u(0, t)$ by $f(t)$ for $0<t<T$. Then $\{l, u\}$ is the
solution to the usual Stefan problem which is described as a system with the boundary condition $u(0, t)=f(t)$ instead of (0.3). Therefore the solution $\{l, u\}$ has the following properties (i) and (ii) (cf. [4, 14]): (i) u_{t} and $u_{x x}$ are continuous on $\{(x, t) ; 0<x<l(t), 0<t \leqq T\}$, and (ii) $l \in C^{\infty}((0, T])$ and $l^{\prime}(t)=-u_{x}(l(t)-, t)$ for all $t \in(0, T]$. For the systematic study of the usual Stefan problem, see [6, 13].

2. Some lemmas on $\left\{\varphi_{l}^{t}\right\}$

Lemma 2.1. Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ and suppose
$b^{t} \rightarrow b^{\infty}$ on R as $t \rightarrow \infty$ in the sense of Mosco (see the Appendix)
for a proper l.s.c. convex function b^{∞} on \mathbf{R}. Then we have:
(i) There is a constant $C_{1} \geqq 0$, depending only on β_{0}, β_{1} and b^{∞}, such that

$$
\begin{equation*}
b^{t}(r)+C_{1}|r|+C_{1} \geqq 0 \text { for any } t \in[0, \infty) \text { and } r \in \mathbf{R} . \tag{2.2}
\end{equation*}
$$

(ii) There is a constant $C_{2} \geqq 0$, depending only on the constant C_{1} of (i), such that

$$
\begin{gather*}
\left|b^{t}(z(0))\right| \leqq \varphi_{l}^{t}(z)+C_{2}|z|_{H}+C_{2}, \text { and } \tag{2.3}\\
\frac{1}{4}\left|z_{x}\right|_{H}^{2} \leqq \varphi_{l}^{t}(z)+C_{2}|z|_{H}+C_{2} \tag{2.4}
\end{gather*}
$$

for all $l \in \Lambda_{\infty}, t \in[0, \infty)$ and $z \in K_{l}(t)$.
(iii) Let L be a positive number. Then there are constants $C_{3} \geqq 0, C_{3}^{\prime} \geqq 0$, $C_{4} \geqq 0$ and $C_{4}^{\prime} \geqq 0$, depending only on L and C_{2} of (ii), such that

$$
\begin{gather*}
|z|_{H}^{2} \leqq C_{3} \varphi_{l}^{t}(z)+C_{3}^{\prime}, \tag{2.5}\\
\left|\varphi_{l}^{t}(z)\right| \leqq C_{4} \varphi_{l}^{t}(z)+C_{4}^{\prime} \tag{2.6}
\end{gather*}
$$

for all $l \in \Lambda_{r}$ with $\lim _{t \rightarrow \infty} l(t) \leqq L, t \in[0, \infty)$ and $z \in K_{l}(t)$.
Proof. According to $[9 ; \S 1.5]$), there is a constant $c \geqq 0$ corresponding to given $T>0, \beta_{0}, \beta_{1}$ such that

$$
b^{t}(r)+c|r|+c \geqq 0 \text { for any } t \in[0, T] \text { and } r \in \mathbf{R} \text {. }
$$

Besides, by using a result in [7; Lemma 3.1] we can find reals $T>0$ and $c^{\prime} \geqq 0$, depending only on β_{0}, β_{1} and b^{∞}, such that

$$
b^{t}(t)+c^{\prime}|r|+c^{\prime} \geqq 0 \text { for any } t \in[T, \infty) \text { and } r \in \mathbf{R} \text {. }
$$

Therefore (i) holds.
Now, let $z \in K_{l}(t)$. Then we observe

$$
|z(0)| \leqq \int_{0}^{1}\left|\{(1-x) z\}_{x}\right| d x \leqq\left|z_{x}\right|_{H}+|z|_{H} .
$$

Hence, by (2.2),

$$
\begin{aligned}
\left|b^{t}(z(0))\right| & \leqq b^{t}(z(0))+2 C_{1}|z(0)|+2 C_{1} \leqq \\
& \leqq b^{t}(z(0))+\frac{1}{2}\left|z_{x}\right|_{H}^{2}+2 C_{1}|z|_{H}+2 C_{1}^{2}+2 C_{1} \leqq \\
& \leqq \varphi_{l}^{t}(z)+C_{2}|z|_{H}+C_{2}
\end{aligned}
$$

with $C_{2}=2 C_{1}\left(1+C_{1}\right)$, and

$$
\frac{1}{4}\left|z_{x}\right|_{H}^{2} \leqq \frac{1}{2}\left\{\varphi_{l}^{t}(z)+\left|b^{t}(z(0))\right|\right\} \leqq \varphi_{l}^{t}(z)+C_{2}|z|_{H}+C_{2} .
$$

Thus (2.3) and (2.4) hold, and (ii) is proved.
Next, let $l \in \Lambda_{\infty}$ with $\lim _{t \rightarrow \infty} l(t) \leqq L$. Then, since

$$
|z|_{H} \leqq L\left|z_{x}\right|_{H} \text { for any } t \in[0, \infty) \text { and } z \in K_{l}(t)
$$

it follows from (2.4) that (2.5) and (2.6) hold for some non-negative constants $C_{3}, C_{3}^{\prime}, C_{4}, C_{4}^{\prime}$ depending only on L and C_{2}.

Lemma 2.2. Let $l \in \Lambda_{\infty}$ and $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$, and suppose (2.1) holds. Then $\varphi_{1}^{t \rightarrow} \varphi^{\infty}$ on H as $t \rightarrow \infty$ in the sense of Mosco (see the Apendix), where $\varphi^{\infty}(z)=\left\{\begin{array}{l}\frac{1}{2}\left|z_{x}\right|_{H}^{2}+b^{\infty}(z(0)) \text { if } z \in X, z(0) \in D\left(b^{\infty}\right) \text { and } z=0 \text { on }\left[l_{\infty}, \infty\right), \\ \infty \quad \text { otherwise, }\end{array}\right.$
with $l_{\infty}=\lim _{t \rightarrow \infty} l(t)$; note in (2.7) that the restriction $z=0$ on $\left[l_{\infty}, \infty\right)$ is to be deleted if $l_{\infty}=\infty$.

Proof. Let $\left\{t_{n}\right\}$ be any sequence with $t_{n} \rightarrow \infty$ (as $n \rightarrow \infty$), and $\left\{z_{n}\right\}$ be any sequence in H such that $z_{n} \rightarrow z$ weakly in H and $A \equiv \lim \inf _{t \rightarrow \infty} \varphi_{l}^{t_{n}}\left(z_{n}\right)<\infty$. Then we see from (2.4) of Lemma 2.1 that there is a subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$ such that $\varphi_{l^{\prime}}^{t^{\prime}}\left(z_{n^{\prime}}\right) \rightarrow A$ and $z_{n^{\prime}} \rightarrow z$ weakly in X, hence $z_{n^{\prime}}(0) \rightarrow z(0)$ as $n^{\prime} \rightarrow \infty$. Therefore $A \geqq \varphi^{\infty}(z)$. Next, let z be any element of $D\left(\varphi^{\infty}\right)$. Then, by our assumptions, there is a sequence $\left\{r_{n}\right\}$ such that $r_{n} \rightarrow z(0)$ and $b^{t_{n}}\left(r_{n}\right) \rightarrow$ $\rightarrow b^{\infty}(z(0))$. Here, using a smooth function ζ on \mathbf{R} such that $0 \leqq \zeta \leqq 1$ on $\mathbf{R}, \zeta=1$ on $(-\infty,-1], \zeta=0$ on $[0, \infty)$, we define

$$
z_{n}(x)=\left\{\begin{array}{l}
z\left(\frac{l_{\infty}}{l\left(t_{n}\right)} x\right)+\left(r_{n}-z(0)\right) z^{0}(x) \text { if } l_{\infty}<\infty \\
\zeta\left(x-l\left(t_{n}\right)\right) z(x)+\left(r_{n}-z(0)\right) z^{0}(x) \text { if } l_{\infty}=\infty
\end{array}\right.
$$

with a smooth function z^{0} on $[0, \infty)$, satisfying $z^{0}(0)=1$ and $z^{0}=0$ on $[l(0), \infty)$. It is easy to see that $z_{n} \in D\left(\varphi_{l}^{t_{n}}\right), z_{n} \rightarrow z$ in X and $\varphi_{l}^{t_{n}}\left(z_{n}\right) \rightarrow \varphi^{\infty}(z)$. Thus we have the conclusion of the lemma.

Lemma 2.3. Let $l \in \Lambda_{\infty}$ and $l_{n} \in \Lambda_{\infty}, n=1,2, \ldots$, such that $l_{n} \rightarrow l$ pointwise on $[0, \infty)$ as $n \rightarrow \infty$. Also, let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$. Then for each $t \geqq 0$,

$$
\varphi_{l_{n}}^{t} \rightarrow \varphi_{l}^{t} \text { on } H \text { as } n \rightarrow \infty \text { in the sense of Mosco. }
$$

We omit the proof of this lemma, as it can be shown by a modification of that of Lemma 2.2.

Given numbers $0<\delta<L \leqq \infty$, we denote by $\Lambda_{\infty}(\delta, L)$ the subclass $\left\{l \in \Lambda_{\infty} ; \delta \leqq l(0), \lim _{t \rightarrow \infty} l(t) \leqq L\right\}$ of Λ_{∞}. We also consider the class $\Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right)$ of families $\left\{\varphi^{t}\right\}$ of proper 1.s.c. convex functions on H (see the Appendix for the definition of $\Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right)$.

Lemma 2.4. (i) Let $\left\{b^{r}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0}^{\prime} \in L^{1}(0, \infty)$ and $0<\delta \leqq 1$. Then there is a constant $C_{5} \geqq 0$, depending only on δ, β_{0} and β_{1}, such that

$$
\left\{\varphi_{l}^{t}\right\} \in \Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right) \text { for all } l \in \Lambda_{\infty}(\delta, \infty),
$$

where

$$
\alpha_{0, r}(t)=C_{5}(1+r) \int_{0}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau, \alpha_{1, r}(t)=C_{5}\left(1+r^{2}\right) \int_{0}^{t}\left\{\left|\beta_{0}^{\prime}(\tau)\right|+\left|\beta_{1}^{\prime}(\tau)\right|\right\} d \tau
$$

for all $r \geqq 0$.
(ii) Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0}^{\prime} \in L^{1}(0, \infty)$ and $0<\delta<1<L<\infty$. Then there is a constant $C_{6} \geqq 0$, depending only on δ, L, β_{0} and β_{1}, such that

$$
\left\{\varphi_{l}^{t}\right\} \in \Phi\left(\left\{\tilde{\alpha}_{0, r}\right\},\left\{\tilde{\alpha}_{1, r}\right\}\right) \text { for all } l \in \Lambda_{\infty}(\delta, L),
$$

where

$$
\tilde{\alpha}_{0, r}(t)=C_{6} \int_{0}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau, \quad \tilde{x}_{1, r}(t)=C_{6} \int_{0}^{t}\left\{\left|\beta_{0}^{\prime}(\tau)\right|+\left|\beta_{1}^{\prime}(\tau)\right|\right\} d \tau
$$

for all $r \geqq 0$; note in this case that $\tilde{\alpha}_{0, r}$ and $\tilde{\alpha}_{1, r}$ are independent of $r \geqq 0$.
Proof. Let $l \in \Lambda_{\infty}(\delta, \infty), 0 \leqq s \leqq t<\infty$ and $z \in K_{l}(s)$. Since $z(0) \in D\left(b^{s}\right)$, using condition (b2), we can find $\tilde{r} \in D\left(b^{t}\right)$ such that

$$
|\tilde{r}-z(0)| \leqq\left(\int_{s}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau\right)\left(1+|z(0)|+\left|b^{s}(z(0))\right|^{1 / 2}\right)
$$

and

$$
b^{t}(\tilde{r})-b^{s}(z(0)) \leqq\left(\int_{s}^{t}\left|\beta_{1}^{\prime}(\tau)\right| d \tau\right)\left(1+|z(0)|^{2}+\left|b^{s}(z(0))\right|\right) .
$$

We then consider the function

$$
\tilde{z}(x)=z(x)+(\tilde{r}-z(0)) z^{\delta}(x),
$$

where

$$
z^{\delta}(x)= \begin{cases}1-\frac{x}{\delta} & \text { for } 0 \leqq x \leqq \delta \\ 0 & \text { for } \delta<x<\infty\end{cases}
$$

Clearly, $\tilde{z} \in K_{l}(t)$ with $\tilde{z}(0)=\tilde{r} \in D\left(b^{t}\right)$. We also observe that

$$
|\tilde{z}-z|_{H}=|\tilde{r}-z(0)|\left|z^{\delta}\right|_{H} \leqq\left(\int_{s}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau\right)\left(1+|z(0)|+\left|b^{s}(z(0))\right|^{1 / 2}\right)
$$

and

$$
\begin{aligned}
& \varphi_{l}^{t}(\tilde{z})-\varphi_{l}^{s}(z)=\frac{1}{2}\left|\tilde{z}_{x}\right|_{H}^{2}-\frac{1}{2}\left|z_{x}\right|_{H}^{2}+b^{t}(\tilde{r})-b^{s}(z(0)) \leqq \\
& \begin{array}{l}
\leqq \int_{0}^{\delta}\left\{|\tilde{r}-z(0)|\left|z_{x}^{\delta}(x)\right|\left|z_{x}(x)\right|+\frac{1}{2}|\tilde{r}-z(0)|^{2}\left|z_{x}^{\delta}(x)\right|^{2}\right\} d x+b^{t}(\tilde{r})-b^{s}(z(0)) \leqq \\
\leqq \frac{1}{\delta}\left(\int_{s}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau\right)\left(1+|z(0)|+\left|b^{s}(z(0))\right|^{1 / 2}\right) \int_{0}^{\delta}\left|z_{x}(x)\right| d x+ \\
\quad+\frac{1}{2 \delta}\left(\int_{s}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau\right)\left|\beta_{0}^{\prime}\right|_{L^{\prime}(0, \infty)}\left(1+|z(0)|+\left|b^{s}(z(0))\right|^{1 / 2}\right)^{2}+ \\
+\left(\int_{s}^{t}\left|\beta_{1}^{\prime}(\tau)\right| d \tau\right)\left(1+|z(0)|^{2}+\left|b^{s}(z(0))\right|\right) .
\end{array}
\end{aligned}
$$

By making use of the inequalities in Lemma 2.1, we derive from the above inequalities that

$$
|\tilde{z}-z|_{H} \leqq c\left(\int_{s}^{t}\left|\beta_{0}^{\prime}(\tau)\right| d \tau\right)\left(1+|z|_{H}+\left|\varphi_{l}^{s}(z)\right|^{1 / 2}\right)
$$

and

$$
\begin{equation*}
\varphi_{l}^{t}(\tilde{z})-\varphi_{l}^{s}(z) \leqq c\left(\int_{s}^{t}\left\{\left|\beta_{0}^{\prime}(\tau)\right|+\left|\beta_{1}^{\prime}(\tau)\right|\right\} d \tau\right)\left(1+|z|_{H}^{2}+\left|\varphi_{l}^{s}(z)\right|\right) \tag{2.8}
\end{equation*}
$$

for some constant $c \geqq 0$ depending only on δ, β_{0} and β_{1}. Therefore we can take this c as C_{5}. Also it is not difficult to derive the conclusion of (ii) of the lemma from (2.8) and (2.5) of Lemma 2.1.

3. Some lemmas on $\mathrm{CP}\left(\varphi_{l}^{t} ; u_{0}\right)$

The lemmas, which have been proved in the previous section, allow us to apply the abstract results of the Appendix to problem $\mathrm{CP}\left(\varphi_{l}^{t} ; u_{0}\right)$.

The following comparison lemma is useful.

Lemma 3.1 (cf. [11; Lemma 2.1]). Let $0<T<\infty, k$ be a constant, $l \in C([0, T])$ with $l>0$ on $[0, T]$, and v, w be functions in $C([0, T] ; H) \cap$ $\cap W^{1,2}(\delta, T ; H) \cap L^{\infty}(\delta, T ; X)$ with $v_{x x}, w_{x x}$ in $L^{2}\left(D_{\delta}\right), D_{\delta}=\{(x, t) ; 0<x<$ $\left.<l^{\prime}(t), \delta<t<T\right\}$, for every $0<\delta<T$, such that

$$
\begin{gathered}
w_{t}-w_{x x} \leqq v_{t}-v_{x x} \text { a.e. on }\{(x, t) ; 0<x<l(t), 0<t<T\}, \\
w(x, 0) \leqq v(x, 0)+k \text { for a.e. } x \geqq 0, \\
w \leqq v+k \text { on }\{(x, t) ; l(t) \leqq x<\infty, 0<t \leqq T\} \text {, and } \\
\left(w_{x}(0+, t)-v_{x}(0+, t)\right)(w(0, t)-v(0, t)-k)^{+} \geqq 0 \text { for a.e. } t \in[0, T] .
\end{gathered}
$$

Then

$$
w \leqq v+k \text { on }[0, \infty) \times(0, T] .
$$

Corollary 1. Let $0<T<\infty, l \in \Lambda_{T},\left\{b^{t}\right\} \in B_{T}\left(\beta_{0}, \beta_{1}\right)$, and lèt u_{0} be a non-negative function in H. Then the solution u to $C P\left(\varphi_{l}^{t} ; u_{0}\right)$ on $[0, T]$ is non-negative on $[0, x) \times(0, T]$.

This corollary is a direct consequence of Lemma 3.1 with $w=0, v=u$ and $k=0$.

Coroliary 2. Let $0<T<\infty, l \in \Lambda_{T}, \hat{l} \in \Lambda_{T}$, $u_{0} \in H$ with $u_{0} \geqq 0$ a.e. on [0. $\left.\gamma\right)$ and $u_{0}=0$ a.e. on $[l(0), \infty), \hat{u}_{0} \in H$ with $\hat{u}_{0} \geqq 0$ a.e. on $[0, \infty)$ and $\hat{u}_{0}=0$ a.e. on $[\hat{l}(0), \infty),\left\{b^{t}\right\} \in B_{T}\left(\beta_{0}, \beta_{1}\right)$ and $\left\{\hat{b}^{t}\right\} \in B_{T}\left(\hat{\beta}_{0}, \widehat{\beta}_{1}\right)$. Further let u and \hat{u} be the solutions to $C P\left(\varphi_{l}^{t} ; u_{0}\right)$ and $C P\left(\psi_{l}^{t} ; \hat{u}_{0}\right)$ on $[0, T]$, respectively, where ψ_{l}^{t} is the function on H given by (1.1) with l and b^{t} replaced by \hat{l} and \hat{b}^{t}. Suppose

$$
l \leqq \hat{l} \text { on }[0, T], u_{0} \leqq \hat{u}_{0} \text { a.e. on }[0, \infty)
$$

and
$b^{t}\left(r_{1} \wedge r_{2}\right)+\hat{b}^{t}\left(r_{1} \vee r_{2}\right) \leqq b^{t}\left(r_{2}\right)$ for any $r \in[0, T]$

$$
\begin{equation*}
\text { and } r_{1}, r_{2} \in \mathbf{R} \text {, } \tag{3.1}
\end{equation*}
$$

where $r_{1} \vee r_{2}=\max \left\{r_{1}, r_{2}\right\}$ and $r_{1} \wedge r_{2}=\min \left\{r_{1}, r_{2}\right\}$. Then we have

$$
\begin{equation*}
u \leqq \hat{u} \text { on }[0, \infty) \times(0, T] . \tag{3.2}
\end{equation*}
$$

Proof. From (h) of Remark 1.1 and Corollary 1, we see that

$$
\begin{gathered}
u_{t}-u_{x x}=0-u_{t}-\hat{u}_{x x} \quad \text { a.e. on }\{(x ; t) ; 0<x<l(t), 0<t<T\}, \\
u(x, 0)=u_{0}(x) \leqq \hat{u}_{0}(x)=\hat{u}(x, 0) \text { for a.e. } x \leqq 0 \text {, and } \\
u=0 \leqq \hat{u} \text { on }\{(x, t) ; l(t) \leqq x<\infty, 0<t \leqq T\} .
\end{gathered}
$$

Also, as it is easily seen from (3.1), $\left(r_{1}^{*}-r_{2}^{*}\right)\left(r_{1}-r_{2}\right)^{+} \geqq 0$ for any $t \in[0, T]$, $r_{1}^{*} \in \partial b^{t}\left(r_{1}\right)$ and $r_{2}^{*} \in \partial b^{t}\left(r_{2}\right)$, from which it follows that

$$
\left(u_{x}(0+, t)-\hat{u}_{x}(0+, t)\right)(u(0, t)-\hat{u}(0, t))^{+} \geqq 0 \text { for a.e. } t \in[0, T] \text {, }
$$

because $u_{x}(0+, t) \in \partial b^{t}(u(0, t))$ and $\hat{u}_{x}(0+, t) \in \partial \hat{b}^{t}(\hat{u}(0, t))$ for a.e. $t \in[0, T]$. Thus all the assumptions of Lemma 3.1 are satisfied for the case where $w=u$, $v=\hat{u}$ and $k=0$, so that we get (3.2).

Lemma 3.2. Let $l \in \Lambda_{\infty}$ with $l_{\infty} \equiv \lim _{t \rightarrow \infty} l(t)<\infty$, and $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0}^{\prime} \in L^{1}(0, \infty) \cap L^{2}(0, \infty)$ and $\beta_{1}^{\prime} \in L^{1}(0, \infty)$ such that $b^{t} \rightarrow b^{\infty}$ on \mathbf{R} as $t \rightarrow \infty$ in the sense of Mosco for a proper l.s.c. convex function b^{∞} on \mathbf{R}. Let u_{0} be a non-negative function in H such that $u_{0}=0$ a.e. on $[l(0), \infty)$. Then $\mathrm{CP}\left(\varphi_{l}^{t} ; u_{0}\right)$ has one and only one solution u on $[0, \infty)$ and $u(t) \rightarrow u_{\infty}$ in X as $t \rightarrow \infty$, where u_{∞} is the function given by

$$
u_{\infty}(x)= \begin{cases}c\left(1-\frac{x}{l_{\infty}}\right) & \text { for } 0 \leqq x \leqq l_{\infty} \tag{3.3}\\ 0 & \text { for } l_{\infty}<x<\infty\end{cases}
$$

with the constant c satisfying

$$
\begin{equation*}
-\frac{c}{l_{\infty}} \in \partial b^{\infty}(c) . \tag{3.4}
\end{equation*}
$$

Proof. First we show $u \in L^{\infty}(0, \infty ; H)$. By (iii) of Lemma 2.1 and (ii) of Lemma 2.4, we can apply Theorem A. 1 of the Appendix to problem $\mathrm{CP}\left(\varphi_{i}^{t} ; u_{0}\right)$, and obtain that $\mathrm{CP}\left(\varphi_{i}^{t} ; u_{0}\right)$ has one and only one solution u on $[0, \infty)$, and

$$
\varphi_{l}^{t}(u(t))-\varphi_{l}^{s}(u(s)) \leqq \int_{s}^{t} k(\tau)\left(M \varphi_{l}^{\tau}(u(\tau))+M^{\prime}\right) d \tau
$$

for every $0<s \leqq t<\infty$, where M and M^{\prime} are constants, and

$$
k(\tau)=\left|\beta_{0}^{\prime}(\tau)\right|^{2}+\left|\beta_{0}^{\prime}(\tau)\right|+\left|\beta_{1}^{\prime}(\tau)\right| .
$$

Therefore, by Gronwall's inequality, $t \rightarrow \varphi_{l}^{t}(u(t))$ is bounded on $[1, \infty)$, so that (iii) of Lemma 2.1 implies $u \in L^{\infty}(1, \infty ; H)$. Since $u \in C([0,1] ; H)$, it follows that $u \in L^{\infty}(0, \infty ; H)$. Next, on account of Lemma 2.2, $\varphi_{l}^{t} \rightarrow \varphi^{\infty}$ on H as $t \rightarrow \infty$ in the sense of Mosco, where φ^{∞} is as in Lemma 2.2. Accordingly, applying Theorem A. 3 in the Appendix to problem CP $\left(\varphi_{l}^{t} ; u_{0}\right)$ on $[0, \infty)$, we obtain that

$$
u(t) \rightarrow u_{\infty} \text { weakly in } H
$$

and

$$
\varphi_{l}^{t}(u(t)) \rightarrow \varphi^{\infty}\left(u_{\infty}\right)=\min \varphi^{\infty}\left(\text { hence } 0 \in \partial \varphi^{\infty}\left(u_{\infty}\right)\right)
$$

for some $u_{\infty} \in X$. From these convergences we conclude that $u(t) \rightarrow u_{\infty}$ in X, and also, due to the relation $0 \in \partial \varphi^{\infty}\left(u_{\infty}\right)$ (cf. (a) of Remark 1.1), that (3.3) holds with (3.4).

Lemma 3.3. Let $\left\{b^{r}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right), l \in \Lambda_{\infty}$ and $l_{n} \in \Lambda_{\infty}, n=1,2, \ldots$, such that $l_{n} \rightarrow l$ pointwise on $[0, \infty)$ as $n \rightarrow \infty$. Further, let $u_{0} \in H$ with $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $[l(0), \infty)$, and $u_{0, n} \in H$ with $u_{0, n} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0, n}=0$ a.e. on $\left[l_{n}(0), \infty\right), n=1,2, \ldots$, such that $u_{0, n} \rightarrow u_{0}$ in H as $n \rightarrow \infty$. Then, denoting by u and u_{n} the solutions to $C P\left(\varphi_{l}^{t} ; u_{0}\right)$ and $C P\left(\varphi_{t_{n}}^{t} ; u_{0, n}\right)$ on $[0, \infty)$, respectively, we have

$$
u_{n} \rightarrow u \text { in } C([0, T] ; H) \text { and in } L^{2}(0, T ; X)
$$

as $n \rightarrow \infty$ for every finite $T>0$.
Proof. Let $0<T<\infty$. Then, by Lemma 2.3 and (i) of Lemma 2.4, we can apply Theorem A. 2 in the Appendix to obtain

$$
u_{n} \rightarrow u \text { in } C([0, T] ; H) \text { and } \int_{0}^{T} \varphi_{l_{n}}^{t}\left(u_{n}(t)\right) d t \rightarrow \int_{0}^{T} \varphi_{l}^{t}(u(t)) d t .
$$

From this we get the conclusion of the lemma.

4. Monotone dependence

In this section we prove

Theorem 4.1. Let $0<T<\infty, 0<l_{0}<\infty, 0<\hat{I}_{0}<\infty, u_{0} \in H$ with $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$, and $\hat{u}_{0} \in H$ with $\hat{u}_{0} \geqq 0$ a.e. on $[0, \infty)$ and $\hat{u}_{0}=0$ a.e. on $\left[\hat{l}_{0}, \infty\right)$. Further let $\left\{b^{t}\right\} \in B_{T}\left(\beta_{0}, \beta_{1}\right)$ and $\left\{\hat{b}^{t}\right\} \in$ $\in B_{T}\left(\hat{\beta}_{0}, \widehat{\beta}_{1}\right)$ such that

$$
b^{t}\left(r_{1} \wedge r_{2}\right)+\hat{b}^{t}\left(r_{1} \vee r_{2}\right) \leqq b^{t}\left(r_{1}\right)+\hat{b}^{t}\left(r_{2}\right) \text { for any } t \in[0, T] \text { and } r_{1}, r_{2} \in \mathbf{R} .
$$

If $t_{0} \leqq \hat{l}_{0}$ and $u_{0} \leqq \hat{u}_{0}$ a.e. on $[0, \infty)$, then

$$
\begin{equation*}
l \leqq \hat{l} \text { on }[0, T] \text { and } u \leqq \hat{u} \text { on }[0, \infty) \times(0, T], \tag{4.1}
\end{equation*}
$$

where $\{l, u\}$ and $\{\hat{l}, \hat{u}\}$ are respectively the solutions to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ and $\mathrm{QV}\left(\hat{b}^{t} ; \hat{l}_{0}, \hat{u}_{0}\right)$ on $[0, T]$.

Proof. First, assuming $l_{0}<\hat{l}_{0}$, we show that $l<\hat{l}$ on $[0, T]$ and $u \leqq \hat{u}$ on $[0, \infty) \times(0, T]$. To get a contradiction, suppose there is $0<t_{0} \leqq T$ such that

$$
l\left(t_{0}\right)=\hat{l}\left(t_{0}\right), \text { and } l<\hat{l} \text { on }\left[0, t_{0}\right) \text {. }
$$

Then, on account of Corollary 2 to Lemma 3.1, we have

$$
\begin{equation*}
u \leqq \hat{u} \text { on }[0, \infty) \times\left(0, t_{0}\right] . \tag{4.2}
\end{equation*}
$$

Now, denote $u(0, t)$ and $\hat{u}(0, t)$ by $f(t)$ and $\hat{f}(t)$, respectively. As it has been noticed in Remark 1.2, $\{l, u\}$ (resp. $\{\hat{l}, \hat{u}\}$) is the solution to the usual Stefan problem with the boundary condition $u(0, t)=f(t)$ (resp. $\hat{u}(0, t)=\hat{f}(t))$. Since $f \leqq \hat{f}$ by (4.2), it follows from the result on the monotone dependence (cf. [2; Theorem 6]) that $l<\hat{l}$ on $\left[0, t_{0}\right]$, which is a contradiction. Thus we get

$$
l<\hat{l} \text { on }[0, T], u \leqq \hat{u} \text { on }[0, \infty) \times(0, T] .
$$

Next, assume $l_{0}=\hat{l}_{0}$, and take a sequence $\left\{\hat{l}_{0, n}\right\}$ so that $\hat{l}_{0, n}>\hat{l}_{0}$ and $\hat{l}_{0, n} \downarrow \hat{l}_{0}$ (as $\left.n \rightarrow \infty\right)$. By virtue of Theorem 1.1, $\mathrm{QV}\left(\hat{b}^{t} ; \hat{l}_{0, n}, \hat{u}_{0}\right)$ has a solution $\left\{\hat{\imath}_{n}, \hat{u}_{n}\right\}$ on $[0, T]$. Also, from the above argument it follows that

$$
l<\hat{l}_{n} \text { on }[0, T], u \leqq \hat{u}_{n} \text { on }[0, \infty) \times(0, T]
$$

and

$$
\hat{l}<\hat{l}_{n} \text { on }[0, T], \hat{u} \leqq \hat{u}_{n} \text { on }[0, \infty) \times(0, T] .
$$

Furthermore, on account of (1.11) in (d) of Remark 1.1,

$$
\begin{aligned}
& \quad 0<\hat{l}_{n}(t)-\hat{l}(t) \leqq \\
& \leqq \hat{l}_{n}(\delta)-\hat{l}(\delta)+\int_{0}^{\infty}\left\{\hat{u}_{n}(x, \delta)-\hat{u}(x, \delta)\right\} d x-\int_{\delta}^{t}\left\{\hat{u}_{n, x}(0+, \tau)-\hat{u}_{x}(0+, \tau)\right\} d \tau
\end{aligned}
$$

for every $0<\delta \leqq t \leqq T$. Here we note that

$$
\begin{equation*}
\hat{u}_{n, x}(0+, \tau) \geqq \hat{u}_{x}(0+, \tau) \text { for a.e. } \tau \in[0, T] \text {. } \tag{4.3}
\end{equation*}
$$

In fact, it follows from the monotonicity of $\partial \hat{b}^{\tau}$ that $\hat{u}_{n, x}(0+, \tau) \geqq \hat{u}_{x}(0+, \tau)$ for a.e. $\tau \in[0, T]$ with $\hat{u}_{n}(0, \tau)>\hat{u}(0, \tau)$. Also, if $\hat{u}_{n}(0, \tau)=\hat{u}(0, \tau)$ and $\hat{u}_{n, x}(0+, \tau)$ and $\hat{u}_{x}(0, \tau)$ exist, then

$$
\hat{u}_{n, x}(0+, \tau)=\lim _{x \not 00} \frac{\hat{u}_{n}(x, \tau)-\hat{u}_{n}(0, \tau)}{x} \geqq \lim _{x \not 00} \frac{\hat{u}(x, \tau)-\hat{u}(0, \tau)}{x}=\hat{u}_{x}(0+, \tau) .
$$

Therefore we obtain (4.3) and for every $t \in[\delta, T]$

$$
0<\hat{l}_{n}(t)-\hat{l}(t) \leqq \hat{l}_{n}(\delta)-\hat{l}(\delta)+\int_{0}^{\infty}\left\{\hat{u}_{n}(x, \delta)-\hat{u}(x, \delta)\right\} d x .
$$

Letting $\delta \downarrow 0$ in this inequality, we get

$$
0<\hat{l}_{n}(t)-\hat{l}(t) \leqq \hat{I}_{0 . n}-\hat{l}_{0} \text { for any } t \in[0, T] .
$$

This implies that $\hat{l}_{n} \rightarrow \hat{l}$ in $C([0, T])$, and, by Lemma 3.3, that $\hat{u}_{n} \rightarrow \hat{u}$ in $C([0, T] ; H)$. Consequently we get (4.1).

Corollary. Let $0<l_{0}<\infty$ and $u_{0} \in H$ such that $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$. Then $\mathrm{QV}\left(b^{t} ; l_{0}, \overline{u_{0}}\right)$ has at most one solution on $[0, T]$ for each $\left\{b^{t}\right\} \in B_{T}\left(\beta_{0}, \beta_{1}\right)$.

5. Asymptotic behaviour

In this section we investigate the asymptotic behaviour of the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty)$.

Theorem 5.1. Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ and suppose there are two functions g and g^{*} on $[0, \infty)$, such that

$$
\begin{aligned}
& g \text { is non-negative and non-increasing on }[0, \infty) \text {, } \\
& \qquad g \in L^{1}(0, \infty), g^{*} \in L^{\infty}(0, \infty) \cap L^{1}(0, \infty)
\end{aligned}
$$

and

$$
\begin{equation*}
g^{*}(t) \in \partial b^{t}(g(t)) \text { for all } t \in[0, \infty) . \tag{5.1}
\end{equation*}
$$

Let $0<l_{0}<\infty$ and $u_{0} \in H$ such that $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$, and let $\{l, u\}$ be the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty)$. Then

$$
l_{\infty} \equiv \lim _{t \rightarrow \infty} l(t)<\infty .
$$

In order to show this theorem we prepare two lemmas. Let $\left\{b^{t}\right\}$ and g be as in Theorem 5.1, and define a function \hat{b}^{t} on \mathbf{R} by

$$
\hat{b}^{t}(r)= \begin{cases}b^{t}(r) & \text { if } r \in D\left(b^{t}\right) \text { and } r \geqq g(t), \tag{5.2}\\ \infty & \text { if } r<g(t),\end{cases}
$$

for each $t \in[0, \infty)$. Evidently, \hat{b}^{t} is proper, 1.s.c. and convex on R. Besides, we have the following lemma.

Lemma 5.1. Let $\left\{b^{t}\right\}, g$ and g^{*} be as in Theorem 5.1, and $\left\{\hat{b}^{t}\right\}$ be as given by (5.2). Then we have:
(i) $b^{t}\left(r_{1} \wedge r_{2}\right)+\hat{b}^{t}\left(r_{1} \vee r_{2}\right) \leqq b^{t}\left(r_{1}\right)+\hat{b}^{t}\left(r_{2}\right)$ for any $t \in[0, \infty)$ and $r_{1}, r_{2} \in \mathbf{R}$.
(ii) If $r \in D\left(b^{t}\right)$ and $r>g(t)$, then $\partial \hat{b}^{t}(r)=\partial b^{t}(r)$.
(iii) If we put

$$
\widehat{\beta}_{1}(t)=\int_{0}^{t}\left\{3\left|g^{*}\right|_{L^{*}(0, \infty)}\left|\beta_{0}^{\prime}(\tau)\right|+\left|\beta_{1}^{\prime}(\tau)\right|\right\} d \tau \text { for } t \geqq 0,
$$

then $\left\{\hat{b}^{t}, \in B_{\infty}\left(\beta_{0}, \hat{\beta}_{1}\right)\right.$.
Proof. (i) and (ii) can be immediately derived from the definition of \hat{b}^{t}, and clearly $\partial \hat{b}^{t}(r)=\emptyset$ for $r<0$. Now, let $0<s \leqq t<\infty$ and $r \in D\left(\hat{b}^{s}\right)$, i.e. $r \in D\left(b^{s}\right)$ with $r \geqq g(s)$. Then, by assumption, there is $\tilde{r} \in D\left(b^{t}\right)$ such that

$$
\begin{equation*}
|\tilde{r}-r| \leqq\left|\beta_{0}(t)-\beta_{0}(s)\right|\left(1+|r|+\left|\hat{b}^{s}(r)\right|^{1 / 2}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{t}(\tilde{r})-\hat{b}^{s}(r) \leqq\left|\beta_{1}(t)-\beta_{1}(s)\right|\left(1+|r|^{2}+\left|\hat{b}^{s}(r)\right|\right) . \tag{5.4}
\end{equation*}
$$

Putting $r_{1}=\tilde{r} \vee g(t)$, we are going to show

$$
\begin{equation*}
\left|r_{1}-r\right| \leqq\left|\beta_{0}(t)-\beta_{0}(s)\right|\left(1+|r|+\left|\hat{b}^{s}(r)\right|^{1 / 2}\right) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{b}^{t}\left(r_{1}\right)-\hat{b}^{s}(r) \leqq\left|\hat{\beta}_{1}(t)-\hat{\beta}_{1}(s)\right|\left(1+|r|^{2}+\left|\hat{b}^{s}(r)\right|\right) . \tag{5.6}
\end{equation*}
$$

Indeed, in case $\tilde{r} \geqq g(t),(5.5)$ and (5.6) obviously hold by (5.3) and (5.4). Next, assume $\tilde{r}<g(t)$, i.e. $r_{1}=g(t)$. Then, since $\tilde{r}<g(t) \leqq g(s) \leqq r$, (5.5) follows immediately from (5.3), and

$$
|\tilde{r}-g(t)| \leqq|\tilde{r}-r| \leqq\left|\beta_{0}(t)-\beta_{0}(s)\right|\left(1+|r|+\left|\hat{b}^{s}(r)\right|^{1 / 2}\right) .
$$

Also, by (5.1),

$$
g^{*}(t)(\tilde{r}-g(t)) \leqq b^{t}(\tilde{r})-b^{t}(g(t))
$$

and hence it follows from (5.4) that

$$
\begin{aligned}
& \hat{b}^{t}\left(r_{1}\right)-\hat{b}^{s}(r)\left(=\hat{b}^{t}(g(t))-\hat{b}^{s}(r)\right) \leqq \\
& \leqq\left\{3\left|g^{*}(t)\right|\left|\beta_{0}(t)-\beta_{0}(s)\right|+\left|\beta_{1}(t)-\beta_{1}(s)\right|\right\}\left(1+|r|^{2}+\left|\hat{b}^{s}(r)\right|\right) .
\end{aligned}
$$

Thus (5.5) and (5.6) hold, and $\left\{\hat{b}^{t}\right\} \in B_{\infty}\left(\beta_{0}, \hat{\beta}_{1}\right)$.
For the moment we postulate all the assumptions of Theorem 5.1. Now, choose a number \hat{l}_{0} satisfying $\hat{l}_{0}>l_{0}$. Then, on account of Lemma 5.1, we see by applying Theorems 1.1 and 4.1 that $\mathrm{QV}\left(\hat{b}^{t} ; \hat{l}_{0}, u_{0}\right)$ has a unique solution $\{\hat{l}, \hat{u}\}$ on $[0, \infty)$ and

$$
\begin{equation*}
l \leqq \hat{l} \text { on }[0, \infty), u \leqq \hat{u} \text { on }[0, \infty) \times(0 ; \infty) . \tag{5.7}
\end{equation*}
$$

Moreover, we have

Lemma 5.2. If $\hat{u}(0, t)>g(t)$ for t in a set with positive linear measure, then there are numbers $T>0$ and $0<\delta<\hat{l}_{0}$, such that

$$
\begin{equation*}
\hat{u}(x, t) \geqq\left(1-\frac{x}{\delta}\right) g(t) \text { for }(x, t) \in[0, \delta] \times[T, \infty) \text {. } \tag{5.8}
\end{equation*}
$$

Proof. First, take $T>0$ so that $\hat{u}(0, T)>g(T)$ and $\hat{u}_{x}(x, T)$ is absolutely continuous in $x \in(0, \hat{l}(T))$, and choose $0<\delta<\hat{l}_{0}$ so that

$$
\hat{u}(x, T) \geqq\left(1-\frac{x}{\delta}\right) g(T) \text { for } x \in[0, \delta] .
$$

Next, take a sequence $\left\{g_{n}\right\}$ of smooth functions on $[0, \infty)$ such that g_{n} is non-increasing on $[0, \infty), g_{n} \leqq g$ on $[0, \infty)$ and $g_{n}(t) \rightarrow g(t)$ as $n \rightarrow \infty$ for
a.e. $t \geqq 0$. Then, putting

$$
v_{n}(x, t)=\left(1-\frac{x}{\delta}\right) g_{n}(t) \text { on }[0, \delta] \times[T, \infty)
$$

we see that

$$
\begin{gathered}
v_{n, t}-v_{n, x x}=\left(1-\frac{x}{\delta}\right) g_{n}^{\prime}(t) \leqq 0=\hat{u}_{t}-\hat{u}_{x x} \text { a.e. on }[0, \delta] \times[T, \infty), \\
v_{n}(x, T)=\left(1-\frac{x}{\delta}\right) g_{n}(T) \leqq\left(1-\frac{x}{\delta}\right) g(T) \leqq \hat{u}(x, T) \text { for } 0 \leqq x \leqq \delta, \\
v_{n}(0, t)=g_{n}(t) \leqq g(t) \leqq \hat{u}(0, t) \text { for } T \leqq t<\infty, \\
v_{n}(\delta, t)=0 \leqq \hat{u}(\delta, t) \text { for } T \leqq t<\infty,
\end{gathered}
$$

so that by the maximum principle for the linear heat equation we have $\hat{u} \geqq v_{n}$ on $[0, \delta] \times[T, \infty)$. Letting $n \rightarrow \infty$ yields (5.8).

Proof of Theorem 5.1. First assume that $\hat{u}(0, t)=g(t)$ for a.e. $t \geqq 0$. Then, it follows from (1.12) of (d) in Remark 1.1 that

$$
\hat{l}_{\infty}^{2} \equiv \lim _{t \rightarrow \infty} \hat{l}(t)^{2} \leqq \hat{l}_{\infty}^{2}+2 \int_{0}^{\infty} x u_{0}(x) d x+2 \int_{0}^{\infty} g(\tau) d \tau<\infty .
$$

Therefore, noting (5.7), we get $l_{\infty}<\infty$. Next, assume that $\hat{u}(0, t)>g(t)$ for t in a set with positive linear measure. Then, by Lemma 5.2, for some $T>0$ and $0<\delta<\hat{l}_{0}$ we have

$$
\begin{equation*}
\frac{\widehat{u}(x, t)-g(t)}{x} \geqq-\frac{1}{\delta} g(t) \text { for }(x, t) \in[0, \delta] \times[T, \infty) \tag{5,9}
\end{equation*}
$$

Note that $[T, \infty)$ can be divided into two sets $J=\{t \geqq T ; \hat{u}(0, t)=g(t)\}$ and $J^{\prime}=\{t \geqq T ; \hat{u}(0, t)>g(t)\}$, since $\hat{u}(0, t) \geqq g(t)$ for all $t \geqq T$. If $t \in J$ and $\hat{u}_{x}(0+, t)$ exists, then we infer from (5.9) that

$$
\hat{u}_{x}(0+, t) \geqq-\frac{1}{\delta} g(t)
$$

Also, if $t \in J^{\prime}$ and $\hat{u}_{x}(0+, t) \in \partial \hat{b}^{t}(\hat{u}(0, t))$, then we have by the monotonicity of $\partial \hat{b}^{t}$ with (5.1) and (ii) of Lemma 5.1

$$
\widehat{u}_{x}(0+, t) \geqq g^{*}(t) .
$$

Therefore,

$$
-\widehat{u}_{x}(0+, t) \leqq \frac{1}{\delta} g(t)+\left|g^{*}(t)\right| \text { for a.e. } t \geqq T
$$

Using (1.11) of (d) in Remark 1.1, we obtain

$$
\hat{l}_{\infty} \leqq \hat{l}(T)+\int_{0}^{\infty} \hat{u}(x, T) d x+\int_{T}^{\infty}\left\{\frac{1}{\delta} g(t)+\left|g^{*}(t)\right|\right\} d t<\infty,
$$

so that $l_{\infty}<\infty$.
Theorem 5.2. Let $\left\{b_{1}^{t}\right\} \in B_{\infty}\left(\beta_{1,0}, \beta_{1,1}\right), 0<l_{1,0}<\infty$, and $u_{1,0} \in H$ such that $u_{1,0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{1,0}=0$ a.e. on $\left[l_{1,0}, \infty\right)$. Suppose that corresponding to these $\left\{b_{1}^{t}\right\}, l_{1,0}$ and $u_{1,0}$ there exist $\left\{b^{t}\right\}, g, g^{*}, l_{0}$ and u_{0}, such that all the assumptions of Theorem 5.1 are satisfied, and moreover

$$
l_{1,0} \leqq l_{0}, u_{1,0} \leqq u_{0} \text { a.e. on }[0, \infty)
$$

and

$$
b_{1}^{t}\left(r_{1} \wedge r_{2}\right)+b^{t}\left(r_{1} \vee r_{2}\right) \leqq b_{1}^{t}\left(r_{1}\right)+b^{t}\left(r_{2}\right) \text { for any } t \in[0, \infty) \text { and } r_{1}, r_{2} \in \mathbf{R} .
$$

Then

$$
l_{1, \infty} \equiv \lim _{t \rightarrow \infty} l_{1}(t)<\infty,
$$

where $\left\{l_{1}, u_{1}\right)$ is the solution to $\mathrm{QV}\left(b_{1}^{t} ; l_{1,0}, u_{1,0}\right)$ on $[0, \infty)$.
Proof. By Theorems 1.1 and 4.1, $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ has a unique solution $\{l, u\}$ on $[0, \infty)$ and $l_{1} \leqq l$ on $[0, \infty)$. Besides, by Theorem 5.1, $\lim _{t \rightarrow \infty} l(t)<\infty$, so that $l_{1, \infty}<\infty$.

Next, under the assumption $l_{\infty}<\infty$, we investigate the asymptotic behaviour of u.

Theorem 5.3. Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0}^{\prime} \in L^{1}(0, \infty) \cap L^{2}(0, \infty)$ and $\beta_{1}^{\prime} \in L^{1}(0, \infty)$, and suppose $b^{t} \rightarrow b^{\infty}$ on \mathbf{R} as $t \rightarrow \infty$ in the sense of Mosco for a proper l.s.c. convex function b^{∞} on \mathbf{R}. Also, let $0<l_{0}<\infty$ and $u_{0} \in H$ with $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$, and let $\{l, u\}$ be the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty)$. If $l_{\infty}<\infty$, then

$$
u(\cdot, t) \rightarrow 0 \text { in } X \text { as } t \rightarrow \infty
$$

and

$$
0 \in \partial b^{\infty}(0) .
$$

Proof. By virtue of Lemma 3.2, $u(t)$ converges in X as $t \rightarrow \infty$ and the limit u_{∞} is given by

$$
u_{\infty}(x)= \begin{cases}c_{\infty}\left(1-\frac{x}{l_{\infty}}\right) & \text { for } 0 \leqq x \leqq l_{\infty} \\ 0 & \text { for } l_{\infty}<x<\infty\end{cases}
$$

with the non-negative constant c_{∞} satisfying

$$
-\frac{c_{\infty}}{l_{\infty}} \in \partial b^{\infty}\left(c_{\infty}\right) .
$$

If $c_{\infty}=0$ were shown, the proof of the theorem would be complete. Suppose for a contradiction that $c_{\infty}>0$. Then, since $u(t) \rightarrow u_{\infty}$ in X and $l(t) \rightarrow l_{\infty}$ as $t \rightarrow \infty$, for each positive number ε with $\varepsilon<c_{\infty}$ there is $t_{\varepsilon}>0$ such that

$$
\varepsilon>l(t)^{2}+2 \int_{0}^{l(t)} x u(x, t) d x-l(s)^{2}-2 \int_{0}^{l(s)} x u(x, s) d x\left(=2 \int_{s}^{t} u(0, \tau) d \tau\right)
$$

and

$$
u(0, s) \geqq c_{\infty}-\varepsilon
$$

for all s, t with $t_{\varepsilon} \leqq s \leqq t<\infty$. Hence

$$
\varepsilon>2\left(c_{\infty}-\varepsilon\right)(t-s)
$$

for all s, t with $t_{\varepsilon} \leqq s \leqq t<\infty$, which is impossible. Thus $c_{\infty}=0$ must be true.

6. Further investigations of the asymptotic behaviour

In this section we investigate the asymptotic behaviour of u in the case where $\lim _{t \rightarrow \infty} l(t)$ may be infinite.

Theorem 6.1. Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0}^{\prime} \in L^{1}(0, \infty) \cap L^{2}(0, \infty)$ and $\beta_{1}^{\prime} \in L^{1}(0, \infty)$, and suppose $b^{t} \rightarrow b^{\infty}$ on \mathbf{R} as $t \rightarrow \infty$ in the sense of Mosco for a proper l.s.c. convex function b^{∞} on \mathbf{R}. Let $0<l_{0}<\infty, u_{0} \in H$ with $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$, and let $\{l, u\}$ be the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty)$. Then we have:
(i) If $0 \notin \bigcup_{r \geqq 0} \partial b^{\infty}(r)$, then $u(x, t) \rightarrow \infty$ as $t \rightarrow \infty$ uniformly on each bounded interval of x.
(ii) If $0 \in \bigcup_{r \geqslant 0} \partial b^{\infty}(r)$, then $\liminf _{t \rightarrow \infty} u(x, t) \geqq c_{*}$ uniformly on each bounded interval of x where

$$
\left.c_{*}=\inf \left\{r \geqq 0 ; 0 \in \partial b^{\infty}(r)\right\} \text { (note that } 0 \in \partial b^{\infty}\left(c_{*}\right)\right) \text {. }
$$

In our proof of Theorem 6.1 we consider an auxiliary Cauchy problem for given $0<t_{0}<\infty$ and $0<L<\infty$:

$$
\left\{\begin{array}{l}
-v^{\prime}(t) \in \partial \psi_{L}^{t}(v(t)), t_{0}<t<\infty \tag{6.1}\\
v\left(t_{0}\right)=0
\end{array}\right.
$$

where ψ_{L}^{t} is a proper l.s.c. convex function on H given by

$$
\psi_{L}^{t}(z)= \begin{cases}\frac{1}{2}\left|z_{x}\right|_{H}^{2}+b^{t}(z(0)) \text { if } z \in X, z(0) \in D\left(b^{t}\right) \text { and } z=0 \text { on }[L, \infty), \\ \infty & \text { otherwise } .\end{cases}
$$

Lemma 6.1. Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0}, \beta_{1}\right)$ with $\beta_{0}^{\prime} \in L^{2}(0, \infty) \cap L^{1}(0, \infty)$ and $\beta_{1}^{\prime} \in$ $\in L^{1}(0, \infty)$ and b^{∞} be a proper l.s.c. convex function on \mathbf{R} such that $b^{t} \rightarrow b^{\infty}$ on \mathbf{R} as $t \rightarrow \infty$ in the sense of Mosco. Then problem (6.1) has a unique solution v on $\left[t_{0}, \infty\right)$, and $v(t) \rightarrow v_{L}$ in X as $t \rightarrow \infty$, where

$$
v_{L}(x)= \begin{cases}c_{L}\left(1-\frac{x}{L}\right) & \text { for } 0 \leqq x \leqq L \tag{6.2}\\ 0 & \text { for } L<x<\infty\end{cases}
$$

with the constant c_{L} satisfying $-c_{L} / L \in \partial b^{\infty}\left(c_{L}\right)$.
This lemma is a direct consequence of Lemma 3.2.
Proof of Theorem 6.1. On account of Theorem 5.3, it suffices to prove the theorem in the case of $l_{\infty} \equiv \lim _{t \rightarrow \infty} l(t)=\infty$. In the rest of the proof, suppose that $l_{\infty}=\infty$. Let t_{0} be any positive number and take $l\left(t_{0}\right)$ as L. Then, by Corollary 2 to Lemma 3.1,

$$
\begin{equation*}
v \leqq u \text { on }[0, \infty) \times\left(t_{0}, \infty\right), \tag{6.3}
\end{equation*}
$$

where v is the solution to (6.1). Hence, by Lemma 6.1,

$$
\begin{equation*}
v_{L}(x) \leqq \liminf _{t \rightarrow \infty} u(x, t) \text { uniformly in } x \in[0, \infty) . \tag{6.4}
\end{equation*}
$$

Now, in addition, suppose $0 \in \bigcup_{r \geqq 0} \partial b^{\infty}(r)$. Then we have $0 \leqq c_{L} \leqq c_{*}$ by the monotonicity of ∂b^{∞}, where c_{L} is as in (6.2). Also, let c^{\prime} be any cluster point of c_{L} as $L \rightarrow \infty$. Then $0 \leqq c^{\prime} \leqq c_{*}$ and $0 \in \partial b^{\infty}\left(c^{\prime}\right)$, so that $c^{\prime}=c_{*}$, i.e.

$$
\begin{equation*}
c_{*}=\lim _{L \rightarrow \infty} c_{L} . \tag{6.5}
\end{equation*}
$$

We can derive (ii) of Theorem 6.1 from (6.2), (6.4) and (6.5). Next, suppose $0 \notin \bigcup_{r \geq 0} \partial b^{\infty}(r)$. In this case, we see easily that $c_{L} \rightarrow \infty$ as $L \rightarrow \infty$, so that (i) of the theorem follows from (6.3) and (6.4).

We have given the asymptotic evaluation of u from below. In the next theorem we evaluate it from above.

Theorem 6.2. Let $\left\{b^{t}\right\} \in B_{\infty}\left(\beta_{0} \cdot \beta_{1}\right)$, and suppose there are two functions g and g^{*} on $[0, \infty)$ such that

$$
g \geqq 0 \quad \text { on }[0, \infty), g^{*} \in W^{1,1}(0, \infty)
$$

and

$$
g^{*}(t) \in \partial b^{t}(g(t)) \text { for all } t \geqq 0 \text {. }
$$

Let $0<l_{0}<\infty, u_{0} \in H$ such that $u_{0} \geqq 0$ a.e. on $[0, \infty)$ and $u_{0}=0$ a.e. on $\left[l_{0}, \infty\right)$, and let $\{l, u\}$ be the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty)$. Then

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} u(x, t) \leqq g^{\infty} \text { uniformly in } x \in[0, \infty) \text {, } \tag{6.6}
\end{equation*}
$$

where $g^{\infty}=\lim _{t \rightarrow \infty} \sup g(t)$.
In order to prove this theorem, we consider the following problem:

$$
\left\{\begin{array}{l}
-w^{\prime}(t) \in \partial \psi^{t}(w(t)), t_{0}<t<\infty, \tag{6.7}\\
w^{\prime}\left(t_{0}\right)=u\left(t_{0}\right),
\end{array}\right.
$$

where $\{l, u\}$ is the solution to $\mathrm{QV}\left(b^{t} ; l_{0}, u_{0}\right)$ on $[0, \infty), 0<t_{0}<\infty$ and
$\psi^{t}(z)=\left\{\begin{array}{l}\left.\frac{1}{2}\left|z_{x}\right|\right|_{H} ^{2}-\left|g^{*}(t)\right| z(0) \text { if } z \in X, z(0) \geqq 0 \text { and } z=0 \text { on }[l(t), \infty), \\ \infty \\ \text { otherwise. }\end{array}\right.$
Lemma 6.2. Under the same assumptions and notations as in Theorem 6.2, problem (6.7) has 'a unique solution w on $\left[t_{0}, \infty\right)$ such that $w \geqq 0$ on $[0, \infty) \times\left(t_{0}, \infty\right)$ and

$$
w(x, t) \rightarrow 0 \text { as } t \rightarrow \infty \text { uniformly in } x \in[0, \infty) .
$$

Proof. We set

$$
b_{*}^{t}(r)= \begin{cases}-\left|g^{*}(\dot{t})\right| r & \text { if } r \geqq 0, \\ \infty & \text { if } r<0\end{cases}
$$

for each $t \geqq 0$ and

$$
b_{*}^{\infty}(r)= \begin{cases}0 & \text { if } r \geqq 0, \\ \infty & \text { if } r<0 .\end{cases}
$$

Since $g^{*}(t) \rightarrow 0$ as $t \rightarrow \infty$, it follows easily that $\left\{b_{*}^{t}\right\} \in B_{\infty}\left(0, g^{*}\right)$ and $b_{*}^{t} \rightarrow b_{*}^{\infty}$ on \mathbf{R} as $t \rightarrow \infty$ in the sense of Mosco, so that $\psi^{t} \rightarrow \psi^{\infty}$ on H as $t \rightarrow \infty$ in the sense of Mosco (cf. Lemma 2.2), where ψ^{t} is as given by (6.8) and

$$
\psi^{\infty}(z)=\left\{\begin{array}{lc}
\frac{1}{2}\left|z_{x}\right|_{H}^{2} & \text { if } z \in X, z(0) \geqq 0 \text { and } z=0 \text { on }\left[l_{\infty}, \infty\right), \\
\infty & \text { otherwise },
\end{array}\right.
$$

with $l_{\infty} \equiv \lim _{t \rightarrow \infty} l(t)$; note here that the restriction $z=0$ on $\left[l_{\infty}, \infty\right)$ is deleted if $l_{\infty}=\infty$. Also, by (i) of Lemma 2.4 and (i) of Theorem A. 1 in the Appendix, (6.7) has a unique solution w on $\left[t_{0}, \infty\right)$. Since $-w^{\prime}(\tau) \in \partial \psi^{\tau}(w(\tau))$ for a.e. $\tau \geqq t_{0}$, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d \tau}|w(\tau)|_{H}^{2}=\left(w^{\prime}(\tau), w(\tau)\right)_{H} \leqq-\left|w_{x}(\cdot, \tau)\right|_{H}^{2}+\left|g^{*}(\tau)\right| w(0, \tau) \tag{6.9}
\end{equation*}
$$

for a.e. $\tau \geqq t_{0}$. We note here that

$$
\begin{equation*}
|w(0, \tau)| \leqq\left|w_{x}(\cdot, \tau)\right|_{H}+|w(\cdot, \tau)|_{H} \text { for a.e. } \tau \geqq t_{0} . \tag{6.10}
\end{equation*}
$$

From (6.9) and (6.10) it follows that

$$
\frac{d}{d \tau}|w(\tau)|_{H}^{2} \leqq\left|g^{*}(\tau)\right||w(\tau)|_{H}^{2}+\left|g^{*}(\tau)\right|^{2}+\left|g^{*}(\tau)\right| \text { for a.e. } \tau \geqq t_{0} .
$$

Since $\left|g^{*}\right| \in L^{1}(0, \infty)$ and $\left|g^{*}\right|^{2} \in L^{1}(0, \infty)$, we have $w \in L^{\infty}\left(t_{0}, \infty ; H\right)$ by Gronwall's inequality. Accordingly, Theorem A. 3 in the Appendix implies that $w(t) \rightarrow w_{\infty}$ weakly in H and $\psi^{t}(w(t)) \rightarrow \psi^{\infty}\left(w_{\infty}\right)=\min \psi^{\infty}(=0)$ as $t \rightarrow \infty$ for some $w_{\infty} \in X$. It is not difficult to see that $w_{\infty} \equiv 0$ and $w(x, t) \rightarrow 0$ as $t \rightarrow \infty$ uniformly in $x \in[0, \infty)$.

Proof of Theorem 6.2. It suffices to show (6.6) in the case of $g^{*}<\infty$. In this case, let ε be an arbitrary positive number, and choose $t_{\varepsilon}>0$ so that

$$
g(t)<g^{\infty}+\varepsilon \text { for all } t \geqq t_{\varepsilon} \text {. }
$$

Also, consider problem (6.7) with $t_{0}=t_{\varepsilon}$ and denote by w_{ε} its solution on $\left[t_{\varepsilon}, \infty\right)$. Then, by Lemma 6.2,

$$
w_{\varepsilon}(x, t) \rightarrow 0 \text { as } t \rightarrow \infty \text { uniformly in } x \in[0, \infty) .
$$

Now we are going to show that $u \leqq w_{\varepsilon}+g^{\infty}+\varepsilon$ on $[0, \infty) \times\left(t_{\varepsilon}, \infty\right)$. In fact, we have

$$
\begin{gathered}
u_{t}-u_{x x}=w_{\varepsilon, t}-w_{\varepsilon, x x}=0 \text { a.e. on }\left\{(x, t) ; 0<x<l(t), t_{\varepsilon}<t<\infty\right\}, \\
u\left(x, t_{\varepsilon}\right)=w_{\varepsilon}\left(x, t_{\varepsilon}\right) \text { for a.e. } x \geqq 0, \\
u=w_{\varepsilon}=0 \text { on }\left\{(x, t) ; l(t) \leqq x<\infty, t_{\varepsilon}<t<\infty\right\} .
\end{gathered}
$$

Besides, if $t>t_{\varepsilon}, u(0, t)>w_{\varepsilon}(0, t)+g^{\infty}+\varepsilon(>g(t))$ and $u_{x}(0+, t) \in \partial b^{t}(u(0, t))$, then we see from the monotonicity of ∂b^{t} that

$$
u_{x}(0+, t) \geqq g^{*}(t) .
$$

Also we note

$$
w_{\varepsilon, x}(0+, t) \leqq-\left|g^{*}(t)\right| \text { for a.e. } t \geqq t_{\varepsilon} .
$$

Hence

$$
\left(u_{x}(0+, t)-w_{\varepsilon, x}(0+t)\right)\left(u(0, t)-w_{\varepsilon}(0, t)-g^{\infty}-\varepsilon\right)^{+} \geqq 0 \text { for a.e. } t \geqq \dot{t}_{\varepsilon} \text {, }
$$

so that on account of Lemma 3.1

$$
u \leqq w_{\varepsilon}+g^{\infty}+\varepsilon \text { on }[0, \infty) \times\left(t_{\varepsilon}, \infty\right) \text {. }
$$

Hence
$\limsup _{t \rightarrow \infty} u(x, t) \leqq \lim _{t \rightarrow \infty} w_{\varepsilon}(x, t)+g^{\infty}+\varepsilon=g^{\infty}+\varepsilon$ uniformly in $x \in[0, \infty)$.
Since ε is arbitrary, we get (6.6).

Appendix Some abstract results on nonlinear evolution equations

Let H be an abstract Hilbert space and $\left\{\varphi^{t}\right\}=\left\{\varphi^{t} ; 0 \leqq t<\infty\right\}$ be a family of proper* ${ }^{*}$.s.c. convex functions on H. Consider the Cauchy problem $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on $[0, T], 0<T<\infty$:

$$
\mathrm{CP}\left(\varphi^{t} ; u_{0}\right):\left\{\begin{array}{l}
-u^{\prime}(t) \in \partial \varphi^{t}(u(t)), 0<t<T, \\
u(0)=u_{0},
\end{array}\right.
$$

where u_{0} is given in H. A function $u:[0, T] \rightarrow H$ is called a solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on $[0, T]$, if it fulfills:
(a) $u \in C([0, T] ; H) \cap W^{1,2}(\delta, T ; H)$ for every $0<\delta<T$ and $u(0)=u_{0}$,
(b) $t \rightarrow \varphi^{t}(u(t))$ is integrable on $[0, T]$ and is bounded on $[\delta, T]$ for every $0<\delta<T$, and
(c) $-u^{\prime}(t) \in \partial \varphi^{t}(u(t))$ for a.e. $t \in[0, T]$.

Also, $u:[0, \infty) \rightarrow H$ is called a solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on $[0, \infty)$, if it is a solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on every finite interval $[0, T]$.

Let $u_{0, i} \in H$ and u_{i} be a solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0, i}\right)$ on $[0, T], i=1,2$. Then we have (cf. $[9 ; \$ 1.1]$)

$$
\left|u_{1}(t)-u_{2}(t)\right|_{H} \leqq\left|u_{1}(s)-u_{2}(s)\right|_{H} \text { for every } 0 \leqq s \leqq t \leqq T \text {, }
$$

and therefore $u_{0,1}=u_{0,2}$ implies $u_{1}=u_{2}$ on $[0, T]$. This shows that CP $\left(\varphi^{t} ; u_{0}\right)$ has at most one solution for each $u_{0} \in H$.

The existence of a solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ is shown for $\left\{\varphi^{t}\right\}$ belonging to the following class $\Phi\left(\left\{\alpha_{o, r}\right\},\left\{\alpha_{1, r}\right\}\right)$: given two families $\left\{\alpha_{0, r}\right\}=\left\{\alpha_{0, r} ; 0 \leqq r<\right.$ $<\infty\} \subset W_{\text {loc }}^{1,2}([0, \infty))$ and $\left\{\alpha_{1, r}\right\}=\left\{\alpha_{1, r} ; 0 \leqq r<\infty\right\} \subset W_{\text {loc }}^{1,1}([0, \infty))$, we denote by $\Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right)$ the set of all $\left\{\varphi^{t}\right\}$ having the property
for each $0 \leqq s \leqq t<\infty$ and each $z \in D\left(\varphi^{s}\right)$ with $|z|_{H} \leqq r$ there is $\tilde{z} \in D\left(\varphi^{\prime}\right)$ such that

$$
\begin{equation*}
|\tilde{z}-z|_{H} \leqq\left|\alpha_{0, r}(t)-\alpha_{0, r}(s)\right|\left(1+\left|\varphi^{s}(z)\right|^{1 / 2}\right) \tag{*}
\end{equation*}
$$

and

$$
\varphi^{t}(\tilde{z})-\varphi^{s}(z) \leqq\left|\alpha_{1, r}(t)-\alpha_{1, r}(s)\right|\left(1+\left|\varphi^{s}(z)\right|\right) .
$$

Theorem A. 1 (cf. $[9 ; \S 1.1, \S 2.8])$. Let $\left\{\varphi^{t}\right\} \in \Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right)$ and $u_{0} \in \overline{D\left(\varphi^{0}\right)}$. Then we have:
(i) $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ admits one and only one solution u on $[0, \infty)$ such that

$$
\sqrt{t} u^{\prime} \in L^{2}(0, T ; H) \text { for every finite } T>0
$$

and

$$
t \rightarrow t \varphi^{t}(u(t)) \text { is bounded on }(0, T] \text { for every finite } T>0 .
$$

In particular, if $u_{0} \in D\left(\varphi^{0}\right)$, then $u^{\prime} \in L^{2}(0, T ; H)$ and $t \rightarrow \varphi^{t}(u(t))$ is bounded on $[0, T]$ for every finite $T>0$.
(ii) The solution u to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on $[0, \infty)$ satisfies

$$
\varphi^{t}(u(t))-\varphi^{s}(u(s))+\frac{1}{2} \int_{s}^{t}\left|u^{\prime}(\tau)\right|_{H}^{2} d \tau \leqq \int_{s}^{t} k_{r}(t)\left(1+\left|\varphi^{\tau}(u(\tau))\right|\right) d \tau
$$

for every $0<s \leq t<\infty$ with $\sup _{0 \leq \tau \leq t}|u(\tau)|_{H}<r$, where

$$
k_{r}(\tau)=4\left|\alpha_{0, r}^{\prime}(\tau)\right|^{2}+\left|\alpha_{1, r}^{\prime}(\tau)\right| \text { for } \tau \geqq 0 \text { and } r \geqq 0 \text {. }
$$

Next, we recall a notion of the convergence of convex functions due to Mosco [12]. Given a sequence $\left\{\psi_{n}\right\}$ of proper 1.s.c. convex functions on H and a proper 1.s.c. convex function ψ on H, we say that ψ_{n} converges to ψ on H as $n \rightarrow \infty$ in the sense of Mosco if the following (a) and (b) are satisfied:
(a) If $z_{n} \rightarrow z$ weakly in H (as $n \rightarrow \infty$), then

$$
\liminf _{n \rightarrow \infty} \psi_{n}\left(z_{n}\right) \geqq \psi(z)
$$

(b) For each $z \in D(\psi)$ there is a sequence $\left\{z_{n}\right\}$ such that $z_{n} \rightarrow z$ in H and $\psi_{n}\left(z_{n}\right) \rightarrow \psi(z)$.
With this notion we give a convergence result of solutions to our Cauchy problems.

Theorem A. 2 (cf. [7; Theorem 1] or [9; §2.7]). Let $\left\{\varphi^{t}\right\}$ and $\left\{\varphi_{n}^{t}\right\}, n=$ $=1,2, \ldots$, be in $\Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right)$ such that
$\varphi_{n}^{t} \rightarrow \varphi^{t}$ on H as $n \rightarrow \infty$ in the sense of Mosco for each $t \geqq 0$.
Let $u_{0} \in \overline{D\left(\varphi^{0}\right)}$ and $u_{0, n} \in \overline{D\left(\varphi_{n}^{0}\right)}, n=1,2, \ldots$, such that $u_{0, n} \rightarrow u_{0}$ in H. Then, denoting by u and u_{n} the solutions to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ and $\mathrm{CP}\left(\varphi_{n}^{t} ; u_{0, n}\right)$ on $[0, \infty)$,
respectively, we have

$$
u_{n} \rightarrow u \text { in } C([0, T] ; H)
$$

and

$$
\int_{0}^{T} \varphi_{n}^{t}\left(u_{n}(t)\right) d t \rightarrow \int_{0}^{T} \varphi^{t}(u(t)) d t
$$

as $n \rightarrow \infty$ for each finite $T>0$.
Finally we mention a result concerning the asymptotic behaviour of the solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on $[0, \infty)$. Given a family $\left\{\varphi^{t}\right\}$ and a proper 1.s.c. convex function φ^{∞} on H, we say that $\varphi^{t} \rightarrow \varphi^{\infty}$ on H as $t \rightarrow \infty$ in the sense of Mosco, if $\varphi^{t_{n}} \rightarrow \varphi^{\infty}$ on H as $n \rightarrow \infty$ in the sense of Mosco for every sequence $\left\{t_{n}\right\}$ with $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Theorem A. 3 (cf. [8; Theorem 1]). Let $\left\{\varphi^{t}\right\} \in \Phi\left(\left\{\alpha_{0, r}\right\},\left\{\alpha_{1, r}\right\}\right)$ with $\alpha_{0, r}^{\prime} \in L^{2}(0, \infty)$ and $\alpha_{1, r}^{\prime} \in L^{1}(0, \infty)$ for any $r \geqq 0$, and suppose that $\varphi^{t} \rightarrow \varphi^{\infty}$ on H as $t \rightarrow \infty$ in the sense of Mosco for a proper l.s.c. convex function φ^{∞} on H. Further, let $u_{0} \in \overline{D\left(\varphi^{0}\right)}$, and u be the solution to $\mathrm{CP}\left(\varphi^{t} ; u_{0}\right)$ on $[0, \infty)$. If φ^{∞} is strictly convex on $D\left(\varphi^{\infty}\right)$ and $\sup |u(t)|_{H}<\infty$, then there exists $u_{\infty} \in D\left(\varphi^{\infty}\right)$ such that $u(t) \rightarrow u_{\infty}$ weakly in $H, \varphi^{t}(u(t)) \rightarrow \varphi^{\infty}\left(u_{\infty}\right)$ as $t \rightarrow \infty$ and $\varphi^{\infty}\left(u_{\infty}\right)=\min \varphi^{\infty}$, i.e. $0 \in \partial \varphi^{\infty}\left(u_{\infty}\right)$.

Remark. In applying [8; Theorem 1], for each $z \in D\left(\varphi^{\infty}\right)$ it is necessary to show the existence of a function $w:[0, \infty) \rightarrow H$ such that $w(t) \rightarrow z$ in H and $\varphi^{t}(w(t)) \rightarrow \varphi^{\infty}(z)$ as $t \rightarrow \infty$. Under the assumptions of Theorem A.3, given z in $D\left(\varphi^{\infty}\right)$, such a function w can be constructed as follows: First, take a sequence $\left\{z_{n}\right\}$ in H such that $z_{n} \rightarrow z$ in H and $\varphi^{n}\left(z_{n}\right) \rightarrow \varphi^{\infty}(z)$ as $n \rightarrow \infty$. Let r and L be non-negative numbers satisfying $\left|z_{n}\right|_{H} \leqq r$ and $\left|\varphi^{n}\left(z_{n}\right)\right| \leqq L$ for all n, respectively. Then, by assumption, for each $t \in[n, n+1)$, $n=0,1, \ldots$, there exists $w(t) \in D\left(\varphi^{t}\right)$ such that

$$
\left|w(t)-z_{n}\right|_{H} \leqq\left|\alpha_{0, r}(t)-\alpha_{0, r}(n)\right|\left(1+L^{1 / 2}\right)
$$

and

$$
\varphi^{t}(w(t))-\varphi^{n}\left(z_{n}\right) \leqq\left|\alpha_{1, r}(t)-\alpha_{1, r}(n)\right|(1+L) .
$$

It is easy to see that this function w has the desired property.

References

[1] Brézis H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert., Math. Studies 5, Amsterdam-London, North-Holland, 1973.
[2] Cannon J. R., Hill C. D. Existence, uniqueness, stability and monotone dependence in a Stefan problem for the heat equation. J. Math. Mech. 17 (1967), 1-19.
[3] Cannon J. R., Hill C. D. Remarks on a Stefan problem. J. Math. Mech. 17 (1967), 433-441.
[4] CANNon J. R., Hill C. D. On the infinite differentiability of the free boundary in a Stefan problem. J. Math. Anal. Appl. 22 (1967), 385-397.
[5] Cannon J. R., Primicerio M. Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary. J. Math. Anal. Appl. 35 (1971), 361-373.
[6] Ffiedman A. Partial differential equations of parabolic type. Englewood Cliffs, New Jersey, Prentice-Hall, 1964.
[7] Fuityama N., Watanabe J. Convergence of subdifferentials and the penalty method. Rep. Univ. Electro-Comm. Sci. Tech. Sect. 28 (1978), 245-258.
[8] Furuya H.. Miyashiba K., Kenmochi N. Asymptotic behaviour of solutions to a class of nonlinear evolution equations (to appear in J. Differential Equations).
[9] KenMochi N. Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull. Fac. Education, Chiba Univ. 30 (1981), 1-87.
[10] Kenmochi N. Subdifferential operator approach to a class of free boundary problems. Analysis 3 (1983), 251-281.
[11] Kenmochi N. Asymptotic behaviour of the solution to a Stefan-type problem with obstacles 'on the fixed boundary. Hiroshima Math. J. 14 (1984), 1-13.
[12] Mosco U. Convergence of convex sets and of solutions of variational inequalities. Advances Math. 3 (1969), 510-585.
[13] Rubinstein L. I. The Stefan problem. Translations of Mathematical Monographs 27, Providence, Rhode Island, Amer. Math. Soc. 1971.
[14] Schaeffer D. G. A new proof of the infinite differentiability of the free boundary in the Stefan problem. J. Differential Equations 20 (1976), 266-269.
[15] Yotsutani S. Stefan problems with the unilateral boundary condition on the fixed boundary I. Osaka J. Math. 19 (1982), 365-403.
[16] Yotsutan S. Stefan problems with the unilateral boundary condition on the fixed boundary III. Osaka J. Math. 20 (1983), 845-862.

Jednofazowe zagadnienia Stefana z nieliniowymi warunkami brzegowymi na ustalonym brzegu

W pracy rozważa się jednowymiarowe jednofazowe zagadnienia Stefana z jednostronnymi warunkami brzegowymi na ustalonym brzegu. Dowodzi się istnienia globalnego rozwiązania takiego zagadnienia odpowiadającego jego sformułowaniu quasi-wariacyjnemu. Dyskutowane są następujace problemy:

घ a) monotoniczna zależność rozwiązania od warunków brzegowych i początkowych, jednoznaćzność rozwiązania:
b) asymptotyczne zachowanie swobodnej granicy $x=l(t)$, warunki dostateczne na dane brzegowe, zapewniające skończoność $l(t)$ przy $t \rightarrow \infty$;
c) asymptotyczne zachowanie rozwiązania $u=u(x, t)$, zależność $\lim \inf u(x, t) i \limsup u(x, t)$, przy $t \rightarrow \infty$ od danych brzegowych.

Однофазная проблема Стефана
 с нелинейными краевыми условиями на фиксированном крае

В работе рассуждается одномерную однофазную проблему Стефана с односторонными краевыми условиями на фиксированном крае. Доказывается существование глобального решения такой проблемы, ответствующего ее квази-вариационной постановке. Рассуждены следующие вопросы:
a) монотонная зависимость решения от краевых и начальных условий, однозначность решения,
b) асимптотическое поведение свободной границы $x=l(t)$, достаточные условия для краевых условий, при которых $\lim l(t)$ при $t \rightarrow \infty$ конечная,
c) асимптотическое поведение решения $u=u(x, t)$, зависимость $\lim \inf u(x, t)$ и $\lim \sup u(x, t)$ при $t \rightarrow \infty$ от краевых условий.

[^0]: *) Dedicated to Professor I. Miyadera on his 60th birthday.

