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In this paper we consider the global behaviour (t--> eo ) for the solution of the nonlinear 
equation a, /'- L1u- i',. ;· = 0 in ]0, T[ x D with respect to some physical motivated boundary 
and initial conditions. For y we assume that 0 ~ y ~ 1 and u (l- y) = 0. This model describes 
the non-steady filtration of an incompressible fluid through an isotropic homogeneous medium D. 
The main result is the convergence of u (t , ·) to the solution of the stationary problem. 

1. Introduction 

Let us consider two water-reservoirs which are separated by a dam D 
consisting of an isotropic, homogeneous, porous material. The levels of the 
reservoirs may be different and time-dependent and they are supposed to 
tend to fixed levels if t tends to infinity. We start with nonstationary initial 
conditions and we are interested in the asymptotic behaviour of the pressure 
distribution u (t, z) of the water in the dam if t tends to infinity. 

By an unknown interface, the free boundary, the dam is separated at 
time t into a wet part Q (t) and a dry part D\Q (t). Let us assume that the 
water is incompressible. Then we know ([16], [12], [7]) that u is a positive 
harmonic function in the wet part and satisfied two boundary conditions on 
the free boundary: 

u=O and Ot<p+Ovu·J1+(8x<p)2 =0, 

if there exists a parametrization <p = <p (t, x) of the free · boundary which is 
regular enough and if v denotes the outward normal with resr~ct to 

Q (t) in the (x, y)-plane. We would like to have a formulation of the problem 



248 D KR6NER 

in which the free bbundary does not occur. Therefore we extend u by zero 
to all of D and obtain ([16]): · 

(1.1) 

where x (t, ·) denotes the chracteristic function of Q (t) and y is the vertical 
coordinate of z = (x, y) E D. Now it is more convenient ([1], [12]) to replace 
X by yE Lro (DT) satisfying · 

0 ~ y ~ 1 and u (1-y) = 0 a.e. in DT. (1.2) 

We shall study (1.1), (1.2) with respect to boundary conditions on aD which 
are given by the physical situation. Before formulating it let us summarize 
the assumptions concerning aD. For the boundary aD we assume: 

aD is Lipschitz continuorls 
and F0 , F1 are graphs of functions l/1 0 , l/1 1 EC2([a, b]) 
such that D = {(x, y) ixE]a, b[, l/1 1 (x) < y < l/1 0 (x)}, 

l/1 1 (a)= l/1 0 (a), l/1 1 (b) = l/1 0 (b). Let P:= (x0 , y0 ) 

denote the top of the .dam. Then l/J'o (x) > 0 
for a< x < x0 and l/J'o (x) <::: 0 for x0 < x <b. 

(1.3) 

The last conditions ensures that the number of reservoirs remains constant. 
(1.3) implies that e · v < 0 on F1 where e is the vertical unit vector (0, 1) 
and v is the outward normal to F1 . 

Fig. 1 

On F1 the dam is assumed to be impervious, i.e. ([12], [16]): 

Uv+X cos (v·e) = 0 on 1'1: = ]0, T[ X r1. 

where v is the outer normal to F1 . 

We 'Split To into two parts 

ro1: = {(x, y)EFo lx ~ Xo}, roz: = Fo\Fol 

and describe the pressure: 

u (t, x, y) = (y;(t)- y)+ on 1'0 ;: = ]0, eo[ x F0 ;, 

(1.4) 

(1.5) 
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and assume 

0::;:;: y;(t) < y0 for t E]O, oo[ 
y;(t)-+ Y; if t-+ 00 

(1.6) 

for i = 1, 2. Here Yi (t) measures the water levels of the reservoirs i = 1, 2 
at time t . The conditions (1.5) means that the pressure of the "wet part" 
of ro is given by the water pressure of the reservoirs and on the dry 
parts of F0 by zero. Furthermore the levels are supposed to stay below 
the maximal height of the dam Y; defines the height of the z,h_reservoir in 
the stationary situation. . 

Initially we prescribe the wet part of the dam that means 

y (0, ·) = Xo a. e. in D (1.7) 

where Xo is the characteristic function of some open subset D0 c D such that 
the following compatibility condition is fulfilled: 

(1.8) 

For the weak formulation of the problem we need some further technical 
assumptions. Let us assume that there exists an extension g of the boundary 
values on F0 such that 

g E C0
•
1 (15 00 ) n Loo (D 00 ), g ~ 0 in Doo; 

g (t, x, y) = (y;(t) - y)+ on E0 i, i = 1, 2. 
(1.9) 

Since we shall look for the asymptotic behaviour for t-+ oo we suppose that 
there exists a function G such that 

G E C0
•
1 (D), 

g (t, ·)-+ G uni~ormly in D if t-+ oo, 
G (x, y) = (Y;_: y)+ on F0 ;, i = 1, 2. 

The space of test functions is 

V= {wEH1
•
2 (D)jw = 0 on IQ}. 

(1.10) 

(1.11) 

Then we shall investigate the following weak formulation of the described 
problem. 

1.1. NoN-STEADY PRqBLEM. The data D, g, Xo are supposed to satisfy (1.3), 
(1.8), (1.9). Then find a pair of functions {u, y} such that we have 

u = g + L~oc (0, oo; Jt), '}'EL00 (Doo), at yEI;oc (0, oo; V*); (1.12) 

u~O, O::;:;:y::;:;:1, u(1 - y) = O a.e. in D00 ; (1.13) 

J (y (ay v-a1 v)+ Vu Vv)::;:;: 0 for all vEH 1 (0, oo; H 1 (D)), (1.14) 

Doc - -V ~ 0 On Fo n {g = 0}, V = 0 Oll Fo f1 {g > 0} ; 

I 
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T T 

J J (Y-Yo) at ( = J <at y, ( >, Yo: = y (0, ·) 
0 /) 0 

for all (EL2 (0, T; V)nH1 (0, T, L"' (D)), ( (T) = 0 for some T> 0. (1.15) 

(1.12) contains the Dirichlet boundary conditions on r0 , the weak formulation 
(1.14) the · Neumann boundary condition on r 1 and (1.15) is the weak 
formulation for the initial condition. 

In this paper we intend to show, that the solution of Problem 1.1 which 
we get by regularization converges strongly in I! (D), 1 ~ p < oo to the 
solution U00 of the stationary problem which is defined in 

1.2 STATIONARY PROBLEM. For given data D and G satisfying (1.3), (1.10) find 
{u 00 , Yoo} such that we have 

U 00 EG + V, Yoo EL"' (D); 

Uoo ~ 0' 0 ~ y 00 ~ 1' Uoo (1 - y oo) = 0 a.e. in D; 

J(Vu00 +ey 00)Vv~O for all vEH 1 (D), 
D 

v~O on r0 n{G = 0}, 

v = 0 on r0 n { G > 0} . 

1.3. REMARK. We have to assume that 

Problem 1.2 has at most one solution. (1.16) 

Conditions for the data of Problem 1.2 under which (1.16) is true can be 
found in [5], [8] and [9]. Roughly speaking we have to guarantee that 
each drop of water in the dam is connected with the reservoirs. For 
example if D has a convex bottom there exists at most one solution ([5] 
Theorem 9.3, [8] Remark 3, [9] Remark 3). 

Let us continue with some known results in this field. For the problem 
1.1, Gilardi ([12], Theorem 4.1) has proved the existence of at least one 
bounded solution. 

In the case of a single equation where we have e instead of y in (1.14) and e 
is Lipschitz continuous the global behaviour was studied in [14]. There it was 
even shown that u (t) ~ u00 strongly in H 1 (D) for t--+ oo and the rate of 
convergence could be estimated. In a recent paper Friedman and DiBenedetto 
[11] consider a rectangular dam which separates compressible fluids. They 
investigate the situation of a periodical movement of the boundary values. 
Large time behaviour for initial boundary value problems of the form at u = 

= axx (urn)+ f (u) are studied in [ 4] and for at u = (D (u) cp (ux))x (with dege
neration in D and cp) in [10]. For investigations concerning the asymptotic 
behaviour of solutions of Stefan-type problems see for example [13]. 
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2. Main results 

In this section we shall formulate the main result of this paper (Theorem 
2.5). But previously let us repeat an existence theorem for the stationary 
solution and let us describe the regularization which gives us a solution 
of the non-steady problem. 

2.1 . THEOREM (existence for the stationary problem). There exists a solution of 
Problem 1.2. 

Proof. See Alt [3] and Brezis [8]. 

REMARK. In this paper we do not assume that Problem 1.2 has a solution. 
In §6 we shall show independently of Theorem 2.1 that there exists a solution 
of Problems 1.2. 

Now let us describe the regularization which will give us a solution of the 
non-steady problem 1.1. We define 

1ift;?;e 

t .f be (t): = - 1 0 < t < e (2.1) 
e 
Oift~O 

For approximating a solution of Problem 1.1 we consider the following 
regular problem: 

2.2 REGULAR PROBLEM The data D, g, x0 , be are supposed to satisfy (1.3), 
. (1.8), (1.9), (2.1) and 

u0 Eg(O,·) + VnLco(D),u0 >0 in D0 ,u0 =0 in D\D0 . (2.2) 

Then find a function ue such that we have 

Ue E g + L'?oc (0' CX); V), at be (ue) E L~oc (0' CX); L2 (D)); (2.3) 

Ue :?: 0 in D eo ; (2.4) 

s at be (ue) V+ s (Vue + ebe (ue)) Vv = 0 for all V E V; (2.5) 
D D 

be(ue(O,·)} = b8 (u0 ) on {O}xD. (2.6) 

2.3 THEOREM. There exists for any e > 0 one and only one solution ue of 
Problem 2.2. 

Proof. See Alt and Luckhaus [6] 2.2 and 2.3. • 
If e tends to zero, the solutions ue of Problem 2.2 converge to a solution 

of Problem 1.1. This is the assertion of 
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2.4. THEOREM. Suppose (1.3), (1.6), (1.8), (1.9), (1.10), (2.1) and (2.2). Then 

there exists a subsequence U8 of solutions of the regular problem 2.2 such that 
U8 converges weakly in ~oc (0, oo; V) to u and bt (u8 ) converges weakly in 
~oc (D 00 ) to y, 1 :( p < oo where { u, y} is a solution of the non-stationary 
problem 1.1. 

Proof: See Lemma 6.3. • 
Now we can formulate the main result of this paper. 

2.5. THEOREM. Suppose (1.3), (1 .6), (1.8), (1.9), (1.10), (1.16), (2.1) and (2.2). 
Let {u, y} be the solution of P~oblem 1.1 which we get _in Theorem 2.4. · 
Let { U 00 , y 00 ) be the solution of the stationary ·problem 1.2. Then we have 

u(t)~U00 , y(t)~Yoo for t~oo 

strongly in I! (D) for all 1 :( p < oo. 

Proof: See 6.5 . • 
REMARK. If g does not depend on time the convergence u (t) ~ u00 , t ~ oo 
holds even weakly in H 1

•
2 (D). 

The main idea for proving Theorem 2.5 iS> to construct sub- and 
supersolutions u+, u- for u, which are decreasing and increasing in t, 
respectively, if t tends to infinity. Actually we shall construct sub- and 
supersolutions u:, u; for U80 i.e. 

This can be done if we solve the regular problem 2.2 with respect to the 
• ± + boundary values F (t, z) = G (z) ± <p- (t) where G is the asymptotic limit 

(t ~ oo) of g (t, ·) (see (1.10)) and q>± satisfy 

p-::;;g::;;F+ on]O,oo[xD, 

q> + ( q>-) monotone decreasing (increasing) in t, (2. 7) 

q> (t) ~ 0 if t ~ 00. 

Since we have to estimate the measure of the sets {zEDIO < G (z) < 8} in 
terms of 8 it turns out to be succe~sful to replace G by a harmonic function 
with the same boundary values on F0 as G. The existence of a suitable harlll.onic 
function with some additional properties will be proved in §3. The existence 
of sub- and supersolutions with the desired behaviour for t ~ oo i.s the 
subject of §4. The most important step to control the dependence of u: (t, z) 
on 8 and t is to verify the estimates 

J jVui' (t)l 2 
:( const. 

D 

uniformly in 8 and t .. This will be proved in §5. In §6 we intend to study 
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the convergence of ut- , ue if s ~ 0 and t ~ oo. We shall show that 

(with respect to a suitable topologY) where u-, u, u+ are solutions of Problem 
L1 with respect to the boundary value p-, g and p+ and appropriate initial 
values and we shall show 

Then we consider the behaviour of u- (t, · ), u+ (t, ·) if t ~ oo . We shall 
obtain that 

u- (t,·)~u~, u+ (t,·)~u;;; for t~oo 

(with respect to a suitable topology) where u~, u;!; are solutions of the stationary 
problem. Since we assume that t;his problem is uniquely solvable (see (1.16)) 

·-we have · 

u~ = u;!; = lim u (t, · ). 
t->oo . . 

This argument will prove Theorem 2.5. 

3. Harmonic extension of the boundary values 

In this section we establish some properties of a particular harmorlic 
extension of the boundary values of G on IQ into the interior of D. The 
details are given in the following lemma. First let us give some notations. 

x1: = sup {x < x0IG (x, y) > 0, (x, y)EF0}, 
· x2: = inf {x > x0IG {x, y) > 0, (x, y) EF0}, 

z1: = (x1, Y!), Zz: = (xz, Yz), 

(3.1) 

where P = (x0 , y0 ) is the top of the dam (see (1.3)) and y 1 , y2 are defined 
in (1.6). Furthermore w·e shall use z = (x, y) and 

3.1 LEMMA. Assume (1.3), (1.10). Then there exists a solution HE G +V of 

J(VH + e)Vv = O for all vEV (3.3) 
D 

For H we have the following properties: 

H E e (D) and H > 0 in D. (3.4) 
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There exist Qo, e0 such that for i = 1, 2: 

IVH (z)l = 0 (!log lz-z;i!) for all zEBq
0 

(z;) n D; (3.5) 

Oy H ~ - k < 0 on D~0 : = {zEDidist (z, St) ~ Qo} for some k > 0; (3.6) 

meas ({zED ia~H(z)~e+a}nD~0)~k 1 , for aER,O<e~e0 , (3.7) 

where k1 is independent of a; 

{z E D IO~ H~ 2e}c D~0 ; 

J IVHI2 
= 0 (e), 0 < e~ e0 . 

{a.;; H.;;e +a),-,Di
0 

(3.8) 

(3.9) 

Proof of (3.3), (3.4): The existence of a solution H in (G+ V)n Lrro (D) 

follows for example as a special case from Theorem 3 in [14]. In order 
to show H > 0 notice that H- = min {0, H} E V and test (3.3) with H-. 
We obtain: 

J V H V H- = - J ev H- ~ 0 
D r, 

(see (1.3)). But this implies H ~ 0 in D and using the classical maximum 
principle for LJH = 0 in D we obtain H > 0 in D. • 

Proof of (3.5): We shall give the proof for i = 1. For i = 2 we can use 
the same arguments. For simplicity we can assume without loss of generality 
that the inner normal --v (z 1) in z 1 E T0 points · into the direction of the 
positive x-axis, that T0 near z1 is given locally as the graph of a function 
1/J E C2 

([- Qo, Q0]) and z 1 = 0. Now we straighten T0 in a neighbourhood 
of z1 and define for (x, y)EKe:: = {(x, y)!O < x < Q0 , - Q0 < y < Q0 } 

w (x, y): = H (x + I/J (y), y). 

Later on Qo has to be chosen small enough. The function w satisfies the 
following boundary value problem: 

Lw:=(1+1/J'2 )o;w + o;w-21/J'oxoyw-I/J"oxw=O in K 11:, 

w(O,y)=O for 0<y<Q0 , w(O,y) = -y for - Q0 <y<0. 

Now we would like to subtract a harmonic function IJ from w, with the 
·same boundary values as w, on {x = 0} . For this purpose we take for 

n n 
0 ~ r ~ Qo, - 2 ~ q> ~ '2 (we use z = (r, q>) = (x, y)): 

11 (z) = - ~ Im (iz log (- iz)) = : [( q> - ; ) sin q> - cos q> log rJ.: (3.10) 

IJ IS harmonic in K:O and on {x = 0} 17 has the same boundary values 



Asymptotic behaviour 
' : ~ · 

255 

as· w, 11 ?: 0 in K:O if 12o is small enough since 

~ (z) <cos q> r (-1-·(n q> - loJ l Slll cp - 2 J 
(3.11) 

and the first term in the brackets is bounded. For the gradient of 11 we obtain: 

V11 (z) =- ! (1 + log r)(~) + ! ( cp - ;)(~) (3.12) 

and we shall prove that Vw behaves like V1J. This can be seen as follows: 
For the difference v: = w-11 we get 

Lv = t/1'2 a; 1J - 2t/l' ox oy 11 - t/1" ox 11 = 

1 [ t/1'2 t/1' J . = - - -cos cp+2- sin cp+(1 + log r) t/1" jn Ke+, (3.13) 
7t T T 0 

W - IJ=O on {x=O}. 

Since t/1 (0) = t/1' (0) = 0 and t/1 E C2 
([- Qo, Qo]) the right side in (3.13) is in 

I!' (Ke:) for all p?: 2. Therefore we get from the theory of elliptic operators 
that W- 1JEH2·P(K:0) for all p;?: 2. To apply this theory we have to smooth 
out the corners of oKI!:. On the boundary of this new set, the values of 
w - 11 are regular enough since w and 11 are smooth functions away from 0. 
From the Sobolev embedding theorem we obtain in particular that w - 1JE 

E C1 (Ki'c) . This implies 

Vw = V17+0 (1) = 0 (!log rl) in K:O , 
VH = AVw = AV17+0 (1) = 0 (!log rl) in Bl!o (z1)nD, 

(3.14) 

where 

( 1 ' 0) 
A = - t/1' (y), 1 . • 

Proof of (3.6):· Now we have to take into account that we neglect the 
rotation of the system when we assume that the inner normal - v (z 1) in z 1 

points into the interior of D. Therefore we must prove 

(~b)vH~ -k<O on Be0 (z 1)nD 

for a = cos cp 0 , b = sin cp0 > 0 where cp0 is the angle of rotation and 
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The first assertion follows from (3.12), (3.14) and the second if we apply 

Hopf's maximum principle on compact subsets of the boundary S 1 . • 

Proof of (3.7): We obtain for a ER 

meas ({zEDia ~ H (z) ~ a+ s} n D~.) = . 
= meas ({z EDiz = p- A.v (p), pEF0 , 0 ~A.~ g0, a~fP (A.)~ a + s}) 

where JP (A.) = H (p - A.v (p)). Similarly to (3.6) we can prove that for all p ES 1 

J; (A.)= a_v H (p - A.v (p)) > k > 0 

is true. Therefore we can continue 

= meas ({zE Dl ... fp- 1 (a)~ A. ~fp- 1 (a + s)}) ~ c (fp- 1 (a + s) - fp- 1 (a)), 

where c is independent of a and s, 

~ c (fP- 1)' (0 s, for some a<~< a + s, 

1 c 
= c J; (fp 1 ( ~)) s ~ k s. • 

Proof of (3.8): For a fixed g0 the maximum principle applied to H in 
rAP!. yields: 

1 .. 
s0 : = { i~f {H (z)jzED\D~0} > 0. (3.15) 

But this implies (3.8). • 
Proof of (3.9): Let us use the same assumptions concerning fhe geometry 
of D as in the proof of (3.5) and let us use the notation 

D (a, y): = {;;l(x, y) ED!. Ia ~ H (.x, y) ~ s+a} 

fY (x): = H (x, y) . 

Since J; (x) ~ k2 > 0 in B110 (zt)n D (see (3.14) and (3.12)) we can define 

b( )·-{fy- 1
(s)ifs>O s,y. -

0 if s ~ 0. 

Therefore 

Qo eo ·b(a+e,y) 

J IVHI 2 = J J IVHI2 dx dy = J J IVHI2 dx dy ~ 
-Q0 D(a,y) - uo b(a, y) 

Qo b(a+e,y) Q0 b(a+e,y) 

~ c J J llog (x 2 + y2W dx dy ~ c J (llog IYI I J 1dx) dy • 
-eo b(a,y) -eo b(a,y) 
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Now we have 

. . - B 
ib(a +e,y) - b(a,y)l :::;; sup (fy 1)'(()(a + e- max(O,a)):::;;-

{eD(a,yJ kz 

~ndthisproves(3.9)on {a:::;; H:::;; e+a} nBQ
0 
(\) . On {a:::;; H:::;; e+a} nD~0\Be 

It follows from (3. 7) and the boundedness of V H on his set. 0 

• 
4. Sub- and supersolutions 

The purpose of t,bis part is to establish the sub- and supersolution u! 
with respect to u,. u! :;tre expected to . be monotone decreasing and mono
tone increasing .in t, respectively, if t tends to infinity. As boundary and 
initial values for the sub- and supersolution we choose 

p± (t, z): = H (z)±<p± (t) (t, z)E [0, oo[ x D, 

uri (z) : = H (z)+<p+ (0) zED, 

u0 solves: J Vu() Vv = 0 for all vE V, u0 EF- (0, · )+ V, 
D . 

such that <p · satisfies 

and 

H(z) - <p-(t):::;;g(t,z):::;;H(z) + <p+(t) on ]O,oo[xr0 , 

H (z) - <p- (0):::;; u0 (z):::;; H (z)+<p+ (0) on D. 

ll<p± llc'([O,oo[) bounded; <p± > 0, (<p±)':::;; 0; <p± (t)-+ 0 if t-+ oo; 

(4.1) 

(4.2) 

(<p+)' ~ - k on [0, oo[ where k is given in (3.6); (4.3) 

(<p-)':::;; - K, K: = sup {oy H (z)lzED\D~0} for 0 < t < t0 

and <p- (t):::;; e0 for t ~ t0 . 

This can be obtained for example if we ~hoose <p + (0) and <p- (0) large 
enough. Then the sub- (super-) solutions u! are defined as follows. 

4.1 DEFINITION of u! u! are supposed to fulfill the following conditions: 

uf E F± + Lt~c(O,oo; V), 01 b,(unEI;oc(O,oo;L2 (D)) ; · 

J olb,(uf)v + s (Vu! + eb,(u,±))Vv=O for all VEV; (4.4) 
D D 

b,(u! (O,·)) = b,(u~) on D. 

REMARK. For existence and uniqueness we use again [6]. Theorem 2.3 and 2.4. 

For comparing u;, u, and u,+ we need the following comparison result 
for sub- and supersolutions. 

17 Co ntro l and Cybernetics 
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4.2 DEFINITION. Let u, be a solution of the regular problem 2.2 with respect 
to the boundary values q and initial values u0 . We call wEL2 (0, T; H 1

•
2 (D)) 

a subsolution (supersolution) for u, if w ~ ( ~) g on T0 , b, (0, · )) ~ ( ~) b~ (u 0 ) 

and 

J Orb, (w) v+ J (Vw+eb, (w))Vv ~ 0 (~ 0) 
D D 

for all VE V with v ~ 0. 

4.3 THEOREM. If u- is a subsolution and u+ a supersolution for u such that 
at (be (u-)-be (u+)) is in L1 (DT) then u- ~ u ~ u+ a.e. on DT. 

Proof. ·see [ 6]. Theorem 2.2. 
Now we are able to prove that u;, ue+ are sub- and supersolutions for ue. 

4.4. THEOREM. Assume (1.3), (1.8), (1.9), (1.10), (2.1) and (2.2). Let ue be the 
solution of. the regular problem 2.2 with boundary values g and initial values 
u0 . Let u: be defined as in 4.1. Then we obtain for a fixed sequence 
e =en~ 0 

REMARK. In the sequel we always denote this sequence by u, and use the 
same symbol if we select subsequences. 

Proof. For the initial and boundary values the corresponding inequalities 
are satisfied (see (4.1), (4.2), (4.3)); in particular we have u0 ~ p- (0, · ), since 
both functions are harmonic in D, the boundary values on T0 are the same 
and on rl we have 

For u, and u: we have by definition 

J Or he (u:) v+ J (vu: +eb, (u:)) Vv = 0 
D D 

for all v E V. Using Theorem 4.3 this yields u,- ~ u, ~ ut. 
For p+ we get for v E V, v ~ 0 

for b, (F+) v+ f (VF+ +eb, (F+)) Vv = 

D D 

= f b~ (F+)(<p+)' v+ f(VH +e) Vv+ f(eb, (F+)-e) Vv = 

D D. D 
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b 1/to(x) 

= f b~ (F+) (<p+)' v+ f (b, (F+)-1) v\ - f b~ (F+) ay Hv ~ 
D a Y,,(x ) D 

~ fb~(F+)v(<p+'-ayH)= 
D 

1 f 
'11 .;, 1· : o~F+~ J:~ 1 D~~o 

Remember that {0 ~ p+ ~ e} c {0 ~ H ~ c:} by definition of p+ in (4.1). 
Then (3.8) implies that the domain of integration of the second integral is 
empty. Therefore we can continue : 

1 J v \<t>+'-ay H)~ o, 
ro~p + ~e1 

since on D~0 we have aY H ~ -k < 0 and <p+' ~ -k (see (3.6) and (4.3)). 
Applying the comparison theorem 4.3 we obtain 

p+ ~ u: a.e. in [0, oo[ x D. 

u: ~ 0 is obvious. For p- we get for vE V, v ~ 0 

fat b, (F-) v+ f(vF- +eh, (F-)) Vv~ 
D D 

1 
~

e 
f v ((- <p -)'-ay H). 

{0 ~~ - ~ e ]nD ~ 0 

The first integral is nonnegative since (<p-)' ~ 0, v ~ 0 and aY H ~ 0 in D~.· 
For the second integral we distinguish between the cases t < t0 and t ~ t0 

where t0 is defined in (4.3). If t < t0 we get (<p-)' ~ -K and therefore 

J v(-(cp-)'-ayH)~ J v(K-ayH)~O. 
{O.;; r <;; e~D:0 {o.;;r <;;e )\D;

0 

If t ~ t0 we ob~ain 

{(t, z)IO ~ p- (t, z) ~ c:}\D~. = {0 ~ H (z)-<p- (t) ~ c:}\D!. = 

= {o ~ ~ +( ~ -<p- (t)) ~ c:}\v!. c 

c {o ~ ~ ~ c:}\D~0 =0 (see (3.15), (4.3)), 
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since {0 ~ H ~ 2t:} c D!. for 0 < E ~ t:0 and t: 0 is defined in (3.15). Therefore 
p- is a supersolution of u;, i.e. u; ~ p-. 
· It remains to show u0 ~ u,- . Without restriction we can assume u0 < 0 
in D (choose q>- (0) large enough). Then for all v E V 

J at b, (u0) v+ J (Vu0 +eb, (u0)) Vv = 0. 
D D I 

Since u0 ~ u; on E0 and b (u0) = b (u;) on {0} x D using the comparison 

theorem we obtain u0 ~ u;. • 

4.5 LEMMA. Under the conditions of Theorem 4.4 u; and u: are monotone 
non decreasing and monotone non increasing in t, respectively. 

REMARK. This means that for any 0 < E ~Eo there exists a set N, c R +, 

meas (N,) = 0 such that for all s, tER+\N., s ~ t and almost all xED 

u; (s, x) ~~u; (t, x), 

u: (s, x) ~ u: (t, x). 

Proof: Let us show the statement concerning u; for a fixed E. For u" (t, z): = 
= u; (t+o:, z), o: ~ 0 we have 

sat b, (ua (t)) V+ s (Vu" (t)+eb, (ua (t))) V= 0 
D D ~ 

for all vE V and a.a. tER+; and 

u(l (t, ·) = p- (t+o: , · )~ p- (t, ·) = u,- (t, ·) on f'o for a.a. tER+, 

b, (uo: (0 , · )) = b, (tte (o:, · )) ~ b, (u0) = b,- (u,- (0, · )) on D 
- --- (see Theorem 4.4). {4.6) 

Using the comparison theorem 4.3 we obtain 

u; (t+o:, z) ~ u,- (t, z) for all tER+\Ne,a and a.a. zED, 

where meas (N,,a) = 0. 
Now an easy consideration shows us that this implies the statement of the 

lemma. Keep E fixed and let (o:n) be a sequence of positive real numbers 
converging to zero such that (4.6) is fulfilled and define 

00 

N,: = u N'·"n and 
n= 1 

M: = { s ER+ Is = t + O:n, nE N, t E Rci\N ,} . 
, 

It can be easily shown that meas (R +\M) = 0 and therefore the statement 
holds for u,-. The proof for u: is similar. Notice that for the initial 
conditions we have 

• 
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5. L00 (H 1)-estimates for the sub- and supersolution 

In this section we prove the L00 (0, oo; H 1 (D))~stimates for u8 and for 
the sub- and supersolution u;= which are defined in 4.1. We need the 
following notations : 

1 
o~ w (t, z) : = h (w (t + h, z) - w (t, z)), 

t +h 

wh(t,z): = ~I w(s,z)ds, 

t 

t 

wh(t,z):= ~ I w(s,z)ds, 

t-h 

B~ (w, s, z): = be (w (s + h, z)) - b. (w (s, z)) . 
w (s + h, z)-w (s, z) 

If the formulations of the following statements will be the same for u:, u.
we shall write w instead of u: ahd u; and F instead of p+ and p-, respectively. 

5.1 THEOREM. Assume (1.3), (1.8), (1.9), (1.10), (2.1) and (2.2), let U8 be the 
solution of Problem 2.2 and u;= be as in Definition 4.1. Then there exist constants 
e0 , h0 , t 1 , C0 > 0 such that we have for all 0 < e ~eo, 0 < lhl ~ ho and t ?= t1: 

t+ 1 

f f B~ (w, s, z) a~ w (s, z)2 dz d~ + f IVw (t, zW dz ~ C0 (5.1) 
t D D 

for w = u: , u; . 
REMARK. The first term in ( 5.1) can be estimated by c; for all t ER+. 

Proof: The basic idea for proving this theorem is to use a~ w - a~ F as 
test function in (4.4). For h, rER+, 'f/EJ3 (0, r; V) get from (4.4) 

(5.2) 

Now we take a~ w-a~ Fastest function in (5.2). For fixed t, t ~a~ r ~ t + 
+ 1-h and D' := ]a,r[xD we obtain 

fa~ be (w) a~ w + f (Vwh+e (be (w))h) V (a~ w + ea~ b. (w)) = 
D' D' 

= fa~ be (w) a~ F + f(Vwh + e (be (w))h) eo~ be (w). 
D' D' 

Since w(t,z) is defined on ]O , oo[xD we can choose t~a~r~t+1 . 
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We continue 
< 

f B~ (w, s) (o~ w (s)}2 dz ds+ ~ f [ Vwh (t)+e (b. (w (t))hJ 2
\ dz ~ 

D' D G 

~ -f (b, (w (s)}h of Fds) dz ds+ f [(b, (w (t)})h o~ F (t)]: dz+ 

D D 
< 

+ fiVwh (s)IIB~ (w, s)llo~ w (s)l dz ds+ ~ f [(b, (w (t)})hY I ~ 
! D' D (J 

~ C + ~ f B~ (w, s) IVwh (sW dz ds+ ~ f B~ (w, s) 1&: w (sW dz ds (5.3) 

D' D' 

where C is independent of e, t and h. We introduce the following notations: 

l + 1 

D,h (t): = J J m (w, s) 18~ (1) (sW dz ds, 
t D 

A,h (t): = J [vwh (t)+e (b,(w (t)})hY 4z, 
D 
l + 1 

R,h (t): = J J IV'wh (s)l 2 B~ (w, s) dz ds. 
t D 

R,h can be estimated as follows. 

RJ, ~ 2w~ (h)+ 2M~ (h) where 
l + 1 

w~ (h):= J IV'wh (s)- Vw (sW B~ (w, s) dz ds, 
l 

t+ 1 

M! (h):= J J IVw (sW B~ (w, s) .dz ds. 
t D 

Combining (5.3) and (5.4) we get for t ~ (J ~ '! ~ t+ 1 

~ A,d-r) ~ C+ ~ A,h ((J)+w~ (h)+ M~ (h), 

D,dt)+ ~ A,dt+l)- ~ A,h(t)~C+ ~ D,h(:~+w~(h)+M~(h) 

where C is independent of e, t and h. 

Hence for fixed e and t and for h--+ 0 we obtain 

(1)~ (h)--+ 0, 
l + 1 

M! (h)--+ J J IV'w (sW b~ (w (s)} dz ds. 
t D 

(5.4) 

(5.5)-

(5.6) 
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2 . h 1 
The statements are true since Vwh -t Vw in I:. (D1 t+ t), !Be (w, s)j ~ ~ and , e 
since t -t w (t, z) is monotone, e fixed. Now we notice that for any e, h, t ER+ 

there exists t:hE]t, t+ 1[ 
t+l 

A eh (t:h) ~ J A eh (s) ds . (5.7). 

· If we choose a= t:h in the first inequality of (5.5) we obtain for t ~ t:h < t + 1, 
t:h ~ r ~ t+ 1: 

~ Aeh (r) ~ C+ ~ Aeh (t:h)+ ~ Deh (t)+w! (h)+ M~ (h)~ 

~ C+ ~ Aeh(t:h)+ ~ Aedt)- ~ Aeh(t+1)+2(w~(h)+M~(h)). 

For r = t + 1 this means using (5.5) again 
t + 1 1 

A,h (t + 1) ~ C + J Aeh (s) ds+ Aeh (t)- Aeh (t + 1)+4 (w! (h)+ M~ (h)). (5.8) 

Now let us apply 

5.2 LEMMA. Under the assumptions of Theorem 5.1 there are constants t 1 , C 1 > 0 
such that we have for all t ;;:o: t 1 and 0 < e ~ e0 : 

t+l 

J be (w (s)) 2 j:::+ 1 
+ J J b~ (w (s)) !Vw (sW dz ds ~ C1 

D t D 

where w = u!. 

For the proof see 5.4. This means that M~ (h) converges for h -t 0 to some 
value which is bounded by C1 independent of e and t. 
Therefore using (5.6), (5.8) and Lemma 5.2: 

t+ 1 

lim sup 2Aeh (t+1) ~ lim sup J Aeh (s) ds+lim sup Aeh (t)+C . 
h-+0 h t h 

If we set 

Ae (t): = J (vw (t)+ebe (w (t))) 2 (5.9) 
D 

we get for t, e fixed and h -t 0 
t+ 1 

J !Aeh (s)- Ae (s)j ds -t 0 (5.10) 
t 

and hence. 
t+ 1 

2lim sup Aeh (t+ 1) ~ J A8 (s) ds+lim sup Aeh (t)+C. 
h t h 
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Now we need the following lemma. 

5.3 LEMMA. Under the assumptions of Theorem 5.1 there is a constant C2 > 0 
such that 

uniformly for all t ER+ and e sufficiently small. The statement holds for 
+ w = u, u;-. 

For the proof see 5.5. Using this result we get 

2lim sup A,h (t + 1) ~ C + lim sup A,h (t) 
h h 

where C Is independent of e and t. In order to apply Lemma 3 in [14] 

we need that lim suph A,h ('r) is bounded locally in 1: uniformly in e, for 
example: 

lim sup A,h (•) ~ const 
h . 

uniformly in 1: E [1, 2] and 0 < e ~ e0 . From (5.5) we obtain for 1 ~ 1: ~ 2 

A,h (1:) ~ C + A,h (1)+2w; (h) + 2M; (h) (5.11) 

and 

A,h (1) ~ C+A,h (o:h)+2w~ (h) + 2M~ (h) (o:h is defined in (5.7)} 
1 

~ C+ J A,h (s) ds + 2w~ (h)+2M~ (h). 
0 

Applying lim suph .... 0 we get 

and applying lim suph .... o in (5.11): 

lim sup A,h (•) ~ C for 1 ~ 1: ~ 2. 
h 

Then Lemma 3 in [14] implies: 

lim sup A,h (t + 1) ~ C 
h 

where C is independent of e and t. For fixed e we can select a subsequence 
h---+ 0 such that (see (5.10)} 

(Vw + eb, (w)}h---+ Vw+eb, (w) a.e. in D00 

and for a.a. tER + 

(vw (t1 ·)+eh, (w (t, · j))h---+ Vw (t, · )- eb, (w (t, · )) a.e. in D. 
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It follows (Lemma of Fatou) for a. a. t E' R +: 

A, (t) ~ lim inf A,h (t) ~ lim sup A,h (t) ~ C. 
h h 

This gives the estimate in the theorem concerning J IV'u: (tW. In order to 
D 

prove the estimate concerning D,h (t) we use again the second inequality in 
(5.5) a!ld take lim suph of it. Since lim suph w~ (h) = 0 and lim suph M! (h) ~ C1 

(see Lemma 5.2) where C1 is independent of e and t, the proof of Theorem 
5.1 is finished. • 

5.4. Proof of L-emma 5.2. Using b,(w) - b, (F), w = u,±, as test function in 
(4.4), respectively and integrating over ]t, t + 1[ we obtain: 

t+ 1 

J J [orb, (w) (b, (w) - b, (F))+(V'w+eb, (w)) V (b, (w)-b, (F))] = 0, 
t D · 

which implies 

1 f \t+! tf+l f 2 b, (w)2 t + b~ (w) IV'wl2 ~ 

D t D 
t +l 

f b, (w) b~ (F) cp' + f f Vwb~ (F) VF + 
D t D 

t +1 

+ f fb,(w)(oyb,(w) - oy b,(F)),cp= ± cp±. (5.13) 

D 

The first integral on the right side is bounded uniformly in e and t. For 
the second we obtain: 

I r fb.(w)b;(F)q>' l" : r ( f I dz)ds" 
D t ~~H+ •W<~ 

,; : [J' f I +r j I r (5.14) 
{O~H +•(s)<e} nDi

0 
t {O ~ H +•(s)<e)\Di

0 

From (3.7) we have for any 0 < e ~eo and any sE R + 

meas ({0 ~ H +cp (s) < e} n D!J ~ k1 e, 

where k1 is independent of s. Therefore the first integral in (5.14) is of order 
0 (e). For estimating the second one in (5.14) let us notice that we have by 

the maximum principle 1 > e0 in D\D!o (see (3.15)). Choose t 1 > 0 such that 
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we have for t ~ t 1 : 

0:::; ({J+ (t):::; e0 , 0:::; ({J- (t):::; e0 . 

Then we obtain for all s ~ t 1 

{0 :::; H + ({J (s) :::; e }\D!. = { 0 :::; ~ +( ~ + ({J (s)) :::; e }\D!. c 

{ 
H } · . c 0:::;- < e \D1 = {0:::; H < 2e}\D1 == ~ 2 h h 

(5.15) 

if 0 < e :::; e0 (see (3.8)). This implies that the second integral on the right 
side in (5.13) is of order 0 (1). if t ~ t 1 . Let us proceed with an estimate 
of the third integral on the right side in (5.13). For [) > 0 we have 

t + 1 t + 1 

= :e f f 1Vwl 2 
dz ds+ 2~8 f f IVHI 2 dz ds = 

{O.; F(s) ,;e} {O.;F(s) ,;e} 

= : l1 + lz. ( 5.16) 

For 12 we obtain 
t+ 1 

2&12 = J J IVHI 2 dzds=O(e) (see (3.9)). 
t {zi-q>(s),;n,; -q>(s)+ e} 

: ' ' 

Now we have to estimate the first integral 11 in (5.16). 
Theorem 4.4 implies 

We have to distinguish between the cases where w =it,+, w = u; . 

w =ut:= {0:::; p+ (s):::; e} = {ziO:::; p+ (s, z):::; e} c 
c {xiO:::; ut (s , z):::; e} (u,+ ~ 0!) 

w = u;: {0:::; p- (s):::; e} = {ziO:::; p- (s , z):::; e} c 
c {ziO:::; (u,- (s, z))+ :::; e} 

where (at: = max (a , 0) . 

Hence 
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and 

and in any case tlie integrals appear on the left side of (5.13). 
Estimating the 41h-integral on the right side in (5.13) we obtain 

t + 1 

If I b, (w) oy b, (w)l ~ const and in the same way as in (5.16) : 

t D 
t +1 

If I be (w) Oy b, (F)\= 0 (1) 
t D 

267 

uniformly in t and a (see (3.9)). This finishes the proof of Lemma 5.2. • 

5.5. Proof of Lemma 5.3. In (2.5) and (4.4) respectively we test with (w-F) 
where w = u, u:, u,- anei,F = g, p+, p-, respectively. 

t+ 1 t+ 1 

J J Orb, (w) w+ J J (Vw+eb, (w))l = 
t D t D 

t+ 1 t + 1 

= J J otb,(w)F+ J J(Vw+eb,(w)}(eb,(w)+VF} . 
t D t D 

t 

Define Br. (t): = J(b, (t)-:-6, (s)} ds (~ B~ (t) = b~ (t) t} and continue: 
0 r I:, B, (w)+ r A, (s) ds (A,: see (5.9)) 

t D t 

,;; I(b, (w) Fr -r I b, (w) F' +; r A.(s) ds+ 
D D 

t + 1 

+ ; J J (eb, (w)+ VF)' 

t + 1 

I l
t+1 

B, (w) 
1 

and the terms on the right side except ~ I A, are bounded 

D 

and therefore Lemma 5.3 is proved. • 
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5.6. REMARK. If the boundary values g are time independent (5.1) holds even 
for w = u •. Then as test function we choose (a~ w - a~ H) = a~ w in Theorem 
5.1, b. (w)-b. (H) in Lemma 5.2 and w-H in 5.3. 

6. Convergeoce 

. In the preceding sections we have constructed sub- and supersolution u~ 
which are monotone decreasing and increasing in t, respectively, and we 
have estimated th~ Leo (H 1)-norms of them. Now we intend to study first the 
convergence of u~ if c--+ 0 and then if t--+ oo . 

6.1. LEMMA. Under , the assumption of Theorem 5.1 there exist u, u± E 

EL~oc (O , oo;H 1 (D)) such that we have for a suitable subsequence c--+0 

+ +{weakly in L~oc (0, oo ; H 1
•
2 (D)) and u---+ u-

• weakly star in Ll:,c (t1 , oo; V); 
(6.1) 

u.--+ u weakly in L~oc (0, oo; H 1
•
2 (D)). 

Furthermore 

J IVu± (t)l 2 ~ const 
D 

uniformly for all t ~ t 1 u ± are monotone decreasing and increasing in t' 
respectively, (in the sense of Lemma 4.5) and 

(6.2) 

T 

Proof. For all TER+, Lemma 5.3 yieldsJ J 1Vu.l2 ~ c (T) uniformly in £. 
0 D 

Therefore using a diagonal procedure we can select a subsequence u, such 
that for any TE R + we have 

· u,--+ u weakly in J3 (0, T ; H 1
•
2 (D)) 

. for u E I.3;oc (0, oo; H 1
•
2 (D)). The same arguments hold for u~ . Since 

llu: (t, · )IIH'(D) ~ const uniformly for all c and t ~ t 1 Wy get the weak-star con
vergence in Leo (t 1 , T; V). The Leo (H 1)-estimates of u± follow from Theorem 
5.1 and the lower semicontinuity of the weak-star convergence in e (t 1 , T; V) 
(see [17], p. 125). 

Let us show that u + is monotone decreasing . in t. From Lemma 4.5 we 
know that we have for all o:EC0 (]0, T[), o: ~ 0, q>EL2 (D), q> ~ 0, 

T 

J J a~ ut (t' z) 0: (t) (/) (z) dz dt ~ 0 
0 D 
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and if h~ 0 
T 

- J J u: (t, z) o:' (t) q> (z) dz dt ~ 0, 
0 D 

and if e ~ 0 (see (6.1)) 
T 

. .. . - J J u+ (t, z) o:' (t) q> (z) dz dt ~ 0. 
0 D 

This establishes the monotonicity of u + with respect to t. 
Similar arguments will hold to prove that u; is monotone increasing in t. 

(6.2) follows since the estimates in Theorem 4.4 are conserved for weak 
convergence. • 

6.2. LEMMA. Under the assumptions of Theorem 5.1 there exist y, y± EH10c(D,x,), 
2 ~ p < oo, such that we have for a suitable subsequence s ~ 0: 

b. (u.) ~ y . } weakly in ~oc (D 00 ), 

b.(u~)~y± p> 1. 

y± are monotone decreasing and increasing, respectively in t (in the sense of 
Lemma 4.5), and 

Proof. This is obvious since 0 ~ b~ ~ 1, b. is monotone increasing and 
because of Theorem 4.4. The monotonicity can be proved in the same way 
as in Lemma 6.1. • 

6.3 LEMMA. (Proof of Theorem 2.4) Under the assumptions of Theorem 5.1 
we have: 

00 00 

J J y± (ay-a1) v+ J J Vu± Vv = .0 for all vEH 1 (0, oo; V). (6.4) 
0 D 0 D 

00 00 

J Jy(ay-a 1)v+J JVuVv~O for all vEH1 (0,oo;H 1 (D)), 
0 D 0 D 

v ~ 0 on T0 n {g = 0}, v = 0 on T0 n{g > 0}. 

Furthermore 

Y (0, ·) = Xo . . {1 if"+" 
y± (0, ·) = b0 (u~ (0)) = 0 if"-" (6.5) 
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. (in the weak sense, see (1.15)) where b0 is the pointwise limit of b, and 

u~O, O~y~l, u(1-y) = O a.e. in D00 ; 

+ {u±>O=>y±=1} . 
O~y- ~1, + + a.e.znD 00 • 

u- < O=> y- = 0 
(6.6) 

Proof. (6.3) and (6.4) follow immediately from the weak convergence of 
b, (un and u:, respectively. The variational inequality for u, we obtain m 
the same manner as in [8], Proof of Theorem 1. 

Proof of(6.5): From (2.6) we have for all (EL2 (0, T; V)nH1 (0, T;L00 (D)), 
( (T) = 0, TER+ 

T 

J J Orb, (u,) ( +(b, (u,) - b, (u0)) Or ( = 0. 
0 D 

The weak equation (2.5) for u, together with (6.1) implies 
' 

llor b, (u,)I ILz(o,r;V•) ~ const (T) 

uniformly jn a. Therefore we can select a subsequence such that 

orb, (u,) ~ o1 y in L2 (0, T; V*) 

for any TE R + (diagonal procedure). 

(6.7) 

Now we go to the limit in (6.7) and obtain (6.5) for u,. For u: the 
arguments are the same. 

Proof of (6.6): u ~ 0, 0 ~ y ~ 1, 0 ~ y2 ~ 1 are obvious. It remains to 
prove u (1-y) = 0 a.e. in D 00 and the corresponding assertion for u± and y±. 
By virtue of the following Lemma 6.4 we have to verify that 

J (b, (u, (t - a, z)) - b, (u, (t, z))) (u, (t - 0', z)-ue (t, z)) dz dt 
A 

tends to zero if a~ 0 uniformly for subsets A c c Dr and for 0 < a ~ a0 . 

But this we have already shown (see Remark after Theorem 5.1). Then 
Lemma 6.4 yields yE b (u) which means just the statements in (6.6). For u: 
we use the same argument. • 

6.4 LEMMA. Let be be as in (2.1), u,~u weakly in L2 (0,T;H 1 (D)), be(ue)~f3 
weakly in L2 (Dr) and rh (t, x): = (t + h, x), h ER . If 

J (b, (u,o r)- be (u.)) (u, or - u,) ~ 0 
A 

for h ~ 0 uniformly in e and for subsets A cc Dr, then we have f3 E b (u) 
where b: = limb, (pointwise) = Vq>, q> (s) = max (0, s) . 

Proof ([6], Lemma 4.3) . • 
6.5. Proof of Theorem 2.5. Since {u-, y-}, {u+, y+} are bounded and 
monotone increasing and decreasing functions in t, respectively (see Lemma 
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6.1 and 6.2) we can define the following pointwise limits: 

u! (z): = lim u± (t, z), 
t-->oo 

Y! (z): =limy± (t, z) for a.e. zED. 
1-+ oo 

271 

(6.8) 

The L00 (H 1)---estimates of u± in Lemma 6.1 imply that the convergence 

(6.9) 

holds weakly in H 1
•
2 (D) (for subsequences) and by Lebesgue's convergence 

theorem strongly in I! (D) (1 ~ p < oo ). Moreover 

u! EH+ V (6.10) 

Now consider the weak equation for u± in (6.4). From (6.4) we obtain for 
any tER+ and for all vEH1 (]t, t+ 1[, V) 

I+ 1 . t+ 1 . 

J J y± (i\-a,) v dz dr+ J J Vu± Vv dz dr = 0. (6.11) 
I D t D 

1 

Let cpEC0 (]0,1[) such that Jcp(s)ds#O,IjJEVand take v(r,zJ:=cp(r-
o 

-t) 1/1 (z), tER+ as test function in (6.11). Then we obtain 
t+ 1 . .;. . t+ 1 . 

s s cp (r-t) ay"' (z) y± (r, z)- s s cp' (r-t)"' (z) y± (r, z)+ 
I D I D 

I+ 1 

+ J cp(r-t) J(Vu± (r,z)VIjl(z))dzdr=O. 
I D 

Changing variables () = r- t we get: 

1 1 

J J cp (())ay 1/1 (z) y± (()+t, z) dz d()- J J cp'((J)I/J(z)y± (()+t,z)dzd()+ 
0 D 0 D 

1 

+ J cp (()) J Vu± (()+t, z) Vljl (z) dz d() = 0. (6.12) 
0 D 

Now we define u1±((),z):=u±(()+t,z) and yt:=y±(()+t,z). We have 
(see (6.8), Lemma 6.1) for suitable subsequences t ~ oo: 

u~ ~ u! in I! (]0, 1[ x D) strong, 1 ~ p < oo, 

Vu~ ~Vu! in L2 (]0, 1[ x D) weak, 

y1± ~ y! in Li (]0, 1[ x D) strong. 

Then passing to the limit t ~ oo in (6.12) it follows 
1 1 

J J cp (())ay 1/1 (z) Y! dz d()- J J cp' (()) 1/1 (z) Y! dz d()+ 
O.D 0 D 

1 

+ J cp (()) J Vu! (z) Vljl (z) dz d() = 0. 
0 D 
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1 

Since q> (0) = q> (1) = 0 the second integral vanishes and smce J q>{O") dO" =1= 0 
~0~~ 0 

J (Vu! (z)+ey! (z)) Vljl (z) dz = 0 (6.13) 
D 

for all ljJ E V 

It remains to show 
+ >- 0 0 ~ ± ~ 1 ± (1 ±) . D u;:;; ~ ' ""Y oo "'"" ' Uoo -yoo a.e. In ' 

but this follows from the pointwise convergence (see (6.6), (6.8) and (4.5), (6.1)). 
Then using the same arguments as in [8], Theorem ·· 1, we have 

J (Vu! +ey!) V v ~ 0 
D 

for all vEH 1 (D),v~O on JOn{G=O}, v =O onT0 n {G>O}. 
Now the statement of Theorem 2.5 can be shown as follows, u! are solutions 

of the stationary problem 1.2. Because of the assumption (1.16) we hav.e 
u! = u;;,. On account of u- ~ u~ u+ a.e. on D00 (see (6.2)) and u± (t, · )--+ u! 
in I! (D), 1 ~ p < oo (see (6.9)) we get 

u (t , ·)--+ u00 : = u! in I! (D) . 

This proves Theorem 2.5. In the case where g are time independent then 
J IVu (t)l 2 is bounded uniformly in t (see Remark 5.6). Now if (tn) is any 
D 

sequence with tn--+ oo then there is a subsequence such that (see Lemma 6.1) 

u (tn, ·)--+ U 00 weakly in H 1 (D). 

This proves the Remark of Theorem 2.5 • 
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Asymptotyczne zachowanie rozwi~~nia 
niestacjonarnego zagadnienia tamy 
w przypadku plynow nieScisliwych 

Rozwai:ane jest zachowanie glo balne (przy t --+ ro ) rozwi~zania nieliniowego r6wnania 
o, 1'- Llu- o,. y = 0 w ]0, T[ x D przy pewnych, fizycznie umotywowanych warunkach brzego

wych i poc~tkowych. 0 y zaklada si'<, i:e 0 ~ y ~ 1 i u (1- y) = 0. Model opisuje niestacjonarn~ 

filtracj'< niescisliwego plynu w izotropowym, jednorodnym osrodku D. Gl6wny wynik pracy 
dotyczy zbiei:nosci u (t, ·) do rozwi~zania zagadnienia stacjonarnego. 

AcHMDTOTH'IeCKOe nose~eaae pemeHHII 

HecTaQHOHapttOH npo6JieMbl DJIOTHHbl ~JIII Hec*HMaeMblX *H~KOCTeH 

PaccyJK.naeTCJI mo6aJihHoe noBe.neHHe (npH t ---> ro ) peiiieHHJI HeJIHHeil:Horo ypaBHeHHll 
o1 y- Llu- oy y = 0 B ]0, 11 x D, npH HeKOTOphiX clJH3H'!eCKH o6ocHoBaHHhiX KpaeBhiX H Ha'laJih
HhiX YCJIOBHliX. flpeJIITOJiaraeTCJI, '!TO 0 ;;; y ;;; 1 H U (!-y) = 0. Mo.neJih OITHCh!BaeT HeCTa

!UfOHapHylO clJHJihTpanHlO HeCJKHMaeMOH JKHJIKOCTH B H30TpOITHOH, O.!IHOpOJJ;HOH CpeAe D. 
BaJKHeHIIIHM pe3yJihTaTOM pa60Th! liBJil!eTCll CXO.!IHMOCTh U (t, ·) K peiiieHHlO CTanHOHapHOH 
npo6JieMhi. 

18 - Control and Cybernetics 




