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This article IS concerned with the formulation and analysis of some 
models for certain physical processes as free boundary problems in which 
the free boundary is capable of rapid variation in time and/or space. We shall 
describe the physical background and some formal mathematical ideas in the 
introduction arid then give a more rigorous analysis for the Stefan 
problem and its ·specialisations in the subsequent sections. 

(i) Physical Models 

The Stefan problem is a famous model for heat flow in a conducting 
medium which undergoes a phase-change. The temperature satisfies 

ou 
c- = J7 · (kVu) at (1) 

away from any phase boundaries in the medium. For simplicity we take c, k 
to be positive constants. The classical Stefan · mod~l then ascribes the ' 
conditions: 

constant melting temperature, u = 0 , 

and energy balance, [ k ~: J: = - Lvn , 

(2) 

(3) 

at the phase boundary where [ Jf denotes the jump from solid to liquid, 
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vn is the velocity of the phase boundary in the direction of n and L is the 
latent heat. With suitable initial and fixed boundary conditions, this problem 
with L > 0 has a unique solution [16], which coincides with that of the 
weak forrL ~lation in which . 

oH lcu u < 0 
-

0
- = kV 2 u, H E .[O,L] u=O 
t 'cu + L u>O 

' 

(4) 

is satisfied in a distributional sense [5]. Moreover u ~ 0 in the liquid and 
solid regions respectively. The well-posedness of this problem is not yet 
completely understood but we note that as long as L;> 0 , H can easily be. 
smoothed to make (4) a classical nonlinear parabolic equation. 

Although the Stefan problem is amenable to numerical solution, [5], ' 
there are few explicit solutions against which numerical results can be 
compared. This is even true for one-phase Stefan problems in which u =.0 · 
in either the liquid or solid phase. However, there is a special class of 
Stefan problems for which many explicit solutions can be found, namely · . 
when the problem is. one phase and in addition c = o. in (1)~ In this. case . .. 
we call (1, 2, 3) a Hele-Shaw free boundary problem bec~use liquid flow. with 
velocity q in a Hele-Shaw cell, [29], can be described in terrns;of a pressure 
p such that · 

q = -kVp , V·q = 0; (5) 

moreover at the free liquid boundary, the conditionofconservation of Iilass is 

(6) 

where :n is the outward normal derivative from the. liquid (cf. • {3)) and 

also, with a suitable normalisation and some assumptions about · surface 
tension, [24], 

p = O (7) 

. ... ~ 

(cf. (2)). We note that this problem can be identified with .a one-phase 
version of (1, 2, 3) with p being the liquid temperature~ p ~ · 0 means · that 
the free boundary expands and contracts respectively. We shall see in section ·3 . 
that complex variable and variational inequality techniques . cai:J. . be used . to 
great effect on the Hele-Shaw model. . · · ·.. .. .. · • 

The model (5, 6, 7) is also the · simplest · for certain electrochemical 
processes [15] in which - p is identified·as the potential and (6) is Faraday's 
law. Here the sign of p determines whether electtofo:dning (p < 0) or electro
machining (p > 0) is taking place. Equally, if we identifyp with the pressure 



Ill-posed free boundary problems 277 

in a gravity-free porous medium, part of which is saturated and part 
dry, (6,7) are the conditions of conservation of mass and momentum at the 
interface between dry and saturated regions in the absence of any surface 
tension effects. When gravity is important, say in the y-direction, (6) becomes 

[
ap J • · 

k an +COS {j =;= - Vn 

where e is the angle between n and. the y axis. 
We have now listed some of the best known fn!e boundary problem~ 

which are special cases of the Stefan problem. There are also many generali
sations of the Stefan problem [21] but little is known about such problems, . 
even when the field equation is still scalar. For example, the introduction 
of surface energy in its simplest from gives the Gibbs-Thompson relation [14] 

u= -yx 

instead of (2) where y is a positive constant and x is the curvature of the 
solid interface, positive if it is convex towards the liquid. A similar 
modification is possible for (7) but it destroys the possibility of using complex 
variable methods. This is also the case for the "two-phase" version of (5-7), 
called the Muskat problem [18]. An even more difficult generalisation is to 
the case of vector field equations; these aris~ in the so-called alloy 
solidification problem [17]. 4 

There are many other free boundary problems which are unrelated to 
the Stefan problem. For the purpose of this article we mention two examples 
from two-dimensional, inviscid, incompressible hydrodynamics. The first is 
that of gravity waves [28] in which the field equation for the velocity 
potential <p is 

(8) 

and on the surface, say y = 11 (x, t), we have: 

a<p 1 
momentum balance,-+ - W<r>l 2 +y = 0, · at 2 

a<r> a11 · a<r> a11 
and mass balance, -a- = -a +-a -a . y t . X X 

In the second example of a vortex sheet y = ( (x, t) between two liquids 
1 and 2, the field equation is still (8) but now the momentum and mass 
balance give 
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and 

respectively. 

o( 

ot 

(ii) Formal stability analysis 

ocp1 ocp1 o( ocp 2 ocp 2 o( 
--- ---- -------

oy ox ox oy ox ox 

Special solutions of all the problems listed above have been studied 
with stability analyses of varying degrees of complexity [19]. The only such 
analysis we will describe here is the linear· stability for the · Hele-Shaw 
problem, for which, with k = 1, 

p = V(Vt-x), x < Vt, 

is an exact solution with free boundary x = Vt. 
We now seek a formal asymptotic expansion for small e m which the 

free boundary is 

x ~ Vt+e sin nye"1 

where n is real and positive and a is to be determined. We correspondingly 
write the pressure perturbation, which decays away from the boundary, as 

p ~ V(Vt - x)+eC sin nyenx+<a+nVJt + ... 

where C 1s a constant. (6) and (7) then give 

Cn = - a and - V+ C = 0 

respectively. Hence the linear stability growth rate is 

a= - nV. (9) 

For V:Z 0 we have a situation reminiscent of the contrast between 
forward and backward heat equations 

ou o2 u 
- = +--
ot - oy2 (10±) 

where a solution y = sin nye"1 gives a = =t n2
. When V< 0, i.e. when p < 0 

and the fluid region contracts, and in the backward heat equation, short 
wavelength disturbances grow rapidly in time. This analogy can even be 
carried over to the question of blow-up for smooth initial data; it is known 
that solutions of (5~7) can blow up in finite time [20] as can (10- ), say 
with initial data u (x, 0) = e-x

2 
(in the case of minus sign). 

Results such as (9) apply to most of the models considered in (i) above, 
with, in all cases of instability, the shortest wavelengths growing the fastest. 
When L > 0, the Stefan problem is linearly stable as long as u :Z 0 in the 
liquid and solid regions respectively, but it can become unstable if either 
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superheating or supercooling occurs, depending on the sizes of the local heat 
fluxes [17]. The introduction of surface energy replaces (9) by 

(J = -nV- yn3 

which means that the solution is only unstable to long wavelength perturbation~ 
when V< 0, and that there exists a most unstable wavelength with n = - V j3y . 
Such a result has been used in [14] to predict dendrite spacing in solidification 
problems. ~ 

Corresponding to these results, electroforming is linearly unstable and 
electromachining is stable; porous medium flows withou! gravity are stable . 
only if the fluid region is expanding with time or if, in the Muskat 
problem, the more viscous fluid displaces the less viscous one. Porous 
medium flows under gravity are unstable if interface with the dry region 
has a downward pointing normal and does not move downwards too rapidly, 
or if the normal points upwards and the interface moves rapidly downwards. 
With a suitable normalisation vortex sheets give · 

(J = n>O (11) 

irrespective of the direction of the tangential velocities in the fluids 1 and 2. 
However for gravity waves (J = ± in and this is the only of our examples 
which permits oscillatory behaviour to persist. 

These heuristic linear stability analyses suggest that in certain cases, 
most of the problems listead in (i) are ill-posed or can at least exhibit 
solutions which can change rapidly in time. It is tempting to identify such 
rapid changes with phenomena such as dendritic growth in solidification or 
fingering in porous medium flows. Before such an identification can be made, 
some estimates must be made of nonlinear effects and the idea that these 
can stabilise linearly unstable processes and vice. versa is very important [10]. 
It turns out that by using multiple scale methods, even the very complicated 
model of a solidifying alloy can be shown to exhibit such nonlinear stabili
sation [32]. However, our purpose here is not to consider the possibility of 
new mechanisms rendering linearly unstable problems well-posed. Rather we 

. shall examine what can be found from studying even badly behaved solutions 
to the primitive models listed above. Our physical motivation for this is 
that, notwithstanding the ill-posedness, such solutions can occasionally provide 
illuminating descriptions of experimentally observed phenomena. Let us cite 
two examples. In the Saffman-Taylor solution [24] of the Hele-Shaw problem, · 
travelling wave solutions of (5-7) are sought in an infinite strip, with p < 0. 
It is found that a continuum of such solutions exist for a given wave speed, 
all of which are unstable to small disturbances as in (9). However, just one 
of this continuum gives good agreement with what is observed in practice 
[24, 30]. 
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Similarly in three-dimensional aerofoil theory, the forces on the aerofoil 
can be computed [31] uing assumptions about the flow pattern . at the 
trailing edge and also the approximation that the trailing vortex sheet is 
flat despite the instability (11); this gives excellent results for the lift 
despite the fact that in practice the vortex sheet curls up rapidly. 

The layout for the remainder of the article will be to first consider ill-posed 
Stefan problems in one space dimension and then ill-posed Hele-Shaw problems 
in two space dimensions. Finally we shall use the latter results together with 
some comparison ideas to discuss the ill-posed Stefan problem in higher 
dimensions. 

2. One-dimensional Stefan problem with superheating 

In practice regions of supercooling may arise if a very pure liquid · is 
cooled carefully. Superheating can arise if a substance undergoes body 

h 
. . h . b . f h c au az u . 

eating m wh1c case (1) 1s replaced y an equatiOn o t e 10rmat = axz +F. 

For example if a clear block of ice is heated by light, parts of it may become 
superheated before any melting occurs [33]. More importantly there is the 
possibility of superheating during the process of electrical welding. If the 
classical model for phase changes is to apply, the material must be'come 
superheated [13] (see fig. la). It is possible that no melting occurs until the 
surface of the material reaches the melting point, by which time a substantial 
amount is already superheated [33] (see fig. l,b). Superheating is expected for 
only very pure materials; in practice, a "mushy region", in which the 

u u b) a} 
u c) 

X 

Fig. 1. Three possibilities for body heating in a symmetric, one-dimensional region (a) Melting 
starts at the centre. (b) Melting starts at the outside edge. (c) A mushy region forms. 
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u 

b) 

t* 

X X 

Fig. 4. The case of blow-up at t = t* when s = s*. (a) Temperature profiles for different 
times. (b) The trajectory of the free boundary. 

solution fails to exist. For both the Neumann solution and th,e solution to 
(12-:--15) to exist for all time, the average initial temperatures, · C and 
1 so 

- J u0 dx respectively, must be less than one. 
So o · 

Sufficient conditions for the occurrence of either (a) or (b) can also be found 
[7]. Taking u0 to be smooth with u0 < 1 for 0 :::; x < s0 then (a) occurs, 
while if u0 is smooth with just one point x 0 such that u0 (x0 ) = 1 and 

so 

J (u0 - 1) dx:::; 1 then (a) or (b) occurs. 
0 

It is also possible to broaden the sufficient conditions for blow-up. Defining 
s(t) 

H (t) = J h (x) (u (x, t) - 1) dx for a given h, H is an incre~asing function if 
0 

h" ~ 0 for 0 < x < s0 and h' (0) ~ 0. Hence, for cases (a) and (b), H takes its 
greatest values for t = oo and t = t* respectively; these are non-positive if h 
is non-negative. It follows that if there is some h defined for 0 :::; x :::; s0 

such that: 

h(O)~O,h'(O)~O,h"(x)~O for 0<x<s0 
so 

and J (uo-1) hdx > o· (17) 
0 

then blow-up, (c), occurs. 
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It is possible to apply an integral transformation to (12-15) and to work 
~ I . ·. . 

with the variable U = J (~-x)(1-u(~,t))d~, [7]. u a_nd U are related 
X 

iY u au h · fi h · d. ·rr · bl . [2] --2
- = 1- u and -- = u sot at U satts 1es t e oxygen 1 us1on pro em ax at . . . 

au o2 u · 
at =~- 1 O<x<s, (18) 

au 
U=-=0 ax X = S, 

au . so .· 
-a-= - J (1-u~) dx x = 0, 
. X 0 . 

so . 

U= U0 (x)= J (~~x)(1-u0 (~))d~ · t=O. 
X 

(19) 

(20) 

(21) 

Note that where w.(x) = s- 1 (:X) is defined ((s00 , s0 ] for (a), (0, s0 ] for (b), 
(s*, s0 ] for (c)) 

w(x) . . 

U= J u(x,-r)d-r. (22) 

It transpires' that the condition for blow-up (17) is equivalent .to either 

o::.U (0, t) being positive (the simplest blow-up condition) ·Of the existence 
ux ' 

of some x 1 where U 0 (x~) is negative. The latter clearly implies blow-up since 
U is decreasing and for both (a) and (b) U is ultimately non-negative. 

Throughout these results for the one-dimensional problem the temperature 
u = 1 has significance. If u0 is smooth and everywhere less than one there 
is no blow-up but if u0 is somewhere greater than one, blow-up can occur. 

3. Two-dimensional Hele-Shaw cell 

Taking pressure to be - u then with a suitable scaling the Hele-Shaw 
problem can be written as 

.,.,. 

17 2 u = 0 in Q (t) except at specified singularities, (23) . 

ou . 
U = 0, Vn = on on i}Q (t), (24), (25) 
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temperature is identically that of melting, may be formed. Mushy regions are 
predicted by numerical computations using the enthalpy method [1] (see fig. 1c). 

This motivates us to consi<iler (1-3) in one dimension with superheated 
solid occupying 0 < x < s (t) and liquid at the melting temperature in x > s 
[27]. We discuss the one phase problem 

ou 82 u 
0 <X< S (t), - = 

at ox2 (12) 

ou 
- = 0 
ox 

X = 0, (13) 

ds ou 
u=O X = S (t), - -

' dt dx 
(14) 

u = u0 (x) 0 ~ X ~ S (0) = So (15) 

where u0 is smooth and non-negative and u0 (s0 ) = 0. For simplicity we have 
scaled so that k = c = L = 1. 

Three possibilities can occur [27, 6]: 
(a) the solution exists for all time and s---+ S00 > 0, · u---+ 0 as t---. oo 

(fig. 2); 
(b) there is some finite, positive t* such that the solution exists for 

ds 
0 < t ~ t* and as t---. t*, s---. 0 and dt---. - oo (fig. 3); 

(c) there is some finite, positive t* at which the solution blows up, 

i.e. the solution only exists for 0 < t ~ t* but as t ---. t* !!___ ---. - oo and 
dt 

s---+ s* > 0 (fig. 4). 

With the present scaling the heat released in lowering the temperature 
of a sample of solid from u = 1 to u = 0 is precisely that required to 
melt it. Now if u0 is such that the total heat content (taking liquid with 

so 

u = O to have zero heat), J (u0 - 1)dx, is positive, then it remains positive. 
0 s 00 

For (a) to occur the final amount = - J dx is negative while (b) gives zero 
0 

at t = t*. So if there is more heat present than can be taken up, in melting, 
blow-up must occur. 

so 

Of course if the critical case (b) is to take place J (u0 -1) dx = 0 so 
0 ' 

an arbitrarily small perturbation to such initial data can produce instead 
(a) or (c). 
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The significance of the temperature u = 1 can also be noticed in the 
Neumann solution for a semi-infinite region, where now ut = uxx for x .> s, 
u = 0 and ux = s on x = s, s (0) = 0, and u = C = const. at t = 0. Here 
u = C { 1- erfc (x/2t!)jerfc (a)} for x > s = 2att where a is the solution to 

00 

d exp (a 2/4) J exp ( -CJ
2

) dCJ = C. (16) 
afz 

(16) has a solution for C < 1; as C 4 1, a 4 oo so the boundary speed also 
tends to infinity, and if C ?: 1 then (16) has no solution and the Neumann 

u a) 

X 0 Soo s. X 

Fig. 2. A one-dimensional problem with partial melting. (a) Temperature profiles for different 
times. (b) The trajectory of the free boundary. 

u a) b) 

X 0 s. X 

Fig. 3. The critical case of complete melting at t = t*. (a) Temperature profiles for different 
times. (b) The trajectory of the free boundary. · 
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where Q (t) is -the region occupied by liquid and n is the outward normal 
.on the free surface aa (t); the specified singularities can include point 
sources or sinks, or sources and sinks distributed along curves. As in the 
previous section, we are mainly interested in problems with retreating 
boundaries so u generally will be positive (pressure is negative); i.e. sinks 
are applied. · 

For two-dimensional problems complex variables can be used to find 
a number of exact solutions which indicate the ill-posedness of these 

· problems with shrinking regions. 
.. For example, with a problem in a· parallel-sided channel there are travelling 
wave solutions for which a finger of air protrudes into the retreating liquid; 
there is a continuum of such solutions so that for every value of A., 
0 < A. < 1, there is a solution for which the finger width is A. times that of 
the channel [24]. Moreover, there are truly time-dependent solutions which 
tend to the travelling waves as t--+ oo [23]. For all of the time dependent 
cases the boundary is like X= t + e1 sin y for large negative time. Not only 
do all the free boundaries corresponding to different finger widths have, the 
same approximate shape, but so do a wider class of solutions which 
blow up in a finite time. For instance, if w = u + iljl is the complex potential 
then there is a solution in which z = x+iy = w-a (t)+exp [-a (t)-w], 
where 2a + exp (- 2a) = - 2t and a > 0; the boundary is x ~ t + e1 sin y for 

large negative t and forms a cusp at t = - ~ . 
Some other exact solutions involve suction from a single point lying 

within a finite region of fluid. A particularly simple example has a sink, 
strength Q, at the origin with the bolUldary aa (t) given by z = a(+ b(", 
!(I= 1; here n ?: 2 and a and b are positive real functions of t with a?: nb. 
a and b vary such that a" b is constant while a2 + nb 2 decreases at a rate 
Q/n. Eventually at a time t*, a = nb and 8Q then has n- 1 inward pointing 
cusps. The solution can not be continued, using this simple model, to later 
times so we again say that t* is a blow-up time. Again the ill-posedness rof 
the problem is additionally shown from our ability, by choosing n large and 
b small enough, to take initial boundaries arbitrarily close to a circle (and 
with curvature arbitrarily close to that of the circle) but for which the blow-up 
time is arbitrarily small. Of course if b = 0 at t = 0 then 8Q is a circle 
which shrinks to a point as t approaches na (0)2/Q. 

Instead of the direct approach we can use the Schwarz function of 8Q. 
This is a function g (z), analytic in a neighbourhood of 8Q, such that 8Q 
is given by 

z= g (z). (26) 

[3, 22]. g (z) has a number of singularities lying in Q. Some of these vary 
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in ti~e 'so .that the rates of change are the singularities of 2 [ ~~ - i ~; J;. 
these are known. Since the internal singularities of g are known at any time 
t, 8Q (t) can be found from the relationship -(26) [12, 22J · 

In place of the function g we may alternatively use a function U(x,y) 

-~~eh ~s ~elated to g by g = z- 2 [ ~~ - i ~~ J ilnd is chosen so that it is 

zero on 8Q. Now at t = 0 U = U 0 is the solution to: 

-17 2 U0 = 1 in Q 0 , except at singularities; 

8U0 
U 0 = ----a;:;- = 0 on 8Q0 . 

To find 8Q at a time t the free boundary problem 

172 U = 1 in Q, except at singularities , 

au 
U = - = 0 on 8Q; an 

(27) 

(28, 29) 

(30) 

(31, 32) 

must be solved. The singularities of U are those of U 0 minus the time 
integrals of the singularities of u. 

The ill~posedness of the problem with a retreating boundary is manifested 
through the necessity of solving the Cauchy problem (27- 29). Small changes 
in the initial boundary can make a large change in the singularities of U 
towards which the boundary is moving. 

One advantage in the use of the variable U is that information · can be 
gained about three, as well as two, dimensional problems. We shall look 
at two examples, one in two and one in three dimensions. 

I. S.Ction from a lima~on 

Starting with a limacon, 8Q0 is z = r exp (ie) = a0 ( + b0 (
2

, I (I = 1 where 
a0 > 0, b0 > 0 and a0 > 2b0 , and imposing a sink of constant strength Q 

at z = 0, 8Q is still a limacon, z = a( + b(2
, where a2 b = a6 b0 and a2 + 2b2 = 

= a6 + 2b0 - Qt, provided a ~ 2b. This can be found from considering the 
1 . 

singularities of U0 which are 2 { - (a6+2b6) lnr+a6 b0 r- 1 cos e} and the 

integrated singularity of u, 2~ Qt ln r , so that singularities of U are 

~ { - (a6+2b6- <;:)lnr+a5b0 r- 1 cose}. The solution holds up to the 

time t* where a = 2b when 8Q is a cardioid with a cusp at z = - b (t*) (see 
• 
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y 

Fif. 5. Suction at z = 0 from the limacon z = a(+ b(2
, I (I < 1. 

fig. 5); there is no solution for later times so we say that t* is the blow-up 
time. 

For any other example in which U has singularities ~ {----,A ln r ~ Br- 1 cos 8} 

it again follows that oQ is !l cardioid, z = a(+ b(2 where a2 + 2b2 =A and 
a2 b =B. If A is too small compared with B, then there are no a, b giving 
a simple closed curve r; blow-up must occur before this time. 

11. Off-centre suction from a sphere 

Attempting to remove ::ln amount of fluid a through a point A and an 
amount f3 through the origin 0 from the unit sphere would produce 
a final boundary given by first removing the amount f3 and then the amount a. 
But this is the effect of applying a point sink at A to an initial region which 
is a sphere of radius R = tl- 3/3/4n)113

. Clearly it is impossible to remove 
fluid through A if a, the distance of A from 0, is greater than R. We deduce 

that there must be blow-up if f3 ~ 4
; (1-a3

). 

Again we can consider the singularities associated with the problem. 
The singularity · of U 0 is 1/3 1~1 while the integrated singularities of u are 

f3/4n 141 + aj4n 14- al = + (1-R3)I~I-1X/4n I~- J:II and blow-up must occur if 

a> 0 and R ~ IJ:II. Any other suction problem giving the same two final 
singularities must also blow-up if a > 0 and R ~ IJ:II. 

The two variables u and U are related by 

au U=-----ar· (33) 

' 
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Indeed in the region that is crossed by the free boundary, Q (t)\ Q (t*), U is 
given by a Baiocchi transformation, 

ro(x) 

U (x, t) = J u (x , c) d-c, (34) 
t 

where the free boundary oQ (t) is given by t = w (x) . 
For expanding regions a similar variable to U can be used to solve the 

problem by means of variational inequalities [ 4, 5]. If we take a problem 
in which fluid enters the region Q through a closed curve r, where Q lies 
outside r (see fig. 6), then we can define V by 

t 

V= - J ud-c , x in Q\(20 , 
ro 

t 

V=- J u(x , -c)d-c, x in Q 0 . 
0 

Fig. 6. Injection into the annular region Q through the fixed boundary r. 

ou 
If the flow rate through T is specified, say on = q (X, t) for X on T, 

then V solves the following problem: 

J7 2 V= 0 in Q0 , 

ov t 

~ = Q (x, t) = J q (x, c) d-c on r, 
un o 

ov 
V= on = 0 on the free boundary oQ . 
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This problem may be reformulated as a variational inequality·: 

V(V 2 V+x)=O, V;;::oO, 172 V+x;?;:O for~ outsider, 

where x = 0 in Q 0 and -1 elsewhere. 

289 

If Q lies inside a fixed boundary r and surrounds a bubble (see fig. 7) then 
a problem with a retreating boundary may also be solved by usjng a variational 
inequality. 

Fig. 7. Suction from the annular region Q, which surrounds a bubble B, through the outer 
boundary r. 

Taking the initial free boundary 8Q0 to be such that U 0 , as given by 
(27-29), has no singularities in Q 0 , and imposing, say, pressure along r, 
u = - q (~ , t) on r, then U satisfies (31, 33) with 

and 

17 2 U = 1 in Q, 

t 

U = Q = U 0 - J qdr on F. 
0 

(35) 

Supposing that is possible, by suitable choice of q (~ , r);;::: 0 for r > t , 
to remove all the fluid lying in Q (t) , then from (33) U;;::: 0; in particular we 
require that Q;;::: 0. It follows that U solves the variational inequality 

U(V 2 U-1)=0, u;;:=::o, 172 u;;::: -1, for x in Bu 8QuQ 
(where B is the bubble) (36, 37, 38) 

together with (35). 
For Hele-Shaw problems with retreating boundaries a variety of different 

types of cusp may occur. If 8Q has a cusp at a point z0 then there is 
a singularity of the Schwarz function g az z0 . If g admits a power series 
expansion with q =A (z-z0)+B (z-z0 )"+o (z-z0 )", about z0 , where rx > 1 
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taking, without loss of generality, z0 = 0 and the cusp to point in the direction 
of the x-axis, y = ± 0 (x") as x---+ 0 on aQ . 

It has been shown that the problem (36-38) can exhibit free boundaries 
with cusps of power 5/2, 9/2, 13/2, ... but not with cusps of power 3/2, 7/2, 
11/2, ... near which V must be negative [11, 25]; a specific example of 
a problem which can be put in the form (36- 38) which exhibit a power 5/2 
cusp is given in [26]. This means that if cusps of power 3/2, 7/2, ... appear 
in the Hele-Shaw problem the solution blows up. Conversely it is possible 
that if cusps of power 5/2, 9/2, .. . are formed the solution can continue to 
exist with disappearance of the cusp [8]. 

However it is believed that generally 3/2 power cusps form, as with nearly 
all the known explicit examples, so that blow-up occurs in almost every 
instance that a cusp appears. 

4. Comparison results 

We now turn to the one-phase, superheated Stefan problem to examme 
criteria for blow-up. The problem to be considered is: 

au 2 
- = J7 u ~ in Q (t), at (39) 

au 
U = 0, Vn = an ~ On aQ (t), (40, 41) 

u = u0 ?; 0 ~ in Q (0) = Q 0 . (42) 

We firstly remark that again we have three possibilities: 
(a) the solution exists for all time and u---+ 0 as t---+ oo ; 
(b) there is some time t* at which J.1 (Q) =measure of Q = 0; 
(c) there is "blow-up" at some finite time t* with J.1 (Q (t*)) > 0, i.e. the 

solution does not exists for t > t* although melting is incomplete at t = t*. 
Following the one-dimensional case we again find some conditioQs for 

for blow-up. On defining H (t) = J h (~) (u-1) d~ for some given function 11. 
n(t) 

His increasing if J7 2 h;::; 0 and ultimately H?; 0 for both (a) and (b) if h ?; 0. 
Hence (c) must occur if the following condition is satisfied: 

there exists some h (~) with h;::; 0 and J7 2 h?; 0 in Q 0 

such that J h (u0 -l) d~ > 0. (43) 
no 

We may note that if (b) is to occur than J h (u0 -l) d~ = 0 for all 
no 

harmonic functions h. (If J (u0 - 1) d~ = 0 but there is some harmonic 
f.lo 

such that J h (u0 - 1) d~ =/= 0 then blow-up occurs). 
8Qo 
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A similar criterion can be applied to the Hele-Shaw problem with point 
sinks. For positiv~ h with 17 2 h ~ 0 , 

N 

0 ~ H(t)= J hd;r, ~ H(O)- IQ,(t)h(X,) 
Q 1 

where there are point sinks of strength q,(t) at the points X 1 , X2 , ... , XN 
1 N 

and Q, (t) = J q, (c) de, n = 1, .. . , N. It follows that if IQ, (t 1) h (X,)> H(O) 
0 1 

N 

for some time t 1 with L Q, (t 1) ~ 11 (Q0 ) then blow-up must occur at a time 
1 

t* < t 1 . As above, if there is to be complete removal of fluid at t = t* then 
N 

H (t*) = 0 and H (0) = IQ, (t*) h (X,) for all harmonic h. 
1 

It is easily seen that for the condition (43) for blow-up to hold then u0 

must be somewhere greater than one, as was required for blow-up in the 
one-dimensional problem. The conditions for blow-up can be improved by 
comparing the Stefan problem with a suitable Hele-Shaw problem. 

Before applying known results about specific Hele-Shaw problems to 
some specific Stefan examples we shall discuss briefly a problem related to 
Hele-Shaw flow. 

Supposing that the tl ow between two parallel pla tes is caused by the 
plates moving directly toward s o r apart from each other, then the p ressure 
- u, satisfies a free boundary p roblem of the fo rm 

17 2 u+.f(t) = 0 s in Q (t) 

together with (24) and (25). f is posi tive fo r separating plat es and a contracting 
region Q. 

Taking U to satisfy 17 2 U = 1 in Q except at singula rities, with (31) and 
(32), then the new variable 11 = u +f U satisfies a H ele-Shaw problem with 
driving singularities just I times those of U. Hence the time derivatives of 
the singularities of U a re - f times the singula rities o f U and : 

the singularities o f U at 1 a re F (1) x singula rities o f U 0 
I 

where F (1) = exp ~ - J I (c) de ] (44) 
0 

and U0 is the solution to (27- 29). The free bounda ry can then be found 
by solving (30-32) where the known singula rit ies of U a re given by (44). 

As an example we may take JQ0 to be a square and f = 1. The 
singularities of U 0 take the form o f jumps in normal derivatives across the 
diagonals of the square. The singula rities o f U a lso lie a long the d iagonals 
but d ecay exponentially in time ; the vert ices of JQ remain sta tionary as JQ 
retreats toward s the d iagonals. From time reversabi litv fo r the Hele-Shaw 
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Fig. 8. Separating plates with Q initially a square. 

p roblem the region Q at any given time is that fo rmed by applying sui table 
line sources along the diagonals and starting with an initially empty region 
(see fig. 8). 

Start ing with a limacon, oQ1, is z = a0 ( + b0 (
2

, I( I = 1, the singularities 

attime.tare ~ F(t){-(a6+2b6)lnr+agb0 r- 1 cos8}= ~ {-(a2 +2b2)1nr+ 

+a2 br - 1 cose} so tha t oQ(r) is a lso a limacon, z = a(+b( 2
, where 

a2 + 2b2 = F (t) (aG + 2b~) and a 2 b = F (I) a6 bg. The solution blows up at a 
time 1':' when a = 2b: i.e. t* satis i'ies F (t*) = 27a0 b~/2 (a~ +2b~?. 

Returning to the Stefan problem we also use a new variable U. We firstly 
have to solve: 

17 2 U0 = 1- u0 in Q0 except at its singularities. 

oU0 U0 = -- -= 0 on oQ0 . on 
Then we take U to satis fy : 

au _ 2 ~ 
-,.,--17 U-L~ 

ot 
m Q (t) except at specified singularities 

which are those of U 0 , 

u = ~~ = 0, ~ on oQ (t), 

U = U0 at t = O, ::; in Q0 . 

(45) 

(46, 47) 

(48) 

Again u and U are related by (33) throughout Q and also by (34) in 
the region crossed by oQ. 

If U is always positive, which is the case fo r problems with behaviour 
(b) and possibly for (a) but no t (c), then (45-48) is an oxvg;en diffusion 



Ill-posed free boundary problems 293 

Suppose now that (b) is to occur. Then w (-K) is defined and finite for 
all .K in Q 0 so U is also finite. 

If instead (a) is to occur then as t--+ oo, Q contracts towards some 
region Qoo and U--+ U 00 where 

17 2 U 00 = 1 in Q 00 except at its singularities which are those of U 0 , (49) 

(50, 51) 

This is seen to be the same as problem (30-32) used in the solution of 
the Hele-Shaw problem. 

Under special circumstances the properties of U can be related to the 
condition for blow-up (43). If U 0 has no singularities then (a) cannot occur. 
Moreover if for some positive h with 17 2 h ~ 0, 0 < J (u0 -1) h d.K = 

!2 0 

= - J h17 2 U 0 d.K = - J U 0 17 2 h d,K then U 0 is somewhere negative. Conver-
110 l1o 

sely if U 0 is negative for some .Ko in Q 0 we can take some positive h with 
172 h > 0 in a neighbourhood of .Ko where U 0 < 0 and 172 h = 0 elsewhere; 
it then follows that J (u 0 -1) h d,K > 0. Of course, as with one dimensio~, 

·f u h · 1 ?q h r au d h · 1 as no smgu antles t en rom - - ~ 0 an U0 < 0 somew ere, neither ot 
(a) nor (b) are possible so there is blow-up [9]. 

So far it has been required that u > 1 to give blow-up; now the 
properties of U will be used to show blow-up even for u < 1. It must be 
first noted that if U 0 is infinite somewhere in Q 0 then (b) cannot take 
place so the problem satisfies (a) or (c). Moreover if U 0 has singularities 
such that (49-51) fails to have a solution then no limiting free boundary is 
possible and (c) must occur. Specific examples of the H~le-Shaw problem 
can be compared with examples of the Stefan problem to check if a feasible 
SOlution u OO> oQOO tO (49- 51) exiStS. 

Ill. A problem with a!J0 a lima-.on 

As earlier we shall· take oQ0 to be given by z = a0 ( + b0 (
2

, I (I = 1, 
. ,where 0 < b0 < aQ/2. 

We define R and 1/1 by ( = R exp (il/l) and choose some smooth positive 
function G (R) satisfying 

G (1) = G' (1) = G (0) = G' (0) = G" (0) = G" (1)-1 = 0, 

20 - Control and Cybernetics 
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and for a given positive number e, 

- e ::;; {(a6 +4b6 ± 4a0 b0 ) (G" + G'/R)=t=4a0 b0 G/R 2 }/(a6 +4R2 b6 ± 
± 4a0 b0 R)::;; 1 

for 0 < R < 1 with both signs. 
Then we take initial data u0 with 

, Uo = c [1'- {(a6 + 4b6) (G" + G'/R)+4a0 b0 (G" + 
+ G'/R - G/R 2

) cos t/l} /(a6+4b6 R 2 +4a0 b0 R cos t/1 ) 
so ,· 

0::;; u0 ::;; c (1 + e) 

and 

17 2 U 0 = (a5 +4b6 R 2 +4a0 b0 R cos t/1) (1 - u0 ). 

It follows that U 0 has the singularities ~ (1 - c) {- (a6 + 2b6) ln r + 
+ a6 bo r-t cos e} . . 

Taking c < 1, U 0 is infinite at the origin so (b) does not occur. But if (a) 
occurs 8Q co would be a limacon z = a( + b(2 with a2 + 2b2 = (1 - c) (a6 + 2b5) 
and a2 b = (l-c)a5b0 . For c>c* = 1 - 27a~b5/2(a6 + 2b5)3 no such lima
con is possible and blow-up must occur. 

By choosing c and e so that e > 0, c > c* and c (1 +e) < 1 the initial 
data is smooth, u0 < 1 throughout Q0 , but (c) nevertheless occurs. 

IV. i'JQ0 is the unit sphere in R3 with an asymmetric initial temperat~re 

We take initial data of the form u0 = ut(l~i) + u2 (l~ - .ol) where 0 < IQI < 1. 
ut is chosen to be smooth and decreasing, also Ut (1) = 0 and Ut = y for 
r::;; r 0 for some r 0 , y with 0 < y < 1, 0 < r 0 < 1. u2 (r) is also chosen to be 
smooth, positive for r<1-IQI; u2 (r) = 0 for r~1-a and maxu2 <1 - y. 
U has sln.gularities R3 /3 1~1- a/1~ -Ql where a > 0 and 1- y < R3 < 1- r6 y. 

Again the fact that U is unbounded precludes (b), and (a) is impossible 
if the initial data is chosen so that R < IQ! (c.f. example II). Again there must 
be blow-up although u0 is smooth and everywhere less than one. 

For these two examples there is blow-up despite the fact that u0 < 1. This 
contrasts with the one-dimensional problem where blow-up can only occur if 
u0 > 1 somewhere. It seems that blow-up normally occurs in a quite different 
way in two or three dimensions to one dimension, probably by the formation 
of some type of cusp rather like the Hele-Shaw problem. Any stabilising 
surface effects, such as the surface energy of section one, would prohibit the 
high curvatures that appear in the boundary near cusps. 

Finally it can be noted that in example IV (and also , in Ill if the limacon 
is replaced by an initial boundary given by z = a0 ( + b0 (" for arbitrarily 
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Niepoprawnie postawione zagadnienia ze swobodn~ granic~ 

Praca dotyczy sformulowan i analizy modeli pewnych proces6w fizycznych opisywanych 
zagadnieniami ze swobodn~ granic~, w kt6rych swobodna granica mo:i:e wykazywac gwaltowne 
zmiany w czasie i w przestrzeni. Dyskutowane jest podlo:i:e fizyczne zagadnien oraz prze
prowadzona zostaje analiza pewnych szczeg6lnych zagadnien typu Stefana. 

HeKoppeKTHhle npo6JieMhi eo CBOOOAHOH rpau~eii 

Pa6oTa KacaeTCl! <jlopMyJIHpOBOK H aHaJIH3a MaTeMaTrrqeCKHX MO,I\eJieil: HeKOTOpb!X <jlH3H- t· 
qeCKHX rrpOI.(eCCOB OIIHCb!BaHHb!X 3a,l\aqaMH CO CB060,I\HOH rpaHHI.(eiJ:, B KOTOpb!X CB060,I\Hal! 
rpaHHI.(a MOlKeT oqeHb 6b!CTpO H3MeHl!TCl! BO BpeMeHH H B IIpOCTpaHCTBe. PaccylK,I\aeTCl! 
<jlH3HqeCKOe 060CHOBaHHe rrpo6JieM H IIpOBO.I\HTCl! aHaJIH3 HeKOTOpb!X CIIel.(HaJibHb!X 3a,l\aq 
THIIa CTe<jlaHa. 
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large n) then the initial data can be chosen arbitrarily close to the trivial 
problem u0 = 0 in Q 0 = the unit ball with blow-up still obtained. 
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