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Hysteresis effects can appear in phase trans1t1ons ; they correspond to 
non-equilibrium situations in which memory has to be taken into account. 
A typical case is that in which a monotone relation between two variables u 
and w (see fig. 1) is replaced by a hysteresis loop (see fig. 2). 

Here the couple (u (t), w (t)) goes along the lower part of the loop if u 
is increasing and along the upper part if u is decreasing. Actually, the path 
of (u , w) can be more complicated than so; if u is in the critical range 
]u 1 , u2 [ and u inverts its movement, then (u, w) moves into the interior 
of the loop. Though it can be difficult to give a mathematical description 
of this behaviour, one can assume that the function u ( · ) determines the 
function w ( · ), once the suitable information on the initial state have been 
provided. 

A useful representation of hysteresis effects is given by the classical 
Preisach model, also known as the "independent domain model" [ 1, 7, 8, 14 , 
16, 23, 25, 26, 27, 30 , 31 , 32, 34, 35 , 39, ... , 43, 51]. According to this model, 
a fairly general class of hysteresis functionals is obtained by "composing" 
a possibly infinite family of simpler hysteresis functionals of the type sketched 
in fig. 4. 

The corresponding case without hysteresis is the jump relation of fig. 3. 
For instance, this can represent the temperature-phase dependence for th,e 
solid-liquid transition (u is temperature ; w = -1, i.e. ice, if u < 0; w = 1, i.e. 
water, if u > 0); in this case, the hysteresis relation accounts for supercoqlin~ 

and superheating effects [ 49]. 
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Other examples of hysteresis phenomena are ferromagnetism (for which 
the Preisach model was originally introduced) [1, 3, 6, ... , 9, 28, 29, 34, 35, 44, 
51, 55, ... , 58] and plasticity [2, 4, 12, 18, 33, 53]; hysteresis appears also in 
the study of filtration through porous media [14, 27, 30, 31, 32, 39, ... , 43], 
in biology [15, 50], in chemistry [15, 50] and in other applicative fields. , 

Mathematicians have not yet devoted much concern to hysteresis, despi~e 
of its evident applicative interest. It seems that the only systematic study has 
been conducted by Krasnosel'skii and Pokrovskii [16, ... , 26, 37, 38]. The 
present author has studied hysteresis effects in connection with partial 
differential equations [ 46, ... , 58], taking into account ferromagnetism in 
particular. 1 

In this paper the Preisach model is considered jointly with Maxwell's 
equations for a ferromagnetic slab. In section 1 we give a mathematical 
construction of the "hysteresis functional" associated with the Preisach model. 
Then in section 2 a variational formulation of Maxwell's equations for 1a 
distributed univariate ferromagnetic system is introduced and the existence 
of a solution is proved by means of implicit time-discretization, a priori 
estimates and limit procedure. In section 3 numerical aspects are shortly 
discussed. We refer to [46, 51] for details. We conclude with a collection 
of references of applicative and mathematical works on hysteresis. 

1. The Preisach model for ferromagnetism 

We set P = {(p 1 , p2)ER2 Ip1 < p2}; we shall denote by p a generic couple 
(p1 , p2)EP. For any p EP we set 

I{ -1} if 11 = Pt 
sP (11) = { - 1,1} if Pt < 11 < Pz 

{1} if 11 ~pz. 

We fix T> 0 and set 

(tp 

Dp = {(H' M0
) E C0 ([0, T]) X { - 1,1 }IM 0 

E sp (H (0))}; 

this is the set of the compatible evolutions of H and initial values of M fdr 
the "relay" characterized by the thresholds p 1 and p2 . For any (H, M 0

) E DP 
we define M = JP (H, M0

): [0, T]-+ { - 1, 1} as follows (see fig. 4) 

M (0) = M 0 

VtE]O, T[, if H (t) ~ p1 (H (t) ~ p2 , respect.) 
then M (t) = - 1 (M (t) = 1, respect.); 
M jumps from - 1 to 1 (from 1 to -1, respect.) 
at time t only if H (t) = p2 (p 1 , respect.); 
these are the only discontinuities of M. 

(1.2) 
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We note that at any instant t , M (t) = [JP (H, M0
)] (t) does not depend on. 

11 IJr, TJ (property of "causality"), that the dependence of M on H is "rate-
1 

-independent" and that 

IV [t', t"] c [0, T], if H is non-decreasing 
(or non-increasing) in [t', t"], so is also M 

(l.J) 
I 

(property od "piecewise monotonicity"). Notice that JP(., M 0) is not monotone, 
in the sense that 

J (.ffi> M0 )ED, Mi; JP (Hi, M 0
) (i = 1, 2) 

ldoes not imply J (M1 - M2)·(H 1 - H2)dt~O. 
0 

(1.4) 

Now let f..l be a positive, finite, complete measure over P. By S we shall 
denote the family of J.l-measurable functions P- {- 1, 1}; for these we shall 
use notations of the type of {M~}. We also set 

D = {(H' {M~})E C0 ([0, T]) X S IM~ E Sp (H (0)) J.l-a.e. in P}; 

this is the set of all compatible evolutions of H and initial states M~ of 
the relays. We introduce the Preisach hysteresisJunctional F associated with J.l: 

V (H, {M~})ED, VtE[O, T], 
[F (H, {M~})] (t) = J [JP (H , M~)] df..lp· (1.5) 

p 

Notice that also this functional is casual, rate-independent and piecewise 
monotone, since so are the JP's; also F is not monotone (in. the sense of (1.4)). 

At any instant t the magnetic state is characterized by H (t) and by the 
internal variables {MP (t)} = {[JP (H, M~)] (t)}; in general the latter contain 
more information then the macroscopic variable M (t) = J MP (t) df..lp· 

p 

PROPOSITION. If 

{
/..l has no masses concentrated either in points or along 

segments parallel the axes, (1. 6) 

then 

V (H, {M~})ED, F (H, {M~})EC0 ([0, T]) (1.7) 

{
V sequence {(Hn, {M~})}nEN c D, if Hn- H uniformly in [0, T] (1.

8
) 

then F(Hn, {M~})-F(H, {M~}) uniformly in [0, T]. 

For the proof we refer to section 1 of [51]. 
The geometric representation of the internal state {MP (t)} in the "Preisach 

plane" P allows to recognize further properties for F (see [7, 8, 51]). Indeed 
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the subset of P where MP = -1 and that where MP = 1 are separated by 
an antimonotone graph, if so they are at t = 0; 

this graph contains the whole information of the internal state. Moreover 
there are simple rules for modifying this graph according to the evolution 
of H; this yields useful computational procedures. 

A major question is the identification of the measure p. 
A more detailed analysis of the mathematical properties of the Preisach 

rnodel can be found in [51]. Generalizations to the vectorial case .have been 
proposed by Damlamian and the present author in [5]; of course the key 
point is the generalization of the "relay" functional (1.2). 

2. Study of Maxwell's equations in a ferromagnetic body 

We shall deal with the elctromagnetic evolution of an isolated ferromagnetic 
slab represented by a segment [a, b] cR. We consider Maxwell's equations 
neglecting displacement-current and assume Ohm's law; using suitable measure 
units, we have 

(2.1) 

where (J denotes the conductivity and f is a datum. We shall g1ve a 
variational formulation. 

We assume that a.e. in Q the initial field H 0 (x) and the initial values 
of the internal variables {M~ (x)} are given and fulfill the compatibility 
condition 

M~ (x)EsP (H0 (x)) p-a.e. in P, a.e. in ]a, b[. 

This yields the initial field B0 (x) = Jlo H0 (x)+4n J M~ (x) dpP a.e. in Q~ We 
also assume that p 

(2.2) 

and that F is a Preisach hysteresis functional as introduced m section 1. 
We introduce a variational problem: 
(P) Find HEL2 (0, T; W1,2 (]a, b[)) such that 

H (x, · )EC0 ([0, T]), H (x, 0) = H0 (x) a.e. in ]a, b[ (2.3) 

and such that, setting 

M (x, t) = [F (H (x, · ), {M~ (x)})] (t) 'it E [0, T], a.e. in ]a, b[ . (2.4) 

B = Jlo H +4nM a.e. in Q, (2.5) 
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then BE W1.2 (0, T; W 1
•
2 (]a, b[)') and 

d b b oH ov b 

a- J B · vdx + J - · - dx = J f- vdx 
dt a a OX OX a 

VvE W1
•
2 (]a, b[), a.e. in ]0, T[ (2.6) 

B ( · , 0) = B0 in W 1
•
2 (]a, b[)'. (2.7) 

Note that (2.6) yields BE W 1
•
2 (0, T; W1,2 (]a, b[)'); this gives a meaning 

to (2.7). The equation (2.6) corresponds to (2.1) and to the boundary 

condition ~~ = 0 for x = a, b. 

THEOREM. Assume that (1.6) and (2.2} hold. Then for any mEN the approximate 
problem corresponding to an implicit time discretization with tinie-step 

k = !'__(mEN) has one and only one solution, denoted by Hm (x, t). Moreover 
m 

there exists an H such that, possibly taking a subsequence, 

Hm--+ H weakly star in W 1
•
2 (0, T; L2 (]a, b[)) n 

ne (o, T; W 1
•
2 (]a, b[)). (2.8) 

Finally such an H is a solution of problem (P). 
0'( 1 · 

Sketch of the proof (see section 2 of [51]) for details. (i) Approximation. 
(Pm) Find H~, E W 1 • 2 (]a,b[) for n = l, ... ,m, such that, setting 

Hm (x, t) = linear interpolate of {H~ (x)}n =o, ... ,m (H~ = H0
), 

then 

a. e. in ]a, b[ 

M~ (x) = [F (Hm (x, · ),{M~ (x)})J (nk) a.e. in ]a, b[ 

B~ (x) = f.lo H~ (x) + 4nM~ (x) a.e. in ]a, b[, 

a Jb (B" B" t) d . Jb oH~ ov d - m - m- ·V x + --·- X 
k a a OX OX 

b 

(2.9) 

(1.10) 

' (2.11) ' 

= SJ.::·vdx 'ivEW 1
'
2 (]a,b[), n = l, ... ,m, (2.12) 

a 

1 nk 

where J.:: (x) = k J f(x, t) dt a.e. in ]a, b[. 
(n-l)k 

For any m (Pm) can be solved step by step in time. Let us fix a generic 
nE{l, ... ,m} and assume that H~, ... , H~- t are known; then by (2.10) M~ 
depends just on H~, due to the causality of F; i.e. (say) 

M~ (x) = <P~ (H~n (x), x), a.e. in ]a, b[. (2.13) 
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Moreover, by the "piecewise monotonicity" of F, <P~ ( · , x) is monotone 
(notice that Hm(·, x ) is linear in [(n-1)k,nk], hence it is monotone either 
non-decreasing or non-increasing, a.e. in ]a, b[). 
(ii) A priori estimates - Let us take v = H~ - H~- 1 in (2.12) and sum in n. 
By the monotonicity of <P~ ( · , x) we have 

b ' 

1 J (Bn B"-1) (Hn Hn - 1) d >- JJ.o IIHn Hn..:.lll2 . k m- m · m- m X ::-- k m- m L2(]a,b[)' 
a 

(2.14) 

then by standard calculations we get 

11 H m 11 w "(o,T ;L' Qa,b[)) n L~ (o, T; w l.' (]a ,b[)) !( Constant independent of m. (2. 15) 

Moreover of course 

(2.16) 

(iii) Limit procedure- By the previous estimateS there exist H, M such that, 
possibly taking subsequences, 

Hm ~ H weakly star in W 1
•
2 (0 , T; L2 (]a, b[)) n L00 (0 , T; w1.2 (]a, b[)) (2.17) 

Mm ~ M weakly star in L00 (Q) . (2.18) 

Taking m ~ oo in (2.12) we get (2.6) . Since the inclusion of 
W1

•
2 (0, T; L2 (]a, b[)) n L00 (0 , T; W 1

•
2 (]a , b[)) into L2 (Ja , b[ ; C0 ([0 , T])) is 

compact, possibly extracting a further subsequence we have 

Hm(x, ·)~H(x, · ) uniformly in [0 , T] , a.e. in ]a,b[; . (2.19) 
. "-

then by (1.8) we obtain 

F (Hm (x, ·),{M~ (x)}) ~ F (H (x , · ) , {M~ (x)}) , 
uniformly in [0, T], a.e. in ]a , b[. (2.20) 

and this yields (2.4) . • 

REMARK. The uniqueness of the solution of problem (P) is an open question. 
We note that it does not seem straightforward, as F is not monotone 
(cf. (1.14)) . 

3. Numerical Results 

In the proof of the previous existence result, we considered just a 
time-discretization; however for any m (Pm) corresponds to a family of m 
elliptic problems which can be numerically solved by standard space-
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-discretization procedures. In [46] Vercii and the present author considered 
especially simple hysteresis functionals of the type sketched in fig. 5. 

Along BC the couple (u, v) can only move upwards, along AD it can only 
move downwards; in the interior of the loop it can move horizontally in both 
directions. This corresponds to a measure f.l with total mass 1 and support 
along a segment lying on a straight-line of the form p2 - p1 = 2() (6: const > 0). 
Note that in this particular case there is no internal memory: the ferro­
magnetic state is completely described by the couple (H (x, t) , M (x, t)}. 

The problem obtained by discretization in space and time can be easily 
solved by the non-linear Gauss-Seidel method, of which one can prove the 
convergence. Several numerical tests have lead to the following conclusions 
(see [ 46]): the approximate solutions converge and costs and errors do 
not depend on the slope r:x of the hysteresis loop; however costs increase 
as the "amount of hysteresis" () increases, whereas errors are insensitive to 
this parameter. 
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Efekt histerezy w przemianach fazowych 

Efekty histerezy mogq towarzyszyc przemianom fazowym, w kt6rych pami<::c gra istotnq 
rol<:: w stanach nier6wnowagi. Artykul dotyczy klasycznego modelu Preisacha znanego tei: jako 
tzw. model obszar6w niezalei:nych. Pokazane zostaje zastosowanie modelu Preisacha do opisu 
ewolucji ferromagnetycznych przemian fazowych w ukladach izolowanych. 

~KT rHcTepelaca B .a30BbiX nepexo.n:ax 

3<jl<lJeKTbl fHCTepe3HCa MOfYT COOTBeTCTBOBaTb <}Ja30Bb!M rrepeXOtJ:aM, B KOTOpb!X IIaMl!Tb 
liBJilleTCJI cyiUeCTBeHHh!M JJieMeHTOM B HepaBHOBeCHbiX COCTOliHHliX. B pa6oTe o6cyJKtJ:aeTCll 
KJiaccHqecKall MOAeJib Opell:caxa (HJIH MO.ll:eJib HeJa:imCHMbiX o6JiacTeH). 3Ty MO.ll:eJib npHMe­
HlleTCll K OIIHCaHHIO JBOJIIOI.\~11 <}JeppO-MarHeT~b!X <!Ja30Bb!X rrepeXO.ll:OB B H30JIHpOBaHHb!X 
CHCTeMaX. 




