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on unknown parameters. A nonstationary value-iteration scheme is used to determine an optimal
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1. Introduction

We consider in this paper the problem of determining optimal adaptive
policies for average-cost, denumerable state, Markov decision processes which
depend on unknown parameters. To solve this problem we use an iterative
adaptive control scheme related to the nonstationary value-iteration (NVI)
scheme of Federgruen and Schweitzer [4], and which is a variant of the usual
method of succesive approximations; see, e.g, Bertsekas [2] or Ross [19].
The NVI scheme is also related to a recursive algorithm proposed by
Baranov et al. [1], [20], and has been used by Herndndez-Lerma and Marcus
[6], [9] for the adaptive control of discounted-reward Markov and semi-
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-Markov processes. We briefly compare the NVI adaptive policy with
Baranov’s scheme and with the “naive feedback controller” studied by Kurano
[15], Mandl [17], Kolonko [13], Georgin [5] and others. Before going
any further let us introduce the decision models we are concerned with.

The decision model. Consider the Markov decision model (8, 4, ¢, p),
where § is the state space, and A is the action (or control) set. The system
is observed at epochs n =10, 1,2, .. We suppose that § is a denumerable set
and A is a metric space. For each x€8§, let 4 (x) © A denote the (measurable)
set of admissible actions in state x, and let K: = {(x, a):x€S§, ac A (x)}. The
measurable function ¢: K — R denotes the cost function and p the iransition
law; that is, if the system is in state x and action aeAd (x) is chosen, in
immediate {expected) cost ¢ (x, @) is incurred and the next state will be y with
probability p (vlx, a).

In our problem the functions ¢ and p depend on an unknown parameter 0.
No a priori information is given about 0, except that it belongs to a parameter
set T. The following terminology and notation will help us to state the problem
precisely; cf. [5, 6, 9, 14, 15].

Let T be a metric space. For each 0T, consider the Markov decision
model (S, A, ¢ (f), p (0)) with transition probabilities p (y|x, a, f), and cost
function ¢ (x, a, #), where (x,a)eK, yeS. For each n=0,1, .., let X, and
A, be the state and the action at the n-th stage, respectively, and let

Ii’l = (X{)»AG! iy Xrl—laAn-ls Xn)

be the history of the process -or information vector- up to time n. I, is
a random vector with values in H,, where Hy=S, and H,,, = KxH,,
n=0,1,... A policy is then defined as a equence D= (D,,n=0,1,..) of
measurable functions (possibly randomized [10, 22]) such that, for each n,
D, specifies which action to choose at the n-th decision epoch, given I,. If
the D, are independent of the history of the system except for the present
state X, the policy D is said to be Markovian or memoryless. A memory-
less policy that regardless of time, always chooses the same action, say f(x),
whenever the system is in state x, is called stationary.

Throughout the following the cost function is assumed to be bounded:

AssumptioN 1.1. Sup {lc (x, a, 0)|:(x, a)eK, 0T} < M, for some M > 0.
- Now, for each policy D, xeS and 0eT define
Ju(D,0,x)=EP* Y ¢ (X, Ay, 0), n <0, (1)
k

=0

and let [5, 14, 15, 17,..]

— y: =%
J(D,8,x)= 314% mf—ﬂ_!_—1 J,(D, 0, x) 2)




Iterative adaptive control 315

be the long-run expected average cost per unit time when policy D is employed
and the initial state is x, given that 6 is the true parameter value. The limit
in (2) exists, because of Assumption 1.1.

DermnimioN 1.2: A policy D is (average cost) optimal (when 0 is the true
parameter value) if

J(D,0,x)= inf J (D, 6, x).

for each x€eS.

Statement of the problem. In this paper, the true parameter value is unknown
and we can state our problem as follows: Given that the true parameter value,
say OeT, is assumed to be constant but unknown, find: (A) an average-cost
optimal (adaptive) policy D, and (B) an iterative procedure to determine
J (ﬁ, & 3)

We give a solution to problems (A) and (B) in theorem 3.2 and corollary
3.3, respectively. Related results on the adaptive control of Markov and semi-
-Markov processes are briefly discussed in section 4. First we introduce in
section 2 some preliminary notions.

2. Preliminaries

In addition to Assumption 1.1 we will assume throughout this paper
the following conditions.

AssumpTioN 2.1. (a) § is denumerable; A and T are metric spaces, and for
each xeS, 4 (x) is compact.

(b) For all x, yeS the functions (a, 6) —» c (x, a, ) and (a, 0) = p (y|x, a, 0)
satisfy that, if (a', 0)— (a, 0), then

sup |c (x,a’,0)—c(x,a,0)]—0,

xeS

and
sup ¥ |p (ylx, @', 8)—p (yix, a, )] = 0.
S yeS

Xe

Following a standard convention we identify the set of stationary policies
with the set F of all functions f: S — A such that f(x)e A (x), for every xeS8,
ie, F is the product space F = [] 4 (x), and often we refer to D =(f.f, ..

xeS
as the stationary policy fe F. For each stationary policy fe F, and for each
OeT, let P{f, 0) be the stochastic matrix whose (x, y) element is p(y|x,f(x), 0).
Under a stationary policy feF, the process {X,,n >0} is a Markov chain
with transition matrix P (f, 0).
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In order to assure existence of solutions for the optimality equation
((3) below) we need the following (so-called strong scrambling) condition:

Assumption 2.2. There is a number ¢ > 0 such that

Z min I:p (ylxl 7f(x1)3 9)’ P U’lxbf(xz)s 9)] 2 Q

ye8S

for all x;,x,€S, 0T and feF.

REmMArks 23. (a) Observe that under the above assumption any matrix
P (f,0), feF is both aperiodic and indecomposable [3, 23].
(b) A sufficient condition for assumption 2.2 is clearly the following [23]

AssumpTioN 2.2'. There is a state seS and a number o> 0 such that
p (slx,f(x), 0) > a, for all xeS, 0eT and feF.

(c) When S is a finite set, we can use Corollary 6.20 in [19] to see that
another sufficient condition to have solutions of equation (3) is the following:

AssumptioN 2.2"”. For each 6eT and each stationary policy f, the matrix
P (f, 0) is irreducible.
We have the following lemma [3, 19, 23].

Lemma 2.4. Under Assumptions 2.2 (or 2.2') for each O T there exist a
constant k (0) and a function v(x, ), xe8S, such that

k(©)+0(x,0) = min {e(x,a, 0+ p(ylx,a,0)v(y,0)} 3)
asA(x yes

for each xeS. The function v (-, 0) is bounded and k (0) is uniquely determined
by (3). Furthermore, for O€T, let [* (x, 0) be such that minimizes the right-hand
side of (3) for each xeS. Then D* = (f* (-, 0)) satisfies that

J(D*,0,x)= igf.l (D, 0, x)
for each xeS, and we also have that, independently of x€S8,
: 1
Y = h *
k(@)——llng(D,-B, x)—-"h_.q}} T J. (D*, 0, x).

REMARK 2.5. Lemma 2.4 says that D* = (f* (-, 6)) is an (average-cost) optimal
policy, and we also have [3, 19] that under assumption 2.2 (or 2.2),
for every feF and every 0eT

lim 12 (0.9 = 5, (5.5 0).0) 0, (£,0) xe5. @

n—=o0

where {q, (f, 0), yeS} is the unique stationary probability of P (f, ).
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Equation (3) is called the (average cost) optimality equation, and for GeT,
if k(0),v(x,0),xeS, satisfy (3), then they are called a solution of the
optimality equation (3).

To prove the optimality of an adaptive policy, the parameter estimation
scheme is required to be sufficiently “robust™ —in the sense of the following
assumption.

AssumpTiON 2.6. For any 0T, any xeS§ and any policy D, there exists a
sequence {0,} of measurable functions 8,: H,— T such that 6, converges to
0 PP°-almost surely as n-» co. The sequence {f,} is said to be a sequence
of strongly consistent (SC) estimators of 0.

Remark 2.7. Examples of SC estimators are well known in the literature
on adaptive control of Markov and semi-Markov processes [5, 13, 15, 17].
They have been obtained for quite general parameter spaces T using maximum
likelihood or minimum contrast estimation, but in special situations — for
instance, in the adaptive control of queues [7, 8, 12, 14, 22] — very often
it is possible to get SC estimators in some eclementary way, like (e.g)
moment estimation.

3. The NVI adaptive policy

In this section we consider the case in which the true parameter value,
say 0, is unknown and proceed to solve the problems (A) and (B) stated
in section 1.

Let us define the functions v,:Sx T— R by

vy (x,0): = ﬂl&ig} c(x,a,0) ()
and forn=1,2,..,
Uy (X, 0): = Qp Va1 (x. 0) (6)
where
(@0 () = min {e(x.a, 00+ 5, p (s 0. O u () )

for any bounded function u on §.
Lemma 3.0. Suppose that assumptions 1.1 and 2.1 hold. Then, for each x€8§,
the functions v,(x,-):T— R, n =0, are continuous.

Proof The proof is easily obtained by induction, using lemma 4.2 (c) in
[14], and lemma 2.3 in [3].
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We now use (5)-17) to define the NVI adaptive policy. Let us define
a sequence of functions f,:Sx T— A4 by:

Jo (x, 0) = arg aﬁi{‘}) c(x,a,t) (8)
and for n=1,2,.
¥ 6 9]—arg mm {e(x,a,0+ Y pOx,a,0)v._y(y, 0)}. 9)
yes

We can use the conditions given in, eg, the measurable selection
Theorem 12.1 in [21] to assure the existence, for each n, of a measurable
function 0 —f, (x,0) on T, xeS§, that satisfies (9).

DeriniTioN 3.1, Let (8,) be a sequence of SC eftimafors of 0, and let f, be
the functions defined by (8), (9). The policy D = (D,) defined by D, (I,) =
=f(X,,0), n=0,1,.. is called an NVI adaptive policy.

TueoreMm 3.2. If assumptions 1.1, 2.1, 2.2 gnd 2.6 hold and v (x, 0) is bounded
on SxT, then the NVI adaptive policy D is average-cost optimal.
Proof Fix 0eT. For each (x,a)eK, iet us define the function

6(x,a,0)=c(x,a, €)+Z p(ylx,a,0)v(y, —v(x, 0)—k (),

}E

where {k(0), v(x,0), xeS} is a solution of the optimality equation (3). In
view of Assumptions 1.1, 2.1, Lemma 24 and equation {4), the function
@ (x,a,0) is bounded. Let us observe that ¢ (x, a, 0) satisfies

0 (Xy, Ax, 0) = E2° [c (Xy, Ay, 0)+0 (Xys 1, O)— 0 (Xy, O, A ]—K (0)
for each x, 60, D and each k=0, 1, ... Therefore

T B2 Y 6 (X A 0) = B2 LY ¢ (X, A O] =k (O)+

o B2 [0 (X 0)— v (x, 0)]

From this equation and Lemma 2.4 we see that in order to prove that
D is average-cost optimal it is sufficient to prove that

lim mf—[— ED.0 Z ¢ (Xy, Ar, 0) = (10)

n—+oo +1

To do this, let (0,) be any sequence in T such that 0,— 60, and let
Xo€S be any fixed state. Using the results on page 365 of [3], there is
a number 0 < g < 1 such that

[v, (x, O)—nk (0)—v (x, O)| < (1—p)"-constant, for all n>1, xe8§, OeT.
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From this and Lemma 3.0, we then have that the sequences
wp(x,0):=v,(x, 8)—uv, (X0, 8), xS, 0T, n=1,
and
ko (0): = v, (%0, 0)—v,—1 (x0,0), 0T, n =1,
are continuous in 0 and converge uniformly in x and 6 to a bolutlon of
equation (3). Therefore we have, for all xeS§,
Lim wy (x, 0,) = v (x, 0) v (xo, 0) (11)
and
lim &, (0) = k (0). (12

Note that v(x,-) and k(-) are continuous on 7. Now, making use of
equations (5)+9) we have.

¢ (x. fu(x,0,), 0) = ¢ (x, f, (x, 0,), 0)—w, (x, 0,)+w, (x, 0,) =
= ¢ (x, £y (x, 0,), 0)—c (x, o (x, 6,), 6,)+
¥ Z,:S [p (y|xsf;l (xe Bn}s 8) (U {ya 9)_1‘} (xﬂa 9))_'
=P (yixafn (JC, Gn)s Bn) Wn—1 {.vs eﬂ)] +
+w, (x, B —(v (x, 0)— 1 (X0, 0))+k, (B,)—k (0).

From this equation we see that, in view of Assumption 2.1 and equations
(11), (12),

sup |¢ (x‘)fn {xs 9!’])1 ﬂ)i_’o, as n— oo,
xeS

for every sequence 0,— 0. Therefore, under Assumption 2.6

¢ (X, Ay, 0) = |6 (X, £, (X, 6,), 0)| =0,  PPP-almost surely, as n— 0.

Finally, by the bounded convergence theorem, we see that for all xeS§,
for all xe8§,

ED? ¢ (X,, A 0)>0 as n— o,

from which (10) follows immediately. This completes the proof of Theorem
3.2, [ |

The NVI adaptive policy is average-cost optimal and gives us a solution
to problem (A) in section 1. A solution to problem (B) in section 1 is
now immediately obtained:

CorOLLARY 3.3. Suppose that the assumptions of Theorem 3.3 hold and let D
be the (optimal) NVI policy. Let xq€S be any fixed state and let (8) be
any sequence in T converging to 0. Then the sequence
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kn (Gn] = Uy (x(}, Bn)_vn—l [xOS 911).- n 2 l:
satisfies
limk, (0,) = k (6) = J (D, 0, x), for all xeS. (13)

Proof. Since D is an optimal policy, it follows from Lemma 24, that
k(@)= J (D, 0, x) for each xeS. Then the two equalities in (13) are a direct
consequence of equations (12) and (10) in the proof of Theorem 3.2.

4. Related results and conclusions

Let us compare the NVI adaptive policy with the method which Mandl
[18] called the “method of substituting the estimates into optimal stationary
controls”, and which — except for small variations —is also found in the
stochastic control theory literature under the names of “certainty equivalence
controller” or — “naive feedback controller (NFC)” (see e.g. [2]). The NFC
adaptive policy is constructed as follows.

For each 0eT, determine an optimal stationary policy g (-, 0)eF (cf.
Lemma 2.4), and let (A,) be a sequence of SC estimators of 6. Then the
policy D" = (D;) defined by

D,(I)=9g (X, 0), n=0,1, ..,

is called an NFC adaptive policy.

The NFC policy D’ was introduced, independently, by Kurano [15] and
‘Mandl [17] for the case of finite-state Markov decision processes with
average-cost criterion. It was generalized to Markov and semi-Markov
decision processes with denumerable state space by Mandl [18] and Kolonko
[14], respectively, and it has been applied to the optimal control of queues
with unknown parameters by Kolonko [14], Kolonko and Schil [12] and
by Hernandez-Lerma and Marcus [7, 8]. Schil [22] has considered the NFC
policy (called in [22] “principle of estimation and control”) for discounted
Markov decision processes. In comparison with the NVI — policy D (Definition
3.1), the main disadvantage of the NFC policy is that D’ requires to know
in advance the optimal policies g (-, 0) for all values of 8, which is not the
case for the NVI policy. That is, at the n-th decision epoch, the NVI controller
observes the state x,, computes the estimate 6, and chooses the action
D, (I,) = f, (x,, 0,) using (9). The NFC controller acts similarly: observes x,,
computes 0, and chooses the action Dj(I,) =g (x,,0,), but here he is
assuming that he knows in advance the functions g (-,0)eF for all 0eT.

The approach used by Baranov [1] and Salyga et al. [20] for finite state
average-cost Markov chains is similar to our NVI, except that they use a
particular parameter-estimation scheme — (related to Ljung’s [16] prediction
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error method) that seems to be more cumbersome than what is really needed,
namely, any estimation scheme which gives SC estimates.

In summary, we have introduced in this paper an optimal adaptive policy
for the control of Markov processes with unknown_ parameters that uses
any estimation scheme which gives SC estimates. The NVI policy permits
to control optimally the system (within the information at hand, as given
by the estimators) as early as the second stage.
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Iteracyjna procedura sterowania adaptacyjnego
systemoéw Markowa z przeliczalng liczbg stanéw
i Srednim kosztem

W pracy rozwazono dyskretne systemy Markowa z przeliczalna liczba standéw i nieskon-
czonym horyzontem sterowania. Przyjeto, ze koszt przejécia ze stanu do stanu i prawdopo-
dobienstwo przejécia zaleza od nieznanych parametréw. Jako kryteria sterowania przyjeto
minimalizacj¢ usrednionej po czasie sumy oczekiwanych kosztow. Jako rozwigzanie otrzymano
optymalna strategi¢ adaptacyjna w postaci niestacjonarnej procedury iteracyjnej.

AJanTaTHBHOE, HTEPALMOHNOE YNPABieHHE MADKOBCKHM
NPOLHEeccoM CO CPeHMMH H3/JepKKaMH K CYETHHIM YHCJIOM
COCTOSIHHH

B paGore paccMOTpeHO MAaKpPOBCKYIO YNPABIEMYIO LENb CO CYETHBIM YHCAOM COCTOSHMIA
Manepxkku 3a OfMH AT H BEPOATHOCTH MEPEXoja 3aBHCAT OT HEH3BECTHBIX NapPaMETPOB.
PaccmaTpusaercs OeckOHeuHBI FOPU30HT MIaHKpoBaHusa. Hano MUHHMH3HPOBATE YCPEAHEHHYIO
IO BPEMEHH CYMMY OXKHAaeMbIX u3jepiex. [lns pewenns 3amaqu MPUMEHEHO ANTOPHTM THIA
HECTAlMOHAPHOH WTepaluH CTPATErHH.




