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1. Introduction 

We consider in this paper the problem of determining optimal adaptive 
policies for average-cost, denumerable state, Markov decision processes which 
depend on unknown parameters. To solve this problem we use an, iterative 
adaptive control scheme related to the nonstationary value-iteration (NVI) 
scheme of Federgruen and Schweitzer [4], and which is a variant of the usual 
method of succesive approximations; see, e.g., Bertsekas [2] or Ross [19]. 
The NVI scheme is also related to a recursive algorithm proposed by 
Baranov et al. [1], [20], and has been used by Hermindez-Lerma and Marcus 
[6], [9] for the adaptive control of discounted-reward Markov and semi-
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-Markov processes. We briefly compare the NVI adaptive policy with 
Baranov's scheme and with the "naive feedback controller" studied by Kurano 
[15], Mandl [17], Kolonko [13], Georgin [5] and others. Before going 
any further let us introduce the decision models we are concerned with. 

The decision model. Consider the Markov decision model (S, A, c, p), 
where S is the state space, and A is the action (or control) set. The system 
is observed at epochs n = 0, 1, 2, ... We suppose that S is a denumerable set 
and A is a metric space. For each x E S, let A (x) c A denote the (measurable) 
set of admissible actions in state x, and let K: = {(x, a):xES, a EA (x)} . The 
measurable function c: K---" R denotes the cost function and p the trr. ;"sition 
law; that is, if the system is in state x and action aEA (x) is cho.s~:::n, .m 
immediate (expected) cost c (x, a) is incurred and the next state will be y with 
probability p (ylx, a). 

In our problem the functions c and p depend on an unknown parameter (}. 
No a priori information is given about 8, except that it belongs to a parameter 
set T The following terminology and notation will help us to state the problem 
precisely; cf. [5, 6, 9, 14, 15]. 

Let T be a metric space. For each e ET, consider the Markov decision 
model (S,A,c(8),p(8)) with transition probabilities p(ylx,a,e), and cost 
function c (x, a,()), where (x, a)EK, yES. For each n = 0, 1, .. . , let Xn and 
An be the state and the action at the n-th stage, respectively, and let 

In= (Xo, Ao , ... , Xn-1, An-1, Xn) 

be the history of the process -or information vector- up to time n. In is 
a random vector with values in Hn, where H0 = S, and Hn+l = KxHn, 
n = 0, 1, .... A policy is then defined as a equence D = (D 11 , n = 0, 1, ... ) of 
measurable functions (possibly randomized [10, 22]) such that, for each n, 
Dn specifies which _action to choose at the n-th decision epoch, given 111 • If 
the Dn are independent of the history of the system except for the present 
state X 11 , the policy D. is said to be Markovian or memory less. A memory­
less policy that regardless of time, always chooses the same action, say f (x), 
whenever the system is in state x, is called stationary. 

Throughout the following the cost function is assumed to be bounded: 

AssuMPTION 1.1. Sup{ic(x,a,())j:(x,a)EK,OET} ~M, for some M>O . 
Now, for each policy D, X E s and e E T define 

n 

Jn (D, (), x) = E~· 9 L c (Xb Ab 8), n ~ 0, 
k=O 

(1) 

and let [5, 14, 15, 17, ... ] 

J (D, 0, x) = lim inf _!__
1 

Jn (D, (), x) 
n-+oo n+ 

(2) 
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be the long-run expected average cost per unit time when policy D is employed 
and the initial state is x, given that () is the true parameter value. The limit 
in (2) exists, because of Assumption 1.1 . 

DEFINITION 1.2~ A policy f5 is (average cost) optimal (when () 1s the true 
parameter value) if 

J (D, e, x) = inf J (D, e, x). 
)) 

for each xES. 
Statement of the problem. In this paper, the true parameter value is unknown 

and we can state our problem as follows: Given that the true parameter value, 
say ()ET, is assumed to be constant but unknown, find: (A) an average-cost 
optimal (adaptive) policy f5, and (B) an iterative procedure to determine 

J (D, e, x). 
'i We give a solution to problems (A) and (B) in theorem 3.2 and corollary 

3.3, respectively. Related results on the adaptive control of Markov and semi­
-Markov processes are briefly discussed in section 4. First we introduce in 
section 2 some prelimiqary notions. 

2. Preliminaries 

In addition to Assumption 1.1 we will assume throughout this paper 
the following conditions·. 

AssuMPTION 2.1. (a) S is denumerable; A and Tare metric spaces, and for 
each x E S, A (x) is compact. 

(b) For all x , yES the functions (a , 8) ~ c (x, a, ()) and (a, ()) ~ p (yjx, a,()) 
satisfy that, if (a',()')~ (a, e), then 

sup le (x, a', ()' ) - c (x, a, 8)1 ~ 0, 
xeS 

and 

sup L lP (y jx, a',()') - p (y jx, a, e)j ~ 0. 
xeS yES 

Following a standard convention we identify the set of stationary policies 
with the set F of all functionsf:S~A such thatf(x)EA (x), for every xES, . 
i.e., F is the product space F = f1 A (x), and often we refer to D = (f,f, ... ) 

xES """~ 

as the stationary policy jE F , For each stationary policy jE F , and for each 
()ET, let P{f, ())be the stochastic matrix whose (x, y) element is p(y jx,f(x),8). 
Under a stationary policy jEF, the process {Xn, n ~ 0} is a Markov chain 
with transition matrix P (f, 8). 
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In order to assure existence of solutions for the optimality equation 
((3) below) we need the following (so-called strong scrambling) condition : 

AssuMPTION 2.2. There is a number Q > 0 such that 

L min [p (yixt ,f(xt), e), p (yixz,f(x 2 ), e)] ~ Q 
.veS 

for all X 1' Xz E s' e E T and f E F. 

REMARKS 2.3. (a) Observe that under the above assumption any r.1atrix 
P (f, 8), fEF is both aperiodic and indecomposable [3, 23]. 

(b) A sufficient condition for assumption 2.2 is clearly the following [23] 

AssuMPTION 2.2'. There is a state sE S and a number rx > 0 such that 
p (slx,f(x), e)~ rx, for all xES, eE T and fEF. 

(c) When S is a finite set, we can use Corollary 6.20 in [19] to see that 
another sufficient condition to have solutions of equation (3) is the following: 

AssUMPTION 2.2". For each 8 ET and each stationary policy f, the matrix 
P (f, e) is irreducible. 

We have the following lemma [3, 19, 23]. 

LEMMA 2.4. Under Assumptions 2.2 (or 2.2') for each eE T there exist a 
constant k (e) and a function v (x, e), x E S, such that 

k (e) + v (x, e) = min {c (x , a, e)+ L p (yjx, a, e) V (y, e)} (3) 
. ~AW ~S 

for each x E S. The function v ( ·, 8) is bounded and k (e) is uniquely determined 
by (3). Furthermore ,for e ET, let f* (x, e) be such that minimizes the right-hand 
side of (3) for each x E S. Then D* = (!* ( ·, e)) satisfies that 

J (D*, e, x) = inf J (D, 8, x) 
D 

for each x E S, and we also have that, independently of x E S, 

k (e) = inf J (D, e, x) = lim _ _!__
1 

Jn (D*, 8, x). 
D n-+oo n+ 

REMARK 2.5. Lemma 2.4 says that D* = (!* (·,e)) is an (average-cost) optimal 
policy, and we also have [3, 19] that under assumption 2.2 (or 2.2'), 
for every f E F and every e E T 

. 1 . 
hm --

1 
Jn (f, e, x) =) c (y,f(y), e) qy (f, e), XES, (4) 

n-+oo n+ ~ ' 

where {qy (f, e), yES} is the unique stationary probability of P (f, e). 
:.... :.. . - -....... -. 
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Equation (3) is called the (average cost) optimality equation, and for e ET, 
if k(8),v(x,8),xES, satisfy (3), then they are called a solution of the 
optimality equation (3). 

To prove the optimality of an adaptive policy, the parameter estimation 
scheme is required to be sufficiently "robust"- in the sense ofthe following 
assumption. 

AssuMPTION 2.6. For any e ET, any x E S and any policy D, there exists a 
sequence {en} of measurable functions en: Hn ~ T such that en converges to 
e ~D· 11-almost surely as n--+ oo. The sequence {en} is said to be a sequence 
of strongly consistent (SC) estimators of e. 

REMARK 2.7. Examples of se estimators are well known in the literature 
on adaptive control of Markov and semi-Markov processes [5, 13, 15, 17]. 
They have been obtained for quite general parameter spaces Tusing maximum 
likelihood or minimum contrast estimation, but in special situations- for 
instance, in the adaptive control of queues [7, 8, 12, 14, 22]- very often 
it is possible to get se estimators in some elementary way, like (e.g.) 
moment estimation. 

3. The NVI adaptive policy 

In this section we consider the case in which the true parameter value, 
say e, is unknown and proceed to solve the problems (A) and (B) stated 
m section 1. 

Let us define the functions vn: S x T ~ R by 

v0 (x, 8): = min c (x, a, 8) 
aeA(x) 

(5) 

and for n = 1 , 2, ... , 

(6) 

where 

(Qn u) (x) = min {c (x, a, 8)+ L p (ylx, a, 8) u (y)} 
aEA(x) yeS 

(7) 

for any bounded function u on S. 

LEMMA 3.0. Suppose that assumptions 1.1 and 2.1 hold. Then, for each x E S, 
the functions Vn (x,. ): r~ R, n ~ 0, are continuous. 

Proof. The proof is easily obtained by inducti9n, using lemma 4.2 (c) in 
[14], and lemma 2.3 in [3]. 

I* 
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We now use (5)-17) to define the NVI adaptive policy. Let us define 
a sequence of functions j,:S x r~ A by: 

fo (x, 8) = arg min c (x, a, 8) (8) 
aeA(x) 

and for n = 1 , 2, ... 

j,(x,8)=arg min {c(x,a,8)+l:p(yix,a,8)v,, _t(y,8)}. (9) 
aeA(x) yeS 

We can use the conditions given in, e.g., the measurable selection 
Theorem 12.1 in [21] to assure the existence, for each n, of a measurable 
function 8 ~ fn (x' 8) on T, X E s' that satisfies (9). 

DEFINITION 3.1. Let (G,) be a sequence of SC estimators of 8, and let fn be 
the functions defined by (8), (9). The policy D = (Dn) defined by Dn (In)= 
= fn (Xn, Bn), n = 0, 1, ... is called an NVI adaptive policy. 

THEOREM 3.2. If assumptions U, 2.1, 2.2 and 2.6 hold and v (x, 8) is bounded 
on S x T, then the NVI adaptive policy i5 is average-cost optimal. 

Proof Fix (JET For each (x, a)E K , iet us define the function 

~ (x, a, 8) = c (x, a, 8) + L p (yjx, a, 8) v (y, 8)-v (x, 8)-k (8), 
yeS 

where {k (8), v (x, 8), xES} is a solution of the optimality equation (3). In 
view of Assumptions U, 2.1, Lemma 2.4 and equation (4), the function 
~ (x, a, 8) is bounded. Let us observe that ~ (x, a, 8) satisfies 

~ (Xk> Ak> 8) = E~· 8 [c (Xk> Ak> 8)+ v (Xk+ 1 , 8)- v (Xk> 8)1Ik> Ak]- k (8) 

for each X' 8' D and each k = 0' 1 ' .. .. Therefore 

1 D 0 +--
1 

Ex' [v (X, , 8)-v (x, 8)] 
n+ 

From this equation and Lemma 2.4 we see that in order to prove that 
f5 is average-cost optimal it is sufficient to prove that 

1 " 
lim inf--

1 
E~· 8 L ~ (Xk> Ak> 8) = 0. 

n-+oo n+ k=O 
(10) 

To do this, let (8,) be any sequence in T such that 8, ~ 8, and let 
x 0 E S be any fixed state. Using the results on page 365 of [3], there rs 
a number 0 < Q < 1 such that 

jv,(x,B) - nk(B)-v(x,B)i :::;:(1 - Q)"·constant, for all n~ 1, xES, BET 
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From this and Lemma 3.0, we then have that the sequences 

W 11 (x,8):=vn(x , 8)-v11 (x 0 , 8) , xES , GET, n ~ 1, 

and 

kn (8): = Vn (xo, e)- Vn-1 (xo, G) , fJET, n ~ 1, 

319 

are continuous in e and converge uniformly in x and e to a solution of 

equation (3). Therefore we have, fo r all x E S, 

(11) 

and 

(12) 

Note that V (x , .) and k (.) are continuous on T. Now, making use of 
equations (5H9) we have. 

- p (y lx ,Jn (x, f}n), @n) Wn-1 (y, @n)] + 
+wn (x , 611 )- (t: (x , 8)-v (xo, G))+kn (811)-k (G) . 

From this equation we see that, in view of Assumption 2.1 and equations 
(11), (12), 

supJ~(x,j11 (x,G11) , e) J --+O, as n--+oo, 
x eS 

for every sequence en--+ e. Therefore, under Assumption 2.6 

I~ (Xn, An, 8)1 = I ~ (Xn , fn (Xn, en), e)J--+ 0 , P!·8-a1most surely, as n--+ Cl) . 

Finally, by the bounded convergence theorem, we see that for all x E S , 
for all x ES, 

from which (10) follows immediately:\ This completes the proof of Theorem 
3.2. • 

The NVI adaptive policy is average-cost optimal and gives us a solution 
to problem (A) in section 1. A solution to problem (B) in section 1 is 
now immediately obtained: 

CoROLLARY 3.3. Suppose that the assumptions of Theorem 3.3 hold and let D 
be the (optimal) NV I policy. Let x 0 E S be any fixed state and let (811) be 
any sequence in T converging to -e. Then the sequence 
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satisfies 

limkn(en) = k(e)=J(D,e,x) , for all xES. (13) 
n-+ oo 

Proof. Since D is an optimal policy, it follows from Lemma 2.4, that 
k (e)= J (D, e, x) for each xES. Then the two equalities in (13) are a direct 
consequence of equations (12) and (10) in the proof of Theorem 3.2. 

4. Related results and conclusions 

Let us compare the NVI adaptive policy with the method which Mandl 
[18] called the "method of substituting the estimates into optimal stationary 
controls", and which- except for small variations - is also found in the 
sto~hastic control theory literature under the names of "certainty equivalence 
controller" or- "naive feedback controller (NFC)" (see e.g. [2]) . The NFC 
adaptive policy is constructed as follows. 

For each e ET,' determine an optimal stationary policy g ( . 'e) E F (cf. 
Lemma 2.4), and let (Bn) be a sequence of SC estimators of e. Then the 
policy D' = (D~) defined by 

D~ Un) = g (Xn, en), n = 0, 1, ... , 

is called an NFC adaptive policy. 

The NFC policy D' was introduced, independently, by Kurano [15] and 
Mandl [17] for the case of finite-state Markov decision processes with 
average-cost criterion. It was generalized to Markov and semi-Markov 
decision processes with denumerable state space by Mandl [18] and Kolonko 
[14], respectively, and it has been applied to the optimal control of queues 
with unknown parameters by Kolonko [14], Kolonko and Schal [12] and 
by Hermindez-Lerma and Marcus [7, 8]. Schal [22] has considered the NFC 
policy (called in [22] "principle of estimation and control") for discounted 
Markov decision processes. In comparison with the NVI -policy D (Definition 
3.1), the main disadvantage of the NFC policy is that D' requires to know 
in advance the optimal policies g (.' e) for all values of e, which is not the 
case for the NVI policy. That is, at the n-th decision epoch, the NVI controller 
observes the state Xn, COmputes the estimate en and chooses the action 
Dn Un) = f,, (x,, en) using (9). The NFC controller acts similarly: observes Xn, 
computes en and chooses the action D;, (In) = g (xn, en), but here he is 
assuming that he knows in advance the functions g ( · , 0) E F for all e ET. 

The approach used by Baranov [1] and Salyga et al. [20] for .finite state 
. average-cost Markov chains is similar to our NVI, except that they use a 

particular parameter-estimation scheme - (related to Ljung's [16] prediction 
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error method) that seems to be more cumbersome than what is really needed, 
namely, any estimation scheme which gives se estimates. 

In summary, we have introduced in this paper an optimal adaptive policy 
for the control of Markov processes with unknown_ parameter1i. that uses 
any estimation scheme which gives se estimates. The NVI policy permits 
to control optimally the system (within the information at hand, as given 
by the estimators) as early as the second stage. 
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Iteracyjna procedura sterowania adaptacyjnego 
systemow Markowa z przeliczaln~ liczb~ stanow 

srednim kosztem 

W pracy rozwa:i:ono dyskretne systemy Markowa z przeliczaln~ liczb~ stan6w i nieskoii­
czonylp horyzontem sterowania. Przyj~to, :i:e koszt przejscia ze stanu do stanu i prawdopo­
dobieiistwo przejscia zale:i:~ od nieznanych parametr6w. Jako kryteria sterowania przykto 
minimalizacj~ usrednionej po czasie sumy oczekiwanych koszt6w. Jako rozwi~zanie · otrzymano 
optymaln~ strategi~ adaptacyjn~ w postaci niestacjonarnej procedury iteracyjnej. 

A,LJ,anTaTHBnoe, nTepar_.uouuoe ynpasJieuue MapKOBCKHM 
npor_.ecCOM CO cpe,ll,HHMU H3,ll,ep)KK3MH I! C'leTHbiM 'IHCJIOM 
COCTOHHHH 

B pa6oTe pacCMOTpeHO MaKpOBCKYIO yrrpaBJieMyiO J.leiib CO c•reTHblM 'lHCJIOM COCTOJ!HHH. 
lbp;eplKKH 3a O)J;HH mar H BepOHTHOCTII rrepexop;a 3aBI!CHT OT HeH3BeCTHbJX rrapaMeTpOB. 
PaccMaTpHsaeTCH 6ecKoHe'lHbril: rop1130HT rrnaHI!posaHHH. Hap;o MIIHIIMH311posaTb ycpep;HeHHYIO 
IIO BpeMeHII CYMMy OlKH)J;aeMbiX H3p;eplKeK. .ll:JIH pellleHHH 3a,Ua'lH IIp!!MeHeHO aJirOpHTM Tlllla 
HeCTal.lHOHapHOH I!TepaJ.li!H CTpaTefi!H. 
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