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We introduce Hélder subgradients as generalized g-subgradients with a class ¢ of functionals
exhibiting properties related to Holder analysis and consider its properties needed for
investigation of optimization problems. Necessary conditions for optimality and conditions for
normality are derived for problems with locally Holder data.

The newness of the results lies in the use of class ¢ of rather simple nonlinear functionals
instead of X* to approximate functionals in a relaxed sense and on the absence of Lipschitz
conditions on the functionals involved in the problems.

1. Introduction

Nonsmooth analysis has been extensively developed in the last decade with
successful applications in optimization and stabilization, in considering
controllability and in investigations of existence of solutions to equations or
inclusions. Many concepts of differentiability have been introduced in order
to relax classical conditions on smoothness of data of problems in the mentioned
above mathematical branches.

It was Clarke who began this process by defining generalized gradients
[2] and then provided many uses in the calculus of variations [4], [6], [7],
optimal control [5], [6], [7] and mathematical programming [3]. Soon after
Clarke’s beginning many experts in optimization and control theory made
important contributions introducing various notions of generalized differentia-
bility. Halkin [107] used his concept of screen for operators in finite dimensional
spaces to obtain interior mapping theorems and necessary conditions for
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optimality in terms of Lagrange multipliers. Warga [19] introduced derivate
containers as a tool for studies of inverse functions, controllability and ncessary
conditions for extrema. In [17] Pourciau with the aid of his generalized
derivatives managed to refine concepts and results of Clarke proving three
fundamental theorems in analysis for generalized differentiability (interior
mapping theorem, inverse mapping theorem and implicit mapping theorem)
in finite dimensional spaces and a necessary condition for optimality in a
multiplier rule form. A couple of years later Aubin [1] proposed a new
approach to nonsmooth analysis based on contingent derivatives. Using the
concept of shield, a generalization of the classical strong derivative, Pham
Huy Dien [13] obtained three mentioned above theorems in infinite dimensional -
spaces.

The common feature in encountered concepts of generalized differentiability
and generally in other formerly known notions is that a functional (or an ope-
rator) may be approximated by a set of linear functionals (or linear operators)
when it is regular enough in a certain relaxed sense of smoothness. Besides,
these concepts are effective mainly in problems with locally Lipschitz data.
For instance, take very simple function f:R—R, f(x)=|x|", 0 <a <1, we
see that all concepts of differentiability based on linear approximations are
not appropriate for considering the behaviour of this function at x =0.
For this kind of situation in optimization see Example 3-4. Two following
facts should be added here. First, the concept of g-subgradient in [8] of
Dolecki and Kurcyusz is quite different from those ones mentioned above.
It is a set of nonlinear functionals in a general class ¢ but it is used to
approximate other functionals in the classical (not relaxed) sense of subgradient.
The idea is merely replacing X* by ¢. Second, for multifunctions many
concepts of differentiability based on nonlinear approximations have appeared
(see e.g. Pham Huu Sach [14], [20]).

In the present paper we introduce o-Hdolder subgradients for functionals
on a normed space X based on a Holder approximation in a relaxed sense.
Namely we define a directional derivative of a functional /' by means of

o (x; 0) = lim sup I_QE_JFM

and an o-Holder subgradient of f at x as the set of all pe¢ such that
¢ (v) <f;(x;v) for all veX. Here ¢ is a class of rather simple nonlinear
functionals we choose properly so that many locally Holder functionals are
Holder subdifferentiable. After a study of calculus of Hilder subgradients we
are in a position to derive necessary conditions for optimality for mathema-
tical programming problems with locally Holder data and conditions for the
normality of such problems.
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2. Holder functionals and Hélder subgradients

Throughout the paper (unless otherwise specified) let X be a normed space,
X* be its dual space and 0 <a<1. We use the notations B (x,,d)<L

£ {xeX/|x—xol <6} and B(U,0) L | ) B(x, d) for U c X.

xelU

A functional f: X — R is said to be (globally) Hélder of degree o il there
exists K > 0 such that

lf)=f I <K |x—y|* for x,yeX.

fis called locally Holder of degree « at X, if there are a neighbourhood U (x,)
of xo and K > 0 such that

lfX)=fWI < K |lx=y[* for x, yeU (xo).

We say that f is locally Holder of degree o (in a given subset of X) if for
each x (in this subset) f is locally Hdolder of degree « at x.

A recession functional of degree o of a functional f is a functional denoted
by f0* on X such that its epigraph is [15]

epi (f0%) = {(x, vJex x R/epi f+(ix, A*v) c epi f, VA > 0}.

LemMA 2.1. If f is subadditive and positively homogeneous of degree o, then
=7

Proof. Let (y, u) be an arbitrary point in epi /. Then for each (x, v)eepi f
and 4> 0 one has

fx+) <fX)+/ () =f)+2 () S v+ u,
80 (x, v)+(4y, A* weepif, ie (v, w)eepi f0".

Conversely, if (, y)eepi f0* then since (0,0)eepif one has for 1>0
(AL, A*y)eepi f, ie. f(A0) < A*y. Taking A= 1 we see that ({,y)eepif. N

LEMMA 2.2.
a) f0* is positively homogeneous of degree o and

Sx+A0)—f(x)

0" Q)=
1= s ®
A=0
b) f satisfies the Holder condition ,‘
IS () =f ) < K [[x—yP, 2
K being the minimal Holder constant if and only if

sup f0° ({) = K
[{F3
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c) In particular, if f is subadditive and positively homogeneous of degree «,
then f is (globally ) Holder with exponent o if and only if | f(x)] < K ||x||*. In this
case

sup {|f ()l/ x| < 1} = sup {f(x)/lIx]| <1} = K.
Proof ;
a) By definition ({, v)eepi f0* means that (x+A(, u+ 4* v)eepi f for every
(x,y)eepif and 2> 0, ie f(x+A) <f(x)+4*v. Hence ({,v;)eepi f0* for
all vy > v, ie epif0* is really an epigraph and we obtain (1). From this

formula follows immediately the required homogeneity of f 0"
b) By a) we see that (2) holds if and only if

+G3>K=ili€%: ‘S_lI]:w ﬂi%:jﬂ:

[§l=1.A=0
= sup (f0) () = p (/0% (D).

c) obvious from b) and Lemma 2.1.

Lemma 2.3, If f is subadditive, positively homogeneous of degree o, 0 <o < 1,
and |f(x) < K ||x||* for all xe X, then [ is Holder and nonnegative.

Proof. Assume the contrary that there is XeX, X[ =1,f(X)<0. We
have 0 = f(0) = f (x—X) <f(X)+f(—X). So f(—x) > 0. Using Lemmas 2.1 and
22 it is not difficult to see that the function ¢g:R— R defined by
g ()Y f(tx) is Holder with Holder constant K = f(—X). Setting H = f(X)
and taking p> 0, g > 0 arbitrarily we have ¢* K—p* H < K (p+¢q)* or

(¢*+Mp)'"* < (p+9q), (3)

where M= —HK™'. Put p=1 and g = ([1/o] M)"*~!, where [1/«] is the
integer part of 1/a, in the left-hand side of (3). Then Taylor expansion yields

(g+M)'* > g+ M"*+1> q+1,
contradicting (3).

For f: X - R we call the following functional on X

J (xo+ Av)—f(xo)
A&t

£ (xo: v) % lim sup
A0

a directional o-Holder derivative of f at x,. Then f, (xo; ) is positively homo-
geneous of degree o. If f is locally Holder of degree o at x, then a straigh-
forward computation shows that f, (x,;-) is (globally) Holder of degree .
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Let ¢* be the set of all cofitinuous fuﬁcﬁ}onals @ on X which are
positively homogeneous of degree u, ¢ (— t)—*"—qo(x) and bounded in the
sense that @ (x) < K [l x]*.

DerFINITION 2.4. a-Holder subgradient (briefly o-subgradient) of functional f
at x, denoted by 4, f(x), is the set of all peg* such that ¢ (v) < f, (x;v)
for all veX. If d,f(x) # ¢ then f is called a-subdifferentiable at x.

RemArk 25. f 0 < B<a<y <1 and f, (x;v) is finite, then f;(x;v)=0 and
1, (x; v) is infinite. If fis a-subdifferentiable at x then is also f-subdifferentiable
at x and 0, f(x) = {0}. In particular, a locally Lipschitz functional (at x) f is
locally Holder of degree « and «-subdifferentiable (at x) for all ae(0, 1) and
2,1 (x) = {O}.

For f:X >R and a fixed >0 we define a transformation G° by
G (f)(x) L |f(x)Psgnf(x). We omit the easy proofs of the following
properties
a) if f(x) <g (x) then G°(f)(x) < G’ (9) (x);

b) for >0 G® (i) = 2’ G* (f);
) G (—f)= —G" (f);
d) G (G°(f) = .

If aisa real number we write G* a — lal® sgn a.

Now we prove the following properiies
¢) for Ac X, sup G® (f) (x) = G® (sup f(x));

xed

f) for 4 <X, mf G (f)(x)=G° (injf(x));
g) for a set U of functionals on X,

sup G’ W) (x)=G° (3:5 ¥ (x);
h) for a set U of functionals on X,
igg G’ W) (x)= G’ (mé ¥ (x).
Proof
e) By a) we have G" (supf(x)) = G’ (f)(x) for all x. So G’ (supf(x)) >
> sup G? (f) (x). Conversely, we see that G° (f)(x) < sup G’ (f) (x) and then
f(x) <G (sup G’ (f) (x)). Consequently, supf(x) <G'?(sup G°(f)(x)) or
G? (sup £ (x)) < sup G° (f) (x).
The proofs of f), g) and h) are analogous.

For @peg¢* we define |@|,= sup ¢(x). Of course || - |, is a norm. Denote
Ixl <1
XY Lin {p/3e X*, G* ¢ = ¢} we see that, for 0 <a <1, X* is a normed

space with the norm |-|, (if G*&=¢ then [o¢|.= ||é!|") and X* is a
subspace of ¢*.

To compare with the Lipschitz case and g-convexity let us recall some
notions.
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If a functional g is locally Lipschitz, then following Clarke a directional
derivative of g at X is

g (x'+ iv)—g (x')
A

i e v)% lim sup

and a generalized gradient of g at x is
g (x) & {Ee X*/E (1) <g° (x; v) Voe X},

A functional f is said to be semiregu!a_r at x if for all veX we have

lim sup LEHIHII AN _ S i0)—f).
J;_—l*(')] _ A ay A

Let ¢ be an arbitrary class of functionals on X. A set 4 < X is said to
be g-convex if A has the form {xeX/g;(x) <y, ¢;€6,7;€R}. 4 is called
g-closed if x, e, ¢ (x,)— @ (x) Ypeg implies xe 4. In particular if ¢ = ¢* let
us define for each xe X a functional x (¢) = ¢ {x). Then x is a linear functional.
We call the weakest topology in ¢* such that all xeX are continuous
X-topology. If U < ¢* is compact in X-topology we say that U is X-compact.
Since X is also a class of functionals on ¢* we can speak about X-convexity
and X-closedness.

ProposiTioN 2.6. Suppose that a locally Lipschitz functional g is semiregular
at 0 and ¢ (0)=0. Then G*(g), 0 <« < 1, is a-subdifferentiable at 0 and

(@) (G* (@) (03 v) = G* (¢° (05 ")) (v);
(ii) G* (99 (0) = &, (G* (9)) (©).

Proof. Set in this proof for brevity G*(g) = f.
(i) In view of the semiregularity of g we have

fGy . f(Av)
AT T
(g0
= jnf sup G* (9/2) () = G  jnf sup 47 )_
, A
=meEwgam)=@w%m»wL

(i) For ¢e€dg(0),veX we have E(v)<g°@0;v) and G*(&)(v) <
< G* (g” (0; ) (v) = £, (0; v), ie. G*(dg (0)) = 8, 1(0). [ |

The following example shows a case in which (ii) becomes an equality.

£0;0) =-Iln1lgup

: if x>0,
ExampLE 2-7. Let ¢:R—=R, g (x)= ‘I"C . I %ol
1 [sinx if x <O0.

Let o0 = 5 Then
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e B st gty . NP if x>0, .
S0 = 6H2 () () = {—[sin HY2 0% <0:
g isvlocally Lipschitz at 0 and dg (0)= {1}. fy2(0;v)=[v|'"?sgnv and
012/ (0) = G' (0g (0)) = {¢}, where o (v) = |o|"/* sgn v.
The semiregularity is really essential. Without it (ii) may not hold as.
shown by

x? sini if x#0,
ExampLE 2-8. Let g¢:R— R, g (x) = X

0 if x=0.
Obviously g is not semiregular at O Let o = 1/2. Then

£ U G2 () (x) = {!xl [sin (1/x)] sgn (sin 1/x) i.f x#0,
0 if x=0.

Then f,(0;0) =0, so d,,,/(0)= {0}. On the other hand dg (0)=[—-1,1]
and G''? (09 (0)) = {@/e (x) = |[Kx|"* sgn Kx, Ke[—1, 1]}, ie. GY*(dg (0)) =
2 012f(0).

If f is locally Lipschitz at x and semiregular at x, then f is 1-sub-
differentiable at x and df(x) = d, (f). If in addition x = R, then df(x)=
=0, f(x). If f is only locally Lipschitz at x, then f; (x;v) <f°(x;v) and
¢' > X*, so we cannot say anything about the relation between df(x) and

01 f(x).

ProrosiTiON 2-9.

a) d,f(x) is X-convex and closed.

b) If f is locally Holder of degree o at x with constant K, then
o], < K for all ped, f(x) and d,f(x) is X-compact.

Proof

a) The X-convexity is clear by definition. Now suppose ¢,€d, f(x) and
¢s—@l,—0. Then for veX one has ¢(v) = ¢ (v)— @, (V)+¢, (V) < [l@,—
— @l 1VI*+/f (x;0) <e |o|*+f, (x;v). Since & is arbitrarily small we get
o () <f, (x;v), ie d,f(x) is closed in d*.

b) For ¢ed,f(x) we have ¢ (v) <f,(x:v) <K |v]|* and also —¢ (v) =
=¢(—v) <f(x, —v) <K |v|* Hence —K [[v]|* <@ (v) <K |v|* and |o[, < K.

One easily sees the X-closedness of ¢, f(x). Then according to Alaoglu’s
theorem @, f(x) is X-compact. |

If f is not locally Holder at x but f, (x;v) < K ||v[|* then Proposition
2.9 is still true.

For 4 < ¢*, ve X we call

C(v; )% sup (g (v)/ped)

the support functional of A. If [ is locally Holder and «-subdifferentiable
at x then Proposition 2-9 yields
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C (v; 0, f (x)) = max {@ (v)/p€d, [ (x)}.

The following theorem will be important for our arguments later.

Tueorem 2.10. Let f be locally Héolder of degree o and o-subdifferentiable
at x. Then for ve X ;

C (v 8, f(x) = fa (x; v).

Proof. By property g) of transformation G° one has

C (16" (@S () = 6 (C (-, 0./ () ().
To finish the proof it suffices to verify

C (03 GV (0, (x))) = G (£, (x; ) ().
For the sake of simplicity the following notations will be used in the proof:
A4=G"(0,f(x),p)=G"(f (x;-)(v)) and S={xeX/|x|=1}. Assume
the contrary: that there exists vg€ X, |lvg]| = 1 such that r‘r;&x ¥ (vg) < p (vp),
we choose f satisfying rgg‘x ¥ (vo) < B < p(vy) and an arbitrary ned. Then
1 (ve) < B < p(vy). Since n and p are continuous there is §, 0 < § < 1 such
that n (v) < B < p (v) for all ve B (v,, 8). We now construct g: X — R as follows.
We define g (v) =5 (v) if vstB(vU,é]U(—B(uo,é)) and ¢ (vy) = . For ve
B (vo, P)\[vo) there is £,.0<t,<1 and 7= vy+0 [v—0v,l "' (v—1vy) such
that v = 0+1, (vo— ). Then we put g (v) = t, f+(1—1t,) n (v). For ve —B(v,,0)

there is ueB (vy, 0), v= —u and we take g (v) = —g (u).
To prove the continuity on X of g we have to show only the continuity
in B (vy, 0)U(—B (v, 0)). If v,€B(vy, 0) and & > 0, there is r, small enough

such that | (v)—n (vy)] < % for veB (v, ry). Then

lg (0)—g (0))| = [(1=6" [lo—vol) B+8"" =10l 1 (v)—
' —(1=07" |lvy=vol) B+87" [0y — ol 7 (v))] <
< |llo—=voll = llvs — ol 18161 +87" lo—voll In (©)—1n (0,)] +
+|llo—voll = vy = voll| In (v1)] 67" <
<67 oy ol (1B1+1n @) +In (©)—7 (o).
Put

! B if D=0,
D=06""(1Bl+In (w))), r= {min {ri,e/2D} if D #0.

We have |g (v)—g (v,)] < ¢ for all veB(vy,r). For the case v, e —B (v, )
the argument is similar. Thus ¢ is continuous.
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We define @:X — R by means of

loll g (e =t v) if 00,

@(v}z{o if v=0.

The conclusion of the theorem will follow if we can show @e4 (due to the
contradiction @ (vy) = p).

Since 4= {@ecgd'/O (v) <p(v),VveX} the following will have to be

checked
(i) ©(r)<pl(r) for veSs,

(i) @ (—v)= — O (v) for veSs,

(iii) @ (Av) = 40 (v) for >0,

(iv) © is continuous on X,

(v) 1@ (v)] <c o], ¢ being a positive number.

(ii) through (v) are evident. To prove (i) we have @ (v)=g¢g (v)=1, S+
+(1—t)n@)<p<p() for veB(vy,d)NnS. For ve —B (vy, 8) N S there is
ueB(vy,0)suchthat v=—u, @ (V) =¢g W)= —g W) = —(t, f+(1—1t,)n W) <
< —nWw=n(—u)y=n()<p(v). For the other elements v of § one sees
OW)=g=nk<p.

Cororrary 2.11 [12]. Let f be locally Holder of degree « and oc-subd;’ﬁ”eréntiabfe
at x. If

—f (x; —0) <0 <, (x, D),

Then there exists ¢ed, f(x) such that ¢ (v) = g.

Proof Using notations 4 and p(v) as in the proof of Theorem 2.10 and
putting f = G"* (¢) we see that —p (— ) < 8 < p (7). Without loss of generality
we may assume that ||p]|=1. If f=p(?), then by Theorem 210 f=
= max {if (D) e4}, ie. there is @4 such that =6 (7). If f= —p(—1),
then —f = p(—7)=max {y (—0)/y €4}, then there exists @e4 such that
—f=6(—0), so =6 (v). Now suppose —p(—0) < f < p(?). Then there
is ne 4 such that 1 (¢) < f < p (v). By an argument analogous to that in the
proof of Theorem 2.10 we can find ©®ed such that @ (v)= f. Hence
¢ (v)=G* (O (+) (v) is evidently a required functional. i

ProrosiTion 2.13. Let f be locally Holder and wo-subdifferentiable at x.
Let © be a X-convex subset of ¢*. Then 4,f(x) is contained in Q if
and only if

fu (x; v) < sup {@ (v)/@eQ}.
Proof ,The “necessary” is tautologous by Theorem 2.10. We show the
“sufficient”. Being X-convex Q has the form

Q= {ped/p (v) <P, veX, peR}.
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If some ¢, in d,f(x) were not in Q, there would be v, such that

®o (v o) > Pr, = sup {0 (v,)/@eQ} > 1, (x; v,,). Hence ¢,¢0,f(x), a contra-

diction. =
Now we give some criterions for o-subdifferentiability.

ProrosiTioN 2.13. If there exists a locally Lipschitz functional g such that

G (fy (x;-)) (v) = ¢° (x; v), then f is a-subdifferentiable at x and d,f(x) >

> G* (dg (x)). k]
The proof is evident and omitted.

ProrosiTioN 2.14. Let f be locally Holder of degree o at x. If f, (x:v)
satisfies one of the following conditions

(i) f,(x;v) is subadditive;

(i) G (f, (x;-)) (0 ¥ p (v) is convex,
then f is a-subdifferentiable at x and 4, f(x) > G* (dp (0)) for the case (ii),
where dp is subdifferential of convex functional p.

Proof.
(i) immediate from an appeal to Lemma 2.3.
(ii) taking e dp (0) one sees that

@ (0) 4 G* (&) () < G*(p) (v) = £, (x; v),
so that ¢ed, f(x).

ProrosiTion 2.15.
(i) If f is «-subdifferentiable at x, then for all ve X, we have

Ja (x5 0)+ 15 (x5 —0) 2 0. 4)

(i) If f is locally Holder at x and satisfies (4), then f is o-sub-
differentiable at x.

Proof.

() ped, f(x) implies @ (v) <f;(x;v) and —@ (1) = ¢ (=v) <[, (x; —0).
Adding two inequalities entails (4).

(ii) From (4) follows

0 O L (f (550)=f (3 —0) <fo (3 0)

for all ve X. Then it is plain that ¢ed¢* and ¢ed, f(x). |
Now suppose f;: X - R, i=1,2,..,n. Let
m(x) 4 max {f; (x)/i=1,2,..,n) (5)

and let I(x) stand for the set of the indices in {1,2,..,n} at which the
maximum in (5) is attained.
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Prorosition 2.16. If f;,i= 1,2, .., n, are locally Hélder and «-subdifferen-
tiable at x, then so is m and

8 m (x) = co, [0, f; (x)iel (x)},
where co, denotes X-convex hulls in_¢*.

Proof m is clearly locally Holder at x. For xeX,veX and A small
enough we have I(x+Av)<=1I(x). Indeed, if j¢I(x), then f;(x) < m(x).
By virtue of the continuity of m and f; we can take a neighbourhood
of x so that fj(y)<m(y) for all y in it and for all j¢I (x). If 4 is small
enough then x+ Av belongs to the mentioned neighbourhood and j¢1I (x+ Av),
so I (x+4v) = I (x). Therefore ;

m(x+ Av)—m(x) fik+A)—fi(x)

m, (x; v) = limsu = lim sup max
« (X3 ) 210 P e 210 P iel(x) A
) fi (x4 Av)—f; (x)
= max lim su i C(xtp) =
r'e.'{x)}{ I 10 ye 1;2;%3;(')(‘“ b6}

= max C(v;8,f; (x) = max max {o (V)/ped, f; (x)} <
< max [@ (v)/@eco, (O f; (x)), i€l (x)}.

Now Proposition 2.12 yields &, m (x) = co, @, f; (x), ie(x)}.
Conversely, for all iel (x) and veX we have

m (x+ Av)—m (x) e fi (x+Av)—f; (x)
A al o :

and so m, (x:v) =f;, (x;v). Then @, f; (x) = d, m(x) for all iel(x) and then

coy (0, /i (X), i€ T (x)} < 8, m (x).
ProrosiTioN 2-17. If f and ¢ are locally Holder and o-subdifferentiable
at  x. then :
0 (f+9) (x) = co, (0,1 (x)+8, g (x)).
(However, the left-hand side may be empty.)
Proof

(f+9): (x5 0) <[ (x5 1)+, (x; ) = C (05 0, f (x)) +
+C (v: 8, g (x) = max {@ (V) +¢ (V)/o+Yed, f(x)+0, g (x)} <
< max {0 (v)/@eco, (0, f(x)+7, g (x))}.

Now applying Proposition 2.12 yields the required inclusion. |
ProrosiTion 2.18. Let h:R— R, heC' and h'(f(x,)) = 0. Let f be locally

Hélder and a-subdifferentiable at x,. Then the superposition hf is o-sub-
differentiable at x, and
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0, (hf) (xo) = H' (f (xo)) 0. f (xo).

. Proof. Applying the mean value theorem we see that

llmLE“P hf (xo+ A;‘: —hf (xo)

= K (f(x0) fi (%03 0).

So hf is a-subdifferentiable at x;. Moreover

(hf ), (xg; ) = K’ (f(xn))fa (x0;0) =
= I’ (f(xo)) max {¢ (v)/@ €0, f(xo)} =
= max {y () e’ (f(xo)) 8, (xo)}- =
ProrosiTion 2.19. If f has a local minimum at x,, then f is a-subdifferentiable
at xo and 0ed, f(x,).
The proof is evident and omitted.
For a, bex we denote [a, b] = {x/x =a+t (b—a),te[0, 1]} and (a b) =
= {x/x =a+t(b—a),1€(0, 1)}.

ProrosiTion 220. Let Q< R be an open subset and f:Q2— R be locally
Hélder and o-subdifferentiable at every point in [a, b] < Q. Then there exist
ce(a, b) and @ed, f(c) such that ¢ (b—a)=

Proof 1. If f(a) = f(b) putting g (t) =f(a)+t (b—a), te[a, b], one sees that
g (0) =g (1) = f(a) = f(b) and g is continuous on [0, 1]. We have three following
possibilities.

(i) If g(t)=const, te[0, 1], we take te(0, 1) arbitrarily. Then setting
¢=a+t(b—a) we have f,(c;b—a)=0. Analogously f,(c;a—b)=0. By
Corollary 2.11 there is ¢ €d, f(c¢) such that ¢ (b—a)=

(ii) If g attains the maximum at some t€(0, 1), then

05 9E+A)—g@ _ fla+@+4) (b—a)—f(a+i(b—a)
Ar At*

Therefore f, (c; b—a) <0, where ¢ =a+1t (b—a). In a similar way we get
fx(c;a—b) <0. Both of two last inequalities cannot be strict thanks to
Proposition 2.15. Hence ¢ (b—a)=0 for all ¢ped, f(c).

(iii) If ¢ attains the minimum at some f€(0, 1), then very much like
above we have f,(c;b—a)>0 and f,(c;a—b)=0. So —f,(c;a—-b) <0<
<f, ($; b—a). By Corollary 2.11 there is ¢€d,f(c) such that ¢ (a—b)=0

2 If fla) £ £(b), we set B()=f()—fB)—L (“) i (b)( —a). Then h(a) =
h(b) = f(a)—f(b). According to above there ex1st Le(u b) and gec, hic)=
= d,f(c) such that ¢ (b—a)= |

CoroLrary 2.21. Let f be locally Hélder, w-subdifferentiable at x, and
attain a local maximum at x,. Then
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aaf{x()) =; {0}’
S (xo+ Av) —f(xo)‘
A ’

Ja (0, v) = lim

Let Y be another normed space and I':X —2' be a multifunction.
I' is said to be closed at x, if for each pair of sequences {x,} = X and
{yo} €Y with the properties x,— Xq, yo€I (x,), yu— Vo it . follows that
vo€I (xo). I' is called upper Hausdorff semicontinuous (u.H.s.c.) at x, if for
each 0 >0 there is a neighbourhood V(x,) of x, such that xeV(x,)
implies I' (x) = B (I (x,), 8). It is known that if I' is uHsc at x, and
I' (xo) is closed then I' is closed at xo. I' is said to be locally Lipschitz
at xo if there is a neighbourhood U (x;) of x, and K >0 such that,
for x1, x,€U (xo), H (I' (x4), I' (x3)) <K [x;—x,], H (-,-) being the Hausdorff
distance.

Let f: X x Y= R be a functional.

We are now interested in Holder properties of the following functional

ST inf f(x, )

This functional is an important object of investigation in parameter
optimization and has been studied by many auvihors (and is called in varying
ways: marginal function, extreme value function, primal function...). Especially,
its continuity (or semicontinuity) has been extensively considered.

Concerning this functional we shall prove here merely the following
proposition.

ProrosiTion 2.22. Assume that

(i) I' is locally Lipschitz at x, (with K and U (x,) as above) and I (x,)
is compact;

(i) the mapping y— f(x,y) satisfies the uniform Lipschitz condition:
there are P> 0 and > 0 such that for xeU (xo) and y;, y,€B (I" (xo), J)

S, y)—fx, y2) < P |y —yl:

(iii) the mapping x — f(x, y) satisfies the uniform Holder condition: there
is L> 0 such that for x;,x,eU (x,) and yeB (I' (xq), 9)

S (x1, Y)—f (X2, y) < L|x1 —x2f".
Then f is locally Holder of degree o at x,.

Proof. Since I' is locally Lipschitz at x, there is a neighbourhood W< U (x,)
of x, with diameter smaller than 1 such that I' (x) = B (I (x,), 8) for xe W.
Let x,, x,eW. For each y, el (x;) there is y, el (x,) such that ||y,—y;| <
< K ||x;—x;||. One has

S, ya)=f (X1, y1) = fx2, ya)=f(x1, y2) +f (x1, y2)—f(x1, y1) <
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< Lixz=x1 "+ P lya=yill < Llxz—x1[*+PK || xz— x| <
S (L+PK) llx;—x4]|*.
So,
ST (x3) < f(xy, y1)+(L+PK) [|x3— x|
for every y,er (x,). Consequently

IT (x3) S T (x1)+(L+ PK) [|x— x4 ||*. W

3. Applications in optimization

The optimization problem to be now considered is

minimize ¢, (x),
g:(x)<0, iel¥ {1,2,..,n}, - (A)
hj(x)=0, jeJ<{1,2,..,m},

where x varies in a Banach space X, g,,9; and h; are locally Holder of
degree o, 0 <a < 1.

Since [x—y|*,0<a <1, is a metric and X equipped with it becomes
a complete space. we get the following version of Ekeland’s variational
principle [9].
- Lemma 3.1 [9]. Let F:X —R be lower semicontinuous and bounded from
below. Let C be a closed subset of X. Let X in C satisfy F (x) éltelgb (x)+&,

where & > 0 is arbitrary. Then there exists ( in C such that

I=2l* < Ve, (6)
F(x)+/¢ |x=C|*>F() for all x in C. (7)
For a subset 4 < ¢* we have (see the lemma in [16])
co. A= {ped/p(x)<supy(x)VxeX}. (8)
Wed

THEOREM 3.2. Suppose that g4, g; and h; are a-subdifferentiable in a neighbourhood
of X. If X solves Problem (A) locally and the mappings x— 0, q, (x),
X =0, g; (x) and x — 8, |h; (x)| are u.H.s.c. at X, then three following equivalent
statements hold:

a) Oeco, | (0.9: (UG, h; (X)) £ co, P (%):

ielU}0)
jed

b) max {¢ (x)/peP (X)} =0 for all xeX;
¢) C(x;P(x) =0 for all xeX.

Proof. The equivalence between a) and b) is trivial by (8) and between
b) and c) is clear by the definition of support functionals. Now starting by
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an idea of Clarke we prove a). Let ¢>0 be given. Define F: X >R by
F (x) £ max {go (x)—go (%) +¢, g: (x), |h; (x)|, 0/iel, jeJ}.

Obviously F is locally Holder of degree «, bounded from below by 0 and
F (x)=e¢. On account of Lemma 3.1 there is {€ X satisfying (6) and (7). Of
course F ({) > 0. For otherwise { would solve (A) and X would not, since
9o (£) < go (X).

An easy computation shows that d, |- |* (0) is contained in the unit ball
B in ¢*. By Proposition 2.19 and (7) we obtain

Oeco, (0, F (C)+\/E B).
Then an appeal to Proposition 2.16 yields
0Oeco, (P (O)++/¢ B). 9)

By Lemma 3.1 { depends on ¢ and {—» X as ¢—0. So P(g)-i-\ﬁB‘ifQ(e]
is a multifunction. Q(-) is uHsc at ¢e=0 and so is co, Q(-). Being
a X-convex hull co, Q(0) is closed. Hence co, Q(-) is closed at ¢=0.
Thus (9) gives 0eco, Q (0) = co, P (X). i

The theorem extends Clarke’s Lagrange multiplier rule [3] to problems
with locally Holder data. However, in the case & =1 and the functionals
involved in the problem are semiregular at X, our rule is weaker than
Clarke’s one because

co {U(8g; (X)U2lh; (X))} < cox {U(8; g; (X)U8,4]h; (R))}.

In particular, if an addition X = R, then the two rules coincide.
The hypothesis on the u.H.s.c. in Theorem 3.2 plays a crucial role. But
for the following problem without equality constraints

minimize g, (x),
g: (x) <0, iel, (B)
xelQc X,

where g, and g; are locally Holder, Theorem 3.3 below allows to omit this
hypothesis.
Note that if f is locally Holder at x, then

Let Qc X and x,eQ. We recall the definition of the tangent - cone
of Q at xq:
T(x0/Q) YL {ve X/ there are x,€Q and oy > 0 such that

X = Xo, 0 {Xx—Xo) = v as k— o0}.

Evidently T(x,/2) is a closed cone.
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Tueorem 3.3. If X is a local solution of Problem (B), then

(1) go, (X;0) =0 for all ve T(x/Q) satisfying the condition g, (x;v)<0
Vied (%) £ {iel/g; (X) = 0};

(ii) if g;, i€l, are w-subdifferentiable at X then

C (v, R (X)) =0
for all veT (%/Q), where Ry (X)L ) 6, 4:(%).

iedixiuio!
Proof
(i) Let ve T(x/Q) satisfy g, (X;v) <0VieJ (X). If ieJ (X) one has

0 ; lim Sup gi (x + ‘A"v)-—gi (x) = lim Sup gi (x F ’ka) .
10 i 210 A%

=

So for all sequences y,— 0 and v, — v we may assume ¢; (X+7, v) <0 for
k large enough. If ie\J (X) then g;(X) <0 and by continuity we have for
mentioned above 7y, v, k g; (X+7, 1) <0 as well. On the other hand, if
ve T(x/Q) there are o, >0 and x,€Q, x,— X such that o (x;—X)— v.
Set v L o (x,—X), ie of ‘v +X=x,Q. Letting o, — +o0 we get for k
large enough and iel g;(X+oy ‘1) <0, ie. X+oy ' v, is a feasible point.
Hence
Goa (X v) = limsup [go (X+oy ' 0)—go (X)] ok > 0.

[ d )
g

(ii) By (i) we i'lave for ve T(x/Q) |
0< max g, (%;v)= max C(v;8,: (X)) =C (v; Ro (X)). - ]

ied(D)U]0} ied (U0}
ExampLE 3.4. Consider the problem

go (x) = |x— 1|2+ |x—2|"/? sgn (x —2) — min,
g1 (x)=x—1"?-1<0.

The solution of this problem is evidently X =1, g, (X)= —1. Direct
calculations supply goy/2(1;0) = [p]'/, 84,290(1) = {lax|''* sgn (ax)/la| < 1} and
C1j29o (1) = 042 g1 (1). Thus 0 belongs to ;3 go (1)U 02 g1 (1).

On the other hand, functionals gq,g; are not Lipschitz at Xx=1. So
Clarke’s necessary condition cannot be applied. In general, the formerly
known necessary conditions based on linear approximations are not effectively

used because of the behaviour of g, and g, near the point X = 1.

CoroLLary 3-5. If Q< X is convex and compact and X is a local solution
of (B), then

i) min (X x—Xx)=0;
(1) nin max gix (X3 x—X) = 0;
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(ii) if g;, i€l, are a-subdifferentiable at X, we have

_min @rgeao.é} ¢ (x—Xx)=0.

In “bad” cases the objective functional g, may not play any role in the
necessary conditions given by Theorems 3.2 and 3.3. So these conditions
speak only about the constraints of the problems. To avoid this situation
we introduce and consider a class of so-called normal problems.

Problem (B) is said to be normal if whenever X is a local solution,
there exists ue T (X/Q) such that C (u; R (¥)) <0, where R (X)= | | 4, g; (%).

(%)
Remark 3.6. Suppose that all g; satisfy the uwuseful condition ((Uj) in
[11],[18]) at X: there exists voeT(X/Q) such that g7 (X;vo) <0 for all
ieJ (x). Then Problem (B) is normal (x = 1). For denoting 5 (X) = {ve T(X/Q)/
Jix (X, v) < 0VieJ (X)} we see by definition that Problem (B) is normal if and
only if 5 (X) # ¢ for each local solution X.

ProrosiTion 3.7. If Problem (B) is normal and X is a local solution, then

QNQ +#4,
where Q = {x/g; (x) < 0VieJ (x)}.

Proof Suppose QN Q =4¢. For each veT(x/Q) there is {x} = Q, x;, > X,
and t, > 0 such that t, (x,—X)— v. Setting v, = t; (X, —X), Xy = t; ' ), +X€Q,
one sees the existence of ieJ (X) such that g;(x,) > 0. Hence g;, (X;v)=0
and n(X)=¢. Thus (B) is not normal. - =

Tureorem 3-8. If in Problem (B) Q = Q and
W)Y {ve X/gi, (X:0) < 0 Viel (X)) # ¢

for each local solution X, then (B) is normal.

Proof Since n (X) = W(X)N T(X/Q), if we can show that W(X) < T(x/Q), ie.
n (X) = W(X), then the proof is complete. Now let ve W(X). Because g;, iel
are locally Holder, we have for ieJ (X)

i (X+A4 ” i (X+4
gi ( : Av) = T 8D g (’C‘*':k Uk)_.
410 A3

o

0>g;,(X;v)=lim %up
Al

Hence we can choose sequence 4, |0 and v, — v satisfying g; (x+ /4, v;) < 0.
Then x+ 4, v,eQ < Q. Moreover X+ /; v, — X. So, by definition ve T (X/9Q).
[ ]
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Subgradienty Holdera i ich zastosowania
w optymalizacji

Wprowadzono subgradienty Holdera jako uogdlnione @-subgradienty z klasa funkcjona-
low @, dla ktorych mozna stosowac analize holderowska, 1 rozwazono ich wlasciwosci
potrzebné przy zastosowaniu w zadaniach optymalizacji. Wyprowadzono warunki konieczne
optymalnosci i warunki normalnosei dla zadan z funkcjonalami lokalnie hdlderowskimi.
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Praca zawiera wyniki zwigzane z przyjeciem do aproksymacji w slabym sensie klasy
funkcjonaléw zloZzonej z prostych funkcjonaléw nieliniowych zamiast funkcjonaléw z prze-
strzeni dualnej X*. Wyniki uzyskano bez zaloZenia, ze wystgpujace w sformulowaniu zadania
funkcjonaly spetniaja warunki Lipschitza.

‘Cyﬁrpamlemm Tl'onbnepa W MpHJIOKeHHS B ONTHMH3ANHH

Mzt BoauM nonsTue cybrpaauent Donbaepa kak obobuieHHbIH @-cyOrpaHeRT ¢ KiaccoMm
¢ ¢ynknnoHanos, obiagaronmx ceoiicTeaMK, CBA3AHHBIMH C aHaau3oM [onpnepa n paccMoTpEM
€ro HYXHbiE CBOHCTBA Ul WCCAENOBaHNA 3ajay ontuMusaumi. Mel fokasanu HeoOXoammbie
YC/IOBHS ONTHMH3ALMKM H YCIOBHA HOPMAJbHOCTH AnA 3adau ¢ (ysxkumonHanamu [onbaepa.

Hosuska pe3yibTATOB COCTOMT B TOM, HYTO Mbl B35 [OBOJBHO NPOCTBIX HEJIH-
HElHBIX (YHKIMOHAIOE BMECTO CONPMKCHHOTO TPOCTPAHCTBA X* Ul annpoKcHMauwn ¢ys-
KIMOHANOB W 9TO (WHKUMOHAJEL, ONpE/IENSIONME 3aMaYd HEe YAOBICTBOPSIOT YCIOBHAM
Jlunumina.

Control and Cybernetics







