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In this paper the problem of controllability of systems is considered under assumptions
of linearity of operators and spaces. Presented systems are described by right invertible
operators and their initial operators. The author generalizes definitions of reachability of states
~and controllability of systems introduced by Nguyen Dinh Quyet (cf. [1]). in the cases of
systems when resolvent operators need not be uniguely determined. It is shown that properties
of reachability and controllability depend on resolvent operator. The problem is illustrated
by some examples.

1. Preliminaries

Let X and Y be linear spaces over the space .# of scalars. Denote by
L(X - Y) the set of all linear operators A with domains dom 4 being
linear subsets of X, and with values in Y. Write: Ly (X —» Y)= {4deL(X - Y):
domA = X}, ker A= {xedom A:Ax=0} and im A=Adom A for Ae
eL(X—Y).

An operator DeL(X — Y) is said to be right invertible if there exists an
operator Re L, (Y— X) such that RY = dom D and DR = Iy, where Iy is the
identity operator on the space Y. The operator R is called a right inverse of the
operator D. Denote by R, the set of all right inverses of the operator D.
The set of all right invertible operators belonging to L(X — Y) will be
denoted by R(X - Y).

The set ker D, where DeR (X — Y), is called the space of constants for D,
so that every element zeker D is called a constant for D.
In [5] there is proved the following property of right invertible operators:

ProperTY 1.1. DeR (X — Y) if and only if codim D = dim ¥/D dom D =0.

It means that an operator DeL(X — ) is richt invertible if and only
il the operator D maps its domain onto  * space )
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An operator DeR (X — Y) such that ker D = {0} is invertible, ie., there
exists only one right inverse which is simultaneously a left inverse. The kind
of invertibility of any linear operator depends on its considered domain.

An operator FeL(X — X) is said to be an initial operator for D, if it
satisfies: dom D = dom F, F> = F, F dom F = ker D. Denote by Fj the set
of all initial operators for D. For any initial operator FeFj, there exists an
unique right inverse Re R, and these operators are connected by a formula:
F=I1—RD on dom D. Let us remark that ker Fndom D = RY. '

Let Y, be a linear subspace of Y, ie. Y, =Y. Let us consider the
following system:

Dx = Ax+y (1)
Fx = xq (2)

where DeR (X — Y;), ker D # {0}, AeL(X—Y), domD<cdom A, FeF,,
ye(D—A)dom D, x,eker D.

In [3] the following properties of solvability of the system (1)2) are
proved.

Tueorem 1.1. Let DeR(X - Y;), AeL(X - Y),dom D < dom A. Then for '
any operator ReRy,, ye(D— A) dom D if and only if there exists a constant
zeker D such that y+Aze(I—AR) Y;.

TueoreM 1.2. Let DeR(X - Y)), AeL(X > Y), domD < dom A, ye(D— A)
dom D. The general solution of the equation (1) is given by
{x =R[R*(y+Az,+Az)+s]+z,+z:s€ker (I—AR),
: zeker D, Aze(I— AR) Y,},
where zy is a constant determined in Theorem 1.1. ReR,, R"eR;_ g for

I—AReL, (Y, = Y). The general solution is independent of the choice of right
inverses both R and R*.
The operator I — AR appearing during the decomposition of the system
" (1)+2) need not have an uniquely determined resolvent.

~

THeoreM 1.3, Let DeR(X—=Y,), AeL(X - Y),domD cdomA,Y, <Y, Fe

€ Fp, where F corresponds to ReR).

1. For any pair (y, xo)€(D— A) dom D x ker D, the system (1){2) possesses an
unique solution if and only if A ker D = (I—AR)Y; and ker (I—AR) = {0}.

This unique solution is given by x = R(I—AR)™' (y+ Ax)+x,.

2. If Aker D= (I—AR) Y, and ker (I—AR)# {0} on Y;, then for any pair
(v, xo)e(D—A)dom D x ker D the system (1){2) possesses more than one
solution. These solutions are given by x = R [R” (y+ Axq)+5s]+x,, S€
eker(I— AR), where R*€R;_ 4g, I—AR€Ly(Y, - Y), R* is arbitrarily fixed.
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3. If Aker D & (I—AR) Y,, then there exist pairs (y, xo)€(D— 4) dom D x ker D
Jor which the system (1)2) has no solutions.

2. Controllability

Let U be a linear space over the field & of scalars. In this section we
consider the problem of controllability of the following system:

Dx = Ax+Bu (3)

Fx = xq 4)

where DeR(X — Y)), ker D # {0}, AeL(X—-Y),domDcdomA, Y, cV,

BeLy(U—Y), BU =(D—A)dom D, FeF,, F corresponds to ReR,,, A ker D
< (I-=AR) Y,ueU and x,eker D.

Denote by @ the multi-valued mapping, @: ker Dx U — 2" defined as
follows: :

® (xo, u) = {R [R* (Bu+ Axo)+s]+x,, seker (I—AR)}

where R*eR;_ 4 is arbitraily fixed.
It is easy to show that the set @ (x,,u) is independent of the choice
of R*. If ker (I— AR) = {0}, then the set @ (x,, u) contains only one element.
In the sequel X will be called the space of states, U will be called the
space of controls and ker D will be called the space of initial states.

DeriniTioN 2.1. The state XeX is said to be reachable from the initial
state xpeker D, if there exists a control ueU such that xe® (x,, i1).

If ker (I—AR) # {0}, Definition 2.1, means that
Jite UY R*eR;_ 4z 3Zeker (I— AR)
X = R [R* (Bii+ Axo)+Z] +x,
Denote by @ (xo) = | @ (xo, u). The set @ (x,) is a collection of all reachable
uell

solutions from the given initial state x, under a fixed space of controls.
By properties of solvability of systems (3){4) we obtain.

ProperTy 2.1. Let the system (3)H4) be given. Then for any x,eker D,
@ (xo) = dom D.
Let D* denote the k-th superposition of D.

Tueorem 2.1. Let the system (3)H4) be given. Suppose that Y=Y, =X,
BU = (D— A) dom D* and A ker D = (I— AR) dom D*~ ', where k > 1 is a fixed
integer. Then

? (xo) = (I—F*)dom D* @ FAdom D
where FAeF;_ 5, I—AReLy (Y, = Y).
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REMARK 2.1. If ker (I— AR) = {0}, then FA =0 on Y; and thesis of Theorem
2.1 takes form

@ (xo) = dom D*

Next the symbol A* will denote an algebraic adjoint of the operator
AeL(dom A—Y), ie, A*eLy(Y* - (dom A)*), (4* ¢) (x) = ¢ (Ax) for any
xedom 4 and @eY* .

THEOREM 2.2. Let the system (3}H4) be given.

1. Suppose that ker (I — AR) # {0} and R e R;_ 4p. If ker (RR* By* = {0} then
for any xocker D, @ (x,) = RY, ® {x,} _

2. Suppose that ker (I—AR) = {0}, ker (B(I—AR)™* Bf* = (0} if and only if
for any x,eker D, @ (xo) = RY; ® {x,}.

Proof. Let xoeker D be arbitrarily fixed. Since dom D = RY, @ ker D, the

condition BU < (D— A) dom D implies RR* BU < {x = RR* [(I— AR) t— Az]:

teYy, zeker D}. Then ker (RR* B)* = {0} if and only if for any teV,

and zeker D, there exists a control ueU such that RR*Bu= RR*[(I—

—AR)t—Az]. If we take z=x, and s=F*t, where F*=[—R*(I—AR)

we obtain that for any t€Y; there exist ue U and seker (I — AR) such that

R [R* (Bu+ Ax)+s]+xo = Rt+x,. Finally, @ (x,) = RY; @ {x,}.

Now let ker (I—AR) = {0} and @ (x,) = RY; @ |x,}. Then for any x,eker D

and teY;, there exists ue U such that R (I—AR)™ ' (Bu+ Axy)+xo = Rt +x,

or R(I—AR)"*Bu=R(I—AR)"'[(I—AR)t—Ax,]. Hence, ker (R (I—

—AR)™! B)* = {0} -

Let us remark that the set RX @ {x,} is the greatest set reachable from

xg€eker D.

Now let F; be an initial operator for D such that F, # F.

DerinitioN 2.2, The state x, e ker D is said to be F; — reachable from the initial

state x,eker D, if there exists a control ueU such that x,eF; @ (x,, u).

The state x; will be called a final state.

DeriniTioN 2.3. The system (3)4) is said to be F; — controllable to 0 if
for every initial state xoeker D,0e® (x,)

DeriniTioN 24. The system (3)4) is said to be F, — controllable if for
every initial state xoeker D, F; @ (x,) = ker D.
Obviously, F; — controllability implies F; — controllability to 0.

TueorREM 2.3. Let the system (3)4), Fy€F, and R*€R;_ i be given. If the
system (3)«4) is F; — controllable to 0 and F, (RR* A+1I) ker D = ker D then
the system (3H4) is Fy — controllable.
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Proof. At first we prove that any x;eker D is F; — reachable from 0.
Indeed, by F; — controllability to 0, for any x,eker D there exist uoeU
and sy eker (I— AR) such that 0 = F, [R (R* (Buy+ Ax,)+ o) +x,]. By second
assumption there exists X, such that F; (RR* A+1I) X, = x;. Next if we take
Xo= —X, we obtain F; [R(R*(Buy+A0)+s0)+0] =x,. But for any x,
there exist # and § such that

F, [R (R* (Bii+ Axq)+38)+x0] = 0

Then, if we substitute u = uo+ i aand s = so+3§ we obtain thesis, ie., for any
Xo, X3 €ker D there exists ue U and seker (I — AR) such that F, [R(R*(Bu+
+ Axo)+ )+ Xo] = x;. Finally x,eF; @ (x,) [ |

In Section 3 there will be presented an example showing that the
condition F; (RR*A+I)ker D =ker D need not be necessary for F, —
controllability.

THEOREM 2.4. Let the system (3)+4), RAeR;_ 4z and F,eFy, F, # F be given.

1. Suppose that ker (I—AR) # {0}. Then, if ker (F, RR* By* = {0}, the system
(3)H4) is F; —- controllable

2. Suppose that ker (I — AR) = {0}. Then ker (F; R (I—AR)™' B)* = {0} if and
only if the system (3)44) is F, — controllable.

Proof. F;:RR* BU — ker D. The condition ker (F; RR* By* = {0} is equivalent
to F; RR” BU = ker D, provided F, # F. By the condition BU < (D— A) dom D
we obtain R*BU = dom (I—AR) = Y;,. Then F, RY, =ker D, ie, for any
~ x,eker D, there exists te Y; such that FRt = x,. Since F; RR*(D— A)dom D =
=ker D, then for any t=Y; and zeker D there exists ueU such that
Fy (Rt+2) = F, (R (R* (Bu+Az)+F* t)+2), where FAe F;_ 45, FA = I—R*(I -
— AR). By the following substitution: x, = x; —x, and z= x,, where x,,x; €
eker D are arbitrary, we obtain F , (R (R* (Bu+Ax0)+s)+xo) = x,, where
s=F*t and F; Rt = x;—x,. Hence, one part of the theorem is proved.
If we now assume that ker (|—AR) = {0} and the system (3)-(4) is F,
controllable we have that for any x,, x, eker D there exists ueU such that
F; (R(I—AR)™ ' (Bu+ Axo)+xo) = x;. In particular, for x,=0, F; R(I—
—AR)™" Bu=x,. Then F; R (I—AR)™"' BU = ker D and finally ker (F, R(I—
—AR)™! B)* = {0} . z

3. Examples

ExampLE 3.1. Let X = C, [0, T] over the complex field C of scalars, 0 < T'< c0.
The following system describes the linear differential stationary system by the
right invertible operator

Dx = Ax+Bu (5)
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Fx = x, (6)
where xeX, x () = [x; (t), ..., X, )17, u () = [1; (1), ..., 4, (€))7, X0 =[X01, .-

wes Xon)"s A = [@;Juxn B=[b;jluxn A and B are constant matrices, D:-g—,
(FX) (1) = x (to), to€[0, T], U = X. {

We are interested in existence of a control u such that at the time
t,€[0, T] solutions of (5H6) satisfy the condition x (t;) = x;, for a given
Xy = [X11, s X1n]- Let us define F, as follows: (F; x)(t) = x (t;). Then we
obtain the problem of F, — controllability of (5)+6). The operator I— AR
is invertible and by Theorem 24. the system (5)6) is F, — controllahle
if and only if ker (F; R (I—AR)™' B)* = {0} where the operator R is a right
inverse of D corresponding to F. This takes place if and only if
Fy {x=R(I—AR)" "' (Bu+ Axo)+xo:ueU} = ker D.

This last equality holds if and only if the rank of the matrix
[B,AB, .., A" ! B] equals n. This corresponds to Kalman Theorem of
controllability for the differential linear stationary systems.

ExampLE 3.2. Let X =C,[0,T] over C. We consider the system (56)
with A:aii=a3, =0, @13 =837 = a, B:byy = b33 =0, bys = bsy = b, a, bek.
We are interested in satisfying, by solutions of (5)-6), the condition F, x = x;, i
where (F, x) (t) = [x; (t1), x2 (t2)] t1,12€[0, T]. It is easy to show that the
system is F, — controllable to 0 and F,(R(I—AR)™' A+I)ker D =ker D
holds. By Theorem 2.3 this system is F, — controllable.

ExampLE 3.3. Let X = (s) be the space of all real sequences x = |x,}:1,
over the real field R. We consider the system (3){4) where operators are
defined as follows: Dx = {x,41}ix1; FX =Y,y = {Jyu}ne1, V1 = X1, Yo =0 for
n>2; Ax=g, v={015% 0 =X, Gp=X-i dor nz2; B=] on
Uis{x = {5)00% =0} %= FouleysXp1 =€, %0, =0 fof n=2. Lé
us consider the initial operator for D defined as follows: Fy x =y, y = {yu}n=1,
Y1 =2X3,Y,=0 for n>2. ker (I-AR)= {-’C = {Xufnt1:X2041=C, X2442=0
forn>0,CeR}, Aker D = (I—AR) X. Let us take the following right inverse
R# defined on (I—AR) X:R*x=y,y={yutP1s 1 =0, yu= X, +X,-2, 1=
>2,x,=0. The following holds: F,(RR* A+1I)ker D= {0} but the system
(314) is F, — controllable. Indeed, for any x, it is sufficient to take u =0
and s= {8,}i%1, Sans1=C1,S2442=0 for n>0,s, =0 in order to fulfil
the condition Fyx=x;,x; = [x}}i,,x] =Cy,xp =0 for n>2, for any
x;eker D.

ExampLE 34. Let X = C ([0, T]x [0, T]) over the complex field C of scalars,
0 < T< oo. Let us consider the following partial differential system

2

%x(t,s)= u(t,s) (7)
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x(t,0=h(), x©0,s)=g(s) (8)

where h(0) =g (0), h,geC' [0, T]
We are interested in the existence of such continuous functions u (t s) for
which solutions of system (7)+8) satisfy the conditions

X (t,80) =hy (1), x(to,5)=¢1(5) -~ ©)

where h, (to) = g, (So), hy,g,€C" [0, T], 5o, to€[0, T] under the assumption
that functions h, g, h,, g, are arbitrary.

Let us notice that the system (7)+8) can be described by right invertible
operator and the considered problem is the question about F, — reachability.

Indeed, let us denote
2 A2

D= 2500 dom D = {xeX é‘L — x (t, 5) exists and is contmuous}
(Fx)(t,s)=x(t,0)+x (0, 5)—x (0,0), FeF,
DeR (X - X), ker D = {h(t)+g (5);h,geC" [0, T]} # {0}
(Fy x) (£, $) = x (¢, So)+x (o, X)—x (g, So), Fy = Fp
Then the system (7)«8) and the condition (9) take form:

Dx=u (10)
Fx =X, (11)
Fl X =X (12)

where x, (t,8)=h(t)+g (s),x, (t,s)=h; ()+g,(s),U=X,A=0,B=1 and
additionaly h (0) =g (0), hy (t5) = g1 (50).

If there were not any additional conditions on functions h, g, h; and g,,
then the problem (12)+14) would be a F; — controllability problem. For such
defined systems the condition F; (RR* A+ 1) ker D = ker D is fulfilled for any
F,eF,. Hence, by Theorem 2.3. for proving F; — controllability, it will do
to verify F; — controllability to 0. It means that it will do to determine any .
Xyeker D and a control fie U satisfying F, (Rii+X,) = 0. But it is easy to
show that such controls do not exist, in general. Hence, the system (10)H11)
is not F, - controllable. On the other hand it is easy to show that for
any Xxg(t,s)=h(t)+g(s), such that h(0)=g(0) and for any x,(t,s)=
= hy (t)+g, (s) such that h, (t,) =g, (so), the state x; is F; —reachable
from xq.
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Sterowalnos¢ systeméw liniowych z niejednoznacznie
okreslonymi rezolwentami

W pracy rozwazono sterowalno$¢ systemow przy zaloZeniu liniowosci operatorow 1 prze-
atrzeni. Omawiane systemy sa opisane przez operatory majace prawe odwrotnosci i przez ich
operatory poczatkowe. Uogdlniono definicje osiagalnosci stanow i sterowalno$ci systeméw
zaproponowang przez Nguyen Dinh Quyet na systemy, w ktérych rezolwenty nie sag
jednoznacznie okreslone. Wykazano, ze wladciwosdcl osiggalnosci i sterowalnosci zalezg od
rezolwent. Pracg zilustrowano przykladami.

anannﬂemocn, JIHHefiHBIX CHCTeM C HeOHO3HAYHO
Onpeae/IeHbIM pasperiarolHM onepaTopomM

B pabote paccMOTpeHbl CHUCTEMBl ONHCAHBI JIHHSHIULIMH oONepaTopaMu B JiHHEHHBIX
npocTpaHcTBax. Aprop 0000u@eT NOHATHA JOCTHXHMOCTH COCTOSHMI M YNpaBiseMOCTH
CHCTEM Ha CIywall Korjla paspeiarollinii onepartop onpeseineH Heoaxoznauno. [Toxazamo uto
YOpaBiasSeMOCTs M AOCTHKMMOCTH 3aBHCAT OT pazpemaiomero onepatopa. Ilpobremy npo-
WUTFOCPHPOBAHO MPHMEDPAMI.



