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In this paper the problem of controllability of systems is considered under assumptions 
of linearity of operators and spaces. Presented systems are described by right invertible 
operators and their initial operators. The author g;eneralizes definitions of reachability of states 

. and controllability of systems introduced by Nguyen Dinh Quyet (cf. [1]). in the cases of 
systems when resolvent operators need not be uniquely determined. It is shown that properties 
of reachability and controllability depend on resolvent operator. The problem is illustrated 
by some examples. 

1. Preliminaries 

Let X and Y be linear spaces over the space ff of scalars. Denote by 
L(X--+ Y)- the set of all linear operators A with domains dom A being 
linear subsets of X, and with values in Y. Write: L 0 (X--+ Y) = {AEL(X--+ Y): 
dom A= X}, ker A= {xEdom A:Ax = 0} and im A= A dom A for AE 
EL (X--+ Y). 

An operator DEL(X--+ Y) is said to be right invertible if there exists an 
operator REL0 (Y-+ X) such that RYe dom D and DR = Ty, where ly is the 
identity operator on the space Y The operator R is called a right inverse of the 
operator D. Denote by Rv the set of all right in verses of the operator D. 
The set of all right invertible operators belonging to L(X--+ Y) will be 
denoted by R (X --+ Y). 

The set ker D, where DER (X--+ Y), is called the space of constants forD, · 
so that every element z E ker D is called a constant for D. 

In [5] there is proved the following property of right invertible operators: 
I 

PROPERTY 1.1. DER (X--+ Y) if and only if coJ1m D =dim Y/D dom D = 0. 

It means that an operator DEL(X--+ J is ri !lht invcrti\-,le> if and ' only 
if the operator D maps its domain onto sp<H.:c i 
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An operator DER (X---+ Y) such that ker D = {0} is invertible, i.e., there 
exists only one right inverse which is simultaneously a left inverse. The kind 
.of invertibility of any linear operator depends on its considered domain. 

An operator FE L(X---+ X) is said to be an initial operator for D, if it 
satisfies: dom D c dom F, F 2 = F, F dom F = ker D. Denote by Fv the set 
of all initial operators for D. For any initial operator FE Fv there exists an 
unique right inverse RE Rv and these operators are connected by a formula: 
F = I- RD on do m D. Let us remark that ker F n do m D = R Y. 

Let Y1 be a linear subspace of Y, i.e. Y1 c Y. Let us consider the 
following system: 

Dx = Ax+y 

Fx =x0 

(1) 
(2) 

where DER (X---+ Yd, ker D-=!= {0}, AEL(X---+ Y), dom D c dom A, FEFv, 
yE(D-A) dom D, x 0 Eker D. 

In [3] the following properties of solvabllity of the system (1H2) are 
proved. 

THEOREM 1.1. Let DER (X---+ Yd, AEL(X---+ Y), dom D c dom A. Then for· 
any operator RERv, yE(D-A) dom D if and only if there exists a constant 
zEker D such that y+ AzE(I- AR) Y1 . 

THEOREM 1.2. Let DER(X-+Y1), AEL(X-+Y), domDcdomA,yE(D-A) 
dom D. The general solution of the equation (1) is given by 

{x = R [RA (y+Az 1 +Az)+s]+z1 +z:sEker (J-AR), 
zEker D, AzE(I -AR) YJ}, 

where z1 is a constant determined in Theorem 1.1. RERv, RAERI-AR for 

I-ARE L 0 (Y1 ---+ Y). The general solution is independent of the choice of right 
inverses both R and RA. · 

The operator I- AR appearing during the decomposition of the system 
(1H2) need not have an uniquely determined resolvent: · 

THEOREM 1.3. Let DER (X---+ Yt), A EL(X---+ Y), dom D c dom A, Y1 c Y, FE 
EFv , where F corresponds to RERv. 
1. For any pair (y,x 0 )E(D-A)domDxkerD, the system (1H2) possesses an 

unique solution ff and only if A ker D c (I- AR) Y1 and ker (I- AR) = {0}. 
This unique solution is given by x = R {1-AR)- 1 (y+Ax)+x0 . 

2. If A ker D c (I- AR) Y1 and ker (I- AR)-=!= {0} on Y1 , then for any pair 
(y, x 0 )E(D-A) dom D x ker D the system (1H2) possesses more than one 
solution. These solutions are given by x = R [RA (y+Ax0 )+s]+x0 , sE 

E ker (I- AR), where RA E R1- AR, I - ARE L 0 ( Y1 ---+ Y), RA is arbitrarily fixed. 
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3. If A ker D rf.(I -AR) Y1 , then there exist pairs (y, x0 )E(D-A)dom D x ker D 
for which the system (1H2) has no solutions. 

2. Controllability 

Let U be a linear space over the field fi' of scalars. In this section we 
consider the problem of controllability of the following system: 

Dx = Ax+Bu 

Fx = x0 

(3) 

(4) 

where DER (X~ Y1), ker D =I= {OL AEL(X ~ Y), dom D c dom A, ¥1 c Y, 
BELo(U ~ Y), BU c (D-A) dom D, FEFv, F corresponds to RERv; A ker D 
c (/ - AR) Y1o UE U and x0 Eker D. 

Denote by 4> the multi-valued mapping, 4>: ker D x U ~ 2" defined as 
follows: 

4> (x0 , u) = {R [RA (Bu+Ax0 )+s]+x0 ,_ sEker (I -AR)} 

where RA E R1 _ AR is arbitraily fixed. 
It is easy to show that the set 4> (x 0 , u) is independent of the choice 

of RA . Ifker(I-AR)= {0}, then the set 4>(x0 ,u) contains only one element. 
In the sequel X will be called the space of states, U will be called the 

space of controls and ker D will be called the space of initial states. 

DEFINITION 2.1. The state xEX is said to be reachable from the initial 
state x0 Eker D, if there exists a control uE U such that xE4> (x0 , ii). 

If ker (I - AR) =1= {0}, Definition 2.1, means that 

3tTE u V RAE Rl-AR 3 zEker (I- AR) 
x= R [RA (Bu+Ax 0 )+Z]+xo 

Denote by 4> (x0 ) = U 4> (x0 , u). The set 4> (x0 ) is a collection of all reachable 
ueU 

solutions from the given initial state x0 under a fixed space of controls. 
By properties of solvability of systems (3H4) we obtain. 

PROPERTY 2.1. Let the system (3H4) be given. Then for any x0 E ker D, 
4> (x0 ) c dom D . 
Let Dk denote the k-th superposition of D. 

THEOREM 2.1. Let the system (3H4) be given. Suppose that Y = Y1 = X, 
BU c (D-A) dom Dk and A ker D c (I -AR) dom Dk-l, where k ~ 1 is a fixed 
integer. Then 

4> (x0 ) c (I- FA) dom Dk EB pA dom D 

where FAEFI-AR• I -AREL0 (Y1 ~ Y). 
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REMARK 2.1. If ker (I - AR) = { 0}, then FA = 0 on Yi and thesis of Theorem 
2.1 takes form 

Next the symbol A* will denote an algebraic ad joint of the operator 
AEL(domA---+Y), i.e., A*EL0 (Y*---+(domA)*),(A*<p)(x)=<p(Ax) for any 
x E do m A and <p E Y* . 

THEOREM 2.2. Let the system (3H4) be given. 

1. Suppose that ker (J - AR) =F {0} and RAERI - AR· If ker (RRA B)*~ {0} then 
for any x0 EkerD,C/.J(x0)=RY1 EB{x0 } . 

2. Suppose that ker (I- AR) = {0}, ker (B (I - AR)- 1 B)*= {0} if and only if 
. for any x 0 Eker D , cP (x 0 ) = RY1 EB {x0}. 

Proof. Let x0 EkerD be arbitrarily fixed. S1nce domD=RY1 EBkerD, the 
condition BU c (D-A)dom D implies RRA BU c {x = RRA [(J-AR) t - Az]: 
tE Y1 , zEker D}. Then ker (RRA B)*= {0} if and only if for any tE Y1 

and zEker D, there exists a control uE U such that RRA Bu = RRA [(I 
-AR) t-Az]. If we take z = x 0 and s =FAt, where FA = I - RA (I -AR) , 
we obtain that for any t E Y1 there exist u E U and sE ker (1 - AR) such that 
R [RA (Bu+Ax 0 )+s] +x0 = Rt+x0 . Finally, cP (x0 ) = RY1 EB {x0 }. 

Now let ker (I - AR) = {0} and cP (x0 ) = RY1 EB {x0 }. Then for any x0 E ker D 
and t E Y1 , there exists u E U such that R (I- AR) - 1 (Bu + Ax0 )+ x 0 = Rt+ x 0 

or R (I- AR)- 1 Bu = R (I- AR)- 1 [(I - AR) t - Ax0 ]. Hence, ker (R (I 
- AR)- 1 B)*={0} • 
Let us remark that the set RX EB { x0 } is the greatest set reachable from 
x 0 Eker D. 
Now let F 1 be an initial operator for D such that F 1 =F F. 

DEFINITION 2.2. The state x 1 E ker D is said to be F 1 - reachable from the initial 
state x 0 E ker D, if there exists a control u E U such that x 1 E F 1 cP (x0 , u). 
The state x 1 will be called a final state. 

DEFINITION 2.3. The system (3H4) is said to be F 1 - controllable to 0 if 
for every initial state x0 E ker D, 0 E C/.J (x0 ) 

DEFINITION 2.4. The system (3H4) is said to be F 1 - controllable if for 
every' initial state x 0 E ker D, F 1 C/.J (x0 ) = ker D. 
Obviously; F 1 - controllability implies F 1 - controllability to 0. 

THEOREM 2.3. Let the system (3H4), F 1 EFv and RAERI-AR be given. If the 
system (3H4) is F1 -controllable to 0 and F 1 (RRA A+ I) ker D = ker D then 
the system (3H4) is' F1 - controllable. 

~-------------------------
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Proof. At first we prove that any x1 Eker D is F1- reachable from 0. · 
Indeed, by F1 -controllability to 0, for any x 0 E ker D there exist u0 E U 
and s0 E ker (I- AR) such that 0 = F 1 [ R (RA (Bu0 + Ax0 ) + s0) + x0]. By second . 
assumption there exists .X0 such that F1 (RRA A + I) x0 = x 1 . Next if we take 
x 0 = -x0 we obtain F1TR {iA (Bu~ +AO)+s0)+0] = x1. But for any x0 

there exist fi and s such that 

Then, if we substitute u = u0 +fi aand s = s0 +s we obtain thesis, i.e., for any 
x 0 ~ x 1 E ker D there exists u E U and sE ker (1- AR) such that F 1 [ R (RA (Bu + 
+Ax0)+s)+x0] = x1. Finally x1 EF1 c!J (x0 ) • 

In Section 3 there will be presented an example showing that the 
condition F1 (RRA A+ I) ker D = ker D need not be necessary for F1-
controllability. 

THEOREM 2.4. Let the system (3}--(4), RAERI - AR and F1 EFv, F1 -=1- F be given. 

1. Suppose that ker (I~ AR) -=1- {0}. Then, if ker (F1 RRA B)* = {0}, the system 
(3}--(4) is F1 - · controllable 

2. Suppose that ker (1- AR) = {0} . Then ker (F1 R (I- AR)- 1 B)* = {0} if and 
only if the system (3}--(4) is F1 - controllable. 

Proof. F1 :RRA BU ~ ker D. The condition ker (F1 RRA B)*= {0} is equivalent 
to F1 RRA BU = ker D, provided F1 -=1- F. By the condition BU c (D- A) do m D 
we obtain RA BU c dom (I -AR) = }1. Then F1 Rll = ker D, i.e., for any 

· x2 E ker D, there exists tE Y1 such that FRt = x2 . Since F1 RRA (D- A)domD = 
= ker D, then for any t = Y1 and zEker D there exists uE U such that 
F, (Rt+z) = F1 (R (RA (Bu+Az)+FA t)+z), where FA EFI-AR• FA = 1-RA(l
-AR). By the following substitution: x2 ~ x 1 -x0 and z = x0 , where x0 ,x 1 E 
Eker D are arbitrary, we obtain F 1 (R (RA (Bu + Ax0 )+s)+ x 0 ) = x1, where 
s = FA t and F1 Rt = x 1 - x 0 . Hence, one part of the theorem is proved. 
If we now assume that ker(J-AR)= {0} and the system (3}--(4) is F1 -

controllable we have that for any x 0 , x 1 E ker D there exists u E U such that 
Ft(R(J-AR)- 1 (Bu+Ax 0 )+x0)=x1 . In particular, for x0 =0 , F1 R(I 
-AR)- 1 Bu = x1. Then F1 R (1-AR)- 1 BU = ker D and finally ker (F1 R(J-
-AR)-1~)*={0} B 

3. Examples 

ExAMPLE 3.1. Let X = Cn [0, T] over the complex field C of scalars, 0 < T < oo. 
The following system describes the linear differential stationary system by the 
right invertible operator 

Dx = Ax+Bu (5) 
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Fx = x 0 (6) 

where xEX, x (t) = [x1 (t), ... , x,. (t)]r, u (t) = [u1 (t), .. . , u,. (t)Y, x0 = [x0 1, ... 

... , x0,.Y, A= [a;j],.x,., B = [b;j],.x,., A and B are constant matrices, D = :t , 
(Fx) (t) = x (t0 ), t0 E [0, 1], U =X. 

We are interested in existence of a control u such that at the time 
t 1 E[0, T] solutions of (5}--{6) satisfy the condition x(t 1)=x1 , for a given 
x 1 = [x 11 , .. . , x 1,.]. Let us define F1 as follows: (F1 x) (t) = x (td. Then we 
obtain the problem of F 1 - controllability of (5}--{6). The operator I- AR 
is invertible and by Theorem 2.4. the system (5}--{6) is F1 - controllable 
if and only if ker (F1 R (I- AR)- 1 B)* = {0} where the operator R is a rip-ht 
inverse of D corresponding to F. This takes place if and only if 
F1 {x = R (I -AR)- 1 (Bu+Ax0 )+x0 :uE U} = ker D. . 

This last equality hoids if and only if the rank of the matrix 
[B, AB, ... , A"- 1 B] equals n. This corresponds to Kalman Theorem of 
controllability for the differential linear stationary systems. 

ExAMPLE 3.2. Let X= C2 [0, T] over C. We consider the system (5}--{6) 
with A:a 11 = a22 = 0, a 12 = a 21 =a, B: b 11 = b22 = 0 , b12 = b21 = b , a, bER. 
We are interested in satisfying, by solutions of (5}--{6), the condition F2 x = x 1 , : ; 

where (F2 x) (t) = [x1 (t 1), x 2 (t2)] t 1 , t 2E[0, T]. It is easy to show that the 
system is F2 - controllable to 0 and F2 (R (I- AR)- 1 A+ I) ker D = ker D 
holds. By Theorem 2.3 this system is F2 -controllable. 

ExAMPLE 3.3. Let X= (s) be the space of all real ·sequences x = {x,.}~= 1 

over the real field R. We consider the system (3}--{4) where operators are 
I 

defined as follows: Dx = {x,.+d~= 1 ; Fx = y, y = {y,.}~=1• y 1 = x 1, y,. = 0 for 
n;:?:2; Ax=v, v={v,.}~= 1 , v1 =x2,, v,. = x,._ 1 for n;?:2; B=I on 
U = {x = {x,.};:'= 1:x1 = 0} . x 0 = {x0 ,.}::'=1, x 01 = C, x0 ,. = 0 for n;:?: 2. Let 
us consider the initial operator for D defined as follows: F 1 x = y, y = {y,.}~= 1, 
y 1 =x2 ,y,. =0 for n;?:2 . ker(I - AR)={x={x,.};:'= 1:x2 ,.+ 1 = C,x2 ,.+ 2 =0 
for n;:?: 0, C ER}, A ker D c (I- AR) X. Let us take the following right inverse 
RA defined on (l-AR)X:RAx=y,y={y,.} ;:'=1 , y 1 =0, y,.= x ,.+x,._ 2 ,n;?: 
;:?: 2, x 0 = 0. The following holds: F2 (RRA A+ I) ker D = {0} but the system 
(3}--{4) is F2 - controllable. Indeed, for any x 0 it is sufficient to take u = 0 
and s = {s,.}~=l• Szn+l =Cl , s2n+2 = 0 for n;:?: 0, SI= 0 in order to fulfil 
the condition F2 x =x 1 ,x 1 ={x;}~;, 1 ,x{ = C 1 ,x,~ =0 for n;?:2 , for any 
x 1 Eker D. 

ExAMPLE 3.4. Let X= C ([0, T] x [0, T]) over the complex field C of scalars, 
0 < T < oo. Let us consider the following partial differential system 

az 
as at X (t, s) = U (t, s) (7) 
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x (t, 0) = h (t), x (0, s) = 9 (s) 

where h (0) = 9 (0), h, 9EC 1 [0, T] 

349 

(8) 

We are interested in the existence of such continuous functions u (t, s) for 
which solutions of system (7H8) satisfy the conditions 7 

x (t, So)= h1 (t), x (t0 , s) = 9 1 (s) (9) 

where h1 (t0 ) = 9 1 (s0), h1 , 9 1 EC 1 [0, T], s0 , t 0 E[0, T] under the assumption 
that functions h, g, h1 , g 1 are arbitrary. 

Let us notice that the system (7H8) can be described by right invertible 
operator and the considered problem is the question about F1 - reachability. 
Indeed, let us denote 

a
2 

{ a2 } D = as at 'dom D = X EX: as at X (t, s) exists and is continuous , 

(Fx) (t, s) = x (t, O)+x (0, s)-x (0, 0), FEFv 
D ER (X-+ X), ker D = {h (t)+9 (s);h, 9 E C1 [0, T]} i= {0} 

(F 1 x) (t, s) = x (t, s0)+x (t 0 , x)-x (t 0 , s0), F 1 = Fv 

Then the system (7H8) and the condition (9) take form: 

Dx= u (10) 

(11) 

(12) 

where x0 (t, s) = h (t)+9 (s), x 1 (t, s) = h1 (t)+g 1 (s), U =X, A= 0, B =I and 
additionaly h (0) = g (0), h1 (t0 ) = 9 1 (s0). 

If there were not any additional conditions on functions h, 9, h1 and 9~> 
then the problem (12H14) would be a F1 -controllability problem. For such 
d cll ncd systems the condition F1 (RRA A+ I) ker D = ker D is fulfilled for any 
F1 EFv. Hence, by Theorem 2.·3. for proving F1 - controllability, it will do 
to verify F1 - controllability to 0. It means that it will do to determine any 
x 0 E ker D and a control u E U satisfying F1 (Ru + x0) = 0. But it is easy to 
show that such controls do not exist, in general. Hence, the system (lOHll) 
is not F 1 - controllable O n the other hand it is easy to show that for 
any x 0 (t,s) = h(t)+9(s), such that h(0)=9(0) and for any xt(t,s) = 
= h1 (t)+9 1 (s) such that h1 (t0 ) = 9 1 (s0 ), the state x 1 is F 1 --reachable 
from x 0 . 
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Sterowalnosc systemow liniowych z niejednoznacznie 
okre5lonymi rezolwentami 

W pracy rozwa:i:ono sterowalnosc system6w przy zalo:i:eniu liniowosci operator6w i prze
atrzeni. Omawiane systemy S:'! opisane przez operatory majl'!ce prawe odwrotnosci i przez ich 
operatory pocZ:'!tkowe. Uog6lniono definicjc:: osil'!galnosci stan6w i sterowalnosci system6w 
zaproponowanl'! przez Nguyen Dinh Quyet na systemy, w kt6rych rezolwenty nie S:'! 
jednoznacznie okreslone. Wykazano, :i:e wlasciwosci osil'!galnosci i sterowalnosci zale:i:l'! od 
rezolwent. Prac~ zilustrowano przykladami. - - ~ -- . .... 

YnpaBJIHeMOCTL JIHueiinLIX cucTeM c ueounoJna'iHO 
onpeueJteHLIM pa3pemaiOIQHM onepaTopoM 

B pa6oTe paCCMOTpeHbl CHCTeMbl OnHCaHbl JIHHeii:IIIbiMH onepaTopaMH B JIHHeHHbiX 
IIpOCTpaHCTBaX. ABTOp o6o6waeT llOIIliTHll )l,OCTHlKHMOCTH COCTOliHHH 11 ynpaBnlleMOCTH 
CHCTeM Ha cJiy'lail KOr)l.a pa3pewaiOIUHil orrepaTop orrpe)l.eJieH HeO)l,H03Ha<mo. iloKa3aHo '!TO 
ynpaBJilleMOCTb w )l,OCTHlKHMOCTb 3aBHCliT oT pa3pewaiOmero onepaTopa. ilpo6JieMy rrpo
HJIJIIOcpHponaHo npHMepaMH. 


