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Some specification of the Dubovitskii-Milyutin method is applied to investigating a problem
of optimal control with equality and inequality constrainis on the phase coordinates and the
conirol. A necessary condition in the form of a local extremum principle is obtained.

Introduction

A necessary condition for the problem of optimal control with equality
and inequality constraints but without the condition u(-)elU, where
U —some set, is proved in [1].[2],[3], [4],[6] and [12] by making use
of the variational method. :

The Dubovitskii-Milyutin method is useful to obtain a necessary condition
for the extremal problems with only one equality constraint. A generalization
of the Dubovitskii-Milyutin method in the case of n equality constraints in
any form and under some assumptions on the cones is obtained in [14].
This generalization is applied to problems of optimal control with equality
constraints on the phase coordinates in [15] and to a problem with no-operator
equality constraint in [13]. In [10] some specification of the Dubovitskii-
-Milyutin method is given without any additional assumption about the cones
but for the case of n equality constraints given in the operator form. This
specification is applied in [11] to obtain a necessary condition for the
problem of optimal control with equality constramts on the phase co-
ordinates and the control.

In the paper the problem of optimal control w1th equahty and inequality
constraints is considered. This problem is more gene_ral than that in [11]
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because it contains inequality constraints, and more general than the
problem from [6] because it contains the no-operator constraint u(-)eU
where U — some set. The local extremum principle for this problem is obtained
in a more general and simpler form than in [11].

1. Fundamental definitions

DerinitioN 1. Denote by WY, (0, 1) the space of absolutely continuous
functions whose derivatives xel”, (0, 1). The norm in W, (0, 1) is defined
by the formula

Ixll = Ix )+ [ @ dr.

Let W/ (0,1) be the subspace of the space W}, (0,1) which contains
functions satisfying the condition x (0)=0.

DerFiniTiON 2. Let (2, p) stand for a space with a Lebesgue measure defined
on the X-field of subsets of the interval [0, 1]: Denote by b.a. (0,1) the
family of additive functions ¢:Z — R satisfying the conditions:
a) if AeZ and u(A)=0, then ¢ (4)=0,
b) the variation of the function ¢ is bounded, ie. |@|o,;) < .

The space b.a.(0,1) is a Banach space with the norm |¢| = |¢lo, ;)
(cf. [9], Part VI, §2).

Let b%a (0, 1) be the space of functions ¢:2 — R? in the form

with AeX, ¢g;eba(0,1) for i=1,2,..,p.
It is easy to show that the space b%a (0, 1) is a Banach space with the norm

lell = igl il (0,1)-

DeriniTioN 3. Let X be a Banach space of integrable functions defined on
the interval [0, 1]. Each functional f defined on X of the form

1
f=ff®x(@d where feL,(0,1),
0

will be called absolutely continuous.
Lemma 1. Any linear and continuous functional f can be written in the form

T=1"4 (1)

where f"—an absolutely continuous functional, f*— a singular functional.
This representation is univalent.
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2. Problem formulation and basic assumptions

& ILet us consider the following problem:
= 1

I(x,u)= [ f°(x,u,t)dt > min 2
under the constraints
= filx.u,t) (3)
x(1)=x,, 4)
g(x.u,t)=0, (5)
hilx, 4,00, i=1,2u:1 (6)
! u(-)eU, (7)

where x(-)eW{;(0,1), u(-)eL,(0,1); the set U= {u(-)el, (0,1): u(t)eM};
the functions f°:R"XR" - R—-R. f:R"XR"XR-R", g:R"xR"xR - R¥,
hi:R"*XR"xR—-R for i=12,..,1; x; is a fixed point of R".

We assume that there exist derivatives

j.;cos,ff.![)*fx'.)cu Gus hix* hlu for i = l, 2-. s I (8)

which are bounded for any (x, u)e W, x I, the functions
.f(}‘)f! ng.l’;to'!.lllfu!.ﬁt?j;ﬂ hi' hi_t' hl'lt for i s l$ 25 ey i (9}

are continuous with respect to (x, u) for any t€[0, 1] and measurable with
respect to t, and the Frechet derivative (g, (x, u, 1). g, (x, u, 1)) is continuous
with respect to (x, u) in the topology of the space

L(Wlnl X‘Em’ﬁx) (10)
(cf. [8], §0.1), the set M is closed, convex and possesses a non-empty interior.
ReMARK 1. Problem (2)(7) under assumptions (8)-(10) will be called problem
Pl. We consider problem Pl under the assumption k <r.

Let us put X = W} x I,
Denote by F,:X — W}, the operator defined by the formula

Fp(x,u)(t)=x (t)—§j'(x (), u (1), t) dt. (11)
By F3:X — L, let us denote the operator of the form
F3(x,u)(t)=g (x (), u (1), 1). (12)

Denote by F;:X — R" the operator defined by the formula
' Fa(x,u) ()= x (1)—x,. (13)
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3. The local extremum principle

Making use of the specification of the Dubovitskii-Milyutin method
(cf. [10], th. 1) in the case of n equality constraints given in the operator
form, we shall prove the following.

THEOREM 1 (Tfie local extremum principle). If
1° (x°, u°) is an Opt_g'mal process in problem PI,
2° the operator A:W{y x L, — Wi x ¥, xR" in the form
A D0 = (RO (560000 T O+, 00,0 0) d,
g (X0, U0, 1) X (1) 49, (x°, u°, 1) T (1), X (1))
is such that its image is closed in W, x I, x R",
3¢ By (X° (1), u® (1), £) # 0 or hy, (x° (1), u® (1), 1) #0
for any teR; where
R; = {te[0, 1]:h; (xo (8),.40 (1), t) = O} (14)

fori=1,2, .., 1 then there exist Ag= 0 and functions Yy eI, (0, 1), web*a(0,1),
v:€b.a (0, 1) concentrated on the sets R; for i=1,2,..,1, such that

1° [|m||+|l0|+||gb||+|ag+z Il >0,
2° o= —dof (x°0°,10) fx % 0% 0 gk 6, w0, 0 e~ Zh %00,

where ¢ = —\, fo,, f; are the integrable functions corres*ponqu to the func-
tionals f,, and f,, respectively, in the sense of Lemma 1 and Definition 3. Func-
tionals f,, and f,,.' =1,2,..,1 are given in the form

1 1
fo(x (@) = 6[ x (t)do, f, (x (1) = {! x(Ody;, i=1,2,..,1. (15)
1 1
3 Ao J L0 ul, ) ul ( dr+[ Fu(x°,u®, ) u® (1) @ (1) dt—
0

i

1
__[ Gu [XO, uon r} MO [r) dﬁ)+ Z j' hiu {x0$ uu‘) ":) uU ('!} d'.f:i —
0 i

i=10

1 1
= mi{n (Ao | £2(x%u®, u(e)dr+ [ £, (x° u®, ) u () @ (1) di—
uell 0 0

1 1 1
[ g, u@)do+ Y [ hy (X, u®, 1) u® (1) dyy).
0 i=10
Proof Let us define the following sets:

Z, = {(x,u)eX:ueU},
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Z;={(x,u)eX:F(x,u)=0}

for i=2,3,4, where the operators F,, F3, F, are defined by formulae (11),
(12) and (13), respectively.

Zyij={(x,weX:h;(x,u, 1)50} for j= 12,1

Hence, problem PI may be represented in the form:
Determine the minimal value of the functional I (x,u) defined on X,
under the condition
4+l

(x,ue () Z.
i=1

In the proof we shall make use of a specification of the Dubovitskii-Milyutin
method (cf. [10], th. 1 and 2).
Hence we shall find the following cones:
Co = DC (I (x°, u®)) — the cone of directions of decrease of the functional I
at (x°, u%);
C;=FC (Z;, (x°,u°%) for i= 1,5, .., 4+1— the cone of feasible directions of
the set Z; at (x°, u%);
Ci=TC (Z;, (x°, %)) for i=2,3,4— the cone of tangent directions of the
set Z; at {x u°);
as well as their dual cones CF, i=0,1,..,4+1.
Proceedmg identically as in [7], §7, 8 we can find the cones

H

Co = {(X, e X: _[(f”(x u®, ) X+ £,2 (x%, u®, ) @) dt < 0},

C,={x,weX: uwl(u u®) where 1= 0,ueint U},

and we assume temporarily that C, # 0.
The cones C§ and C% are given by the formulae (cf. [7], § 10):

Il

1
Cg =2 :fOEX$:fO {f" ﬁ) = _A'O I (.f.‘\:o (xorr uU: t) f+
0

+£.2 (x°, u®, t) @) dt, Ao = O}, (16)
C¥={fieX*.f| (x,u)= f{ (u) where f{ is a functional supporting
the set Z, at the point (x°, u%}. (17)

The set Z, is an equality constraint. Proceeding identically as in [11],
we shall find the cones C, and C% of the forms

Co={ )= X:X(O—f, °, u®, ) T+£, (x°, u®, ) @=0},  (18)

Ci={frieX* L (X, )= ,! (X—f (x°, u®, 1) X—
—f, (x°, u®, 1) @)  (t) dt where eI, (0, 1)}. (19)
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The set Z; is an equality constraint, too. The operator F; given by
formula (12) is strongly continuously differentiable (cf. assumption (9)) and
its differential is given in the form

F3 (x%, u%) (%, @) (8) = g, (x° (8), u (1), £) X () +
+0, (x° (@0, u° (0, )@ ().  (20)

Let us assume temporarily that the operator F; given in form (12) is regular
at (x°,u®), ie. the operator F'y(x° u®):X — I*, given by formula (20) is
“onto”. It is easy to show that the sufficient condition for the regularity of
the operator F; is the following: there exist a minor rank k and o>0
such that

Im([g, Q) > =2 for te[0,1] ae

Hence the operator F, satisfies the assumption of the Lusternik theorem
(cf. [8], § 0.2), and the cone C; is of the form:

Cs={(X,eX:g, (x° u, t) X+g, (x° u°. ) i = 0}.

Proceeding identically as in [11], we shall calculate the cone

1
= (fex*fs® D= [ (0. ut. 1) ¥+
+4, (x°, u°, 1) it) do where » = b*a (0, 1)}. (21)

The set Z, is an equality constraint, too.
It is easily shown that cones C, and Ci are of the forms (cf [7], §12)

C,={(x,eX:x(1)= (22)
Ci = {fae X*:fy (x,4) = (X (1), a) where aeR"}.

Now, let us consider the inequality constraints Z,,;,i=1.2...,[. Let
us denote by H;,i=1...,1, the functionals

H;(x,u)= vra[ionillax hi (x (6), u (1), t). (23)

In view of example 6.6 from [7], the cone of directions of decrease of the
functionals H, at the point (x".u") is of the form

DC (H;, (x°, %) = {(x. e X H; (x°, u®) (X, 0) < 0} =
- ma}‘_‘x (B (O, u®, ) X+ hy, (X%, u°, 1) a) < O} (24)
telk;

where R; are given by the formula (14)} for i=1.2, ... 1

Tdkmg account of assumptions (8}H9) concerning functions h; “and
assumption 3~ of this theorem. we shall use the corollary from theorem 8.1
[71. This corollary implies that the cones C,.;. i= 1.2, ... [ have the form
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Covi={x,D)eX:hy (x°, u° ) X+h, (x°, u°, )T <0
for teRy}, i=1,2,w,0 (25

Now, we shall obtain the formula for cones Cf,;, i=1,2,..,1L
Let us consider the operators A;: Wiy x I, - I, given below

AJ’ (f, T;) (I} =R hix (xos u(), f} f‘}’hm (x(]’ u(]’ r) u (26)
for i=1,2,..,] and define the cones
Cori={7el,:7(t)<0 for teR;} fori=1,2,..,1. 27)

Hence, from (25), (26) and (27) we obtain that
€4+i=AC4+i fOI‘ = 1, 2,...,{.

It is easy to check that the cones C,.; satisfy the assumptions of the
Minkowski-Farkasz theorem (cf. [7], § 10), hence

Chyy=A*Ct,, fori=1,2,..,1

Let fy+; be an arbitrary element of the cone Cj;. Hence, for any
(x,meX,

(f4+£e (X, ﬁ)) = (A*f-:uta (x, ﬁ)) = (f:t+ie A(x, ﬁ)) ==
= (faris Pix (O, 0%, ) X+ by (°, u®, 1)) (28)

where f,,,€C¥,; for i=1,2,.,1.
Making use of the formula for a linear and continuous functional defined
on I, (cf. [9], Part VI, §2), from (28) we obtain that

1
Chii= ari€ (L) fori () = —(J: y (1) dy; (29)

where the function y;eb.a (0, 1) is concentrated on the set R; given in form
(14) for i=1,2,..,1,
Combining (28) and (29), we get the formula for C%;:

Cai={forr1€X* fy (X, 0) =
1

= — | (B (x°, u®, £) X+ hy, (x°, u°, 1) i) dy; (30)
0

where the function y;€b.a (0, 1) is concentrated on the set R;}, P= 152, .0
Let us introduce the operator F:X — W/ xI* xR" by the formula

F (x, u) = (F5 (x, u), Fy (x, u), Fy (x, )

where the operators F,, F3, F, are given by equalities (11), (12) and (13),
respectively.

It is easy to demonstrate that the operator F is strongly diffecrentiable
at point (x°, u") and its differential at this point is the operater 4 from

Control and Cybernetics — 4




358 U LEDZEWICZ-KOWALEWSKA

assumption 2° of the theorem. Then, in view of assumption 2° the differential
of the operator F has the closed image in W} x I*  x R".

We can now apply theorem 1 from [10]. Making use of the formulae
for the conmes Cf, i=0,1,..,4+1 ((16), (17), (19), (21), (22) and (30),
respectively), we obtain

1 1
—Ao | (fQ X+£0 @) de+f] (t7]+J' (X—fe X—fu X=f, D Y (1) dt +
(1]
1
+j" (9x X+g, 0) do+(a, x (1)— Z j (hie X+ hy, ) dy; =0 (31)
where 2 20, eI, webta(0,1),aeR", y,eb.a (0, 1) are concentrated on
the sets R; of he form (14) for i=1,2, .., L.

Let us apply formula (15) and put (55, iI) =(X,0)e X in (31). We get the
following equation

1 ¥
—Ao | £ X dt+ j E—fi D) () dt+£,, (9. O+
0

+(a, X (1))— Z fy, (i X)=0 for any xe Wy,. (32)

Now, we shall apply Lemma l and Definition 3 of this paper to the
functionals f,, and f,. From (32) we obtain

1 1 '
_Auf‘;}; Edr+§ (F—f. ©) ¥ (1) dt+(a, x (1) +
1 { 1
+{ @D fodt= 3, | hu®)f, dt=
L8] i=10

1
= —f3g. X+ Y fi(h,x) for any xeWy,. (33)
i<

The left-hand side of the last equation is a functional absolutely continuous
with respect to X, the right-hand side is a functional singular with respect
to X. We apply the fact that the functional which is simultaneously singular
and absolutely continuous is equal to zero (cf [4]), ie.

{
—falge D+ ) fahX)=0 for any xe W},
i=1

Taking account of the last equation, and (33), after simple calculations we
obtain

i
j(f (s d2 —fx —(;_i‘_,f:,-l-‘z hE [, dt— @) X (1) dt +
i=1

T L

=

+la—={ QoSO —f* o—a2 fm+Z W f7) de, X (1) = 0

(4]
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for any xeW},, where ¢= —l,[lEU;,f:;ELkl,f:ieLl for = 1,20 wlh
From the last equation, in view of the Dubois-Reymond lemma (cf. [8]),
we obtain equation 2° of the proposition.

Let us consider equation (31) for (x, )= (0, 1)e X. We obtain

1 1 1
—do | fludt—( f,inf (0) di+ [ g, &t dov—
0 0 0

M-

1
| hyitdy+f @=0  (34)
0

i

It

for any i = I, where 1020, yel’,, weba, y;eba (0, 1) are concentrated
on the sets R; for i=1,2,..,1.

By the use of the definition of the functional supporting a set (cf. [7],
§4), the last equation implies condition 3° of the proposition.

Now, let us assume that operator F; given by formula (12) is not
regular at point (x° u°)eX. Then, in view of theorem 2 from [10],
proceeding analogously as in theorem 1 from [11], we obtain conditions
2° and 3° of the proposition.

1
We shall now show that |4,|+ ||| + || + Z [lvill +la] > 0. This condition
i=1

follows from equality (31). If 1, =0,y =0, w=0,a=0,y;,=0fori=1,2, ..
w1, then f;=0 for i=0,2,..,4+!] and, by equality (31), f; =0, which
contradicts theorem 1 from [10].

We have thus proved this theorem under the assumption that C, # 0.
In the opposite case, proceeding analogously as in theorem 1 from [11], we
obtain the proposition.

REMARK 2. Let us consider problem PI without the condition ueU, as in
[1], [2], [6] and others. Let us denote this problem by P II. It is easy to
show that, for problem P II, the local extremum principle is the following:
If assumptions 1°-3° of theorem 1 are satisfied, then there exist some 4, = 0,
an absolutely continuous function ¢:[0, 1]— R", functions ve ¥, p;eL, for
i=1,2..., 1, not vanishing simultaneously and satisfying the equation

@ = =20 fO (0 ul, ) —fF(x° ul ) o+
+g% (x°, u®, 0)-0— Y hE(x°, u®, ¢)-p;
i=1

and such that
Ao £2 (x%, ul, ) +£* (X%, u%, ) o—g¥F (x°, %, 1) v+
I
+ 3 B (%, u®,1)-p=0,
=1

pi (%, ul.1)=0 for te[0, 1] ae.
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Warunek konieczny dla zadania sterowania optymalnego
z ograniczeniami rownosciowymi i nierownos$ciowymi

Pewna specyfikacja metody Dubowickiego-Milutina stosowana jest do badania zadan
sterowania optymalnego z ograniczeniami typu nierownosci i nierownosci na wspodlrzedne stanu
i sterowanie. Otrzymany jest warunck konieczny w postaci lokalnej zasady ekstremum.

Heo0xo0ammoe yCJI0BHE I 3a1a4H ONTHMAJbHOIO
YnpaBJ/ieHHsi C OrpaHHYCHHAMH THNA PAaBEHCTB
H HEpaBeHCTB

B pabore paccMoTpeHa 3afiaua ONTHUMAILHOTO YIDPABIEHHH C OTPAHMYEHNSIMM HAJIOWKEH-
HEIMH H4 YHPABJIEHHS M COCTOAHMA. DTH OTPAHHYCHHMS THNA DPABEHCTE H  HEPABCHCTB.
Jns pemuenws 3aaavd TPHMEHEHO vacTHHIM cayuaii metoma MlyGosunkoro-Munytuna. Ilo-
yueHo HeoOXO0MUMOE YCI0BHE Ui ONTUMYMA. Venosue 910 chOPMYIHPOBAHO B thopme 110-
K4 ILHOTO TPHHIIANA 3KCTPEMYyMa.




