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Some specification of the Dubovitskii-Milyutin method is applied to investigating a problem 
of optimal control with equality and inequality constraints on the phase coordinates and the 
controL A necessary condition in the form of a local extremum principle is obtained. 

Introduction 

A necessary condition for the problem of optimal control with equality 
and inequality constraints but without the condition u ( ·) E U, where 
U-some set, is proved in [1],[2],[3],[4],[6] and [12] by making use 
of the variational method. 

The Dubovitskii-Milyutin method is useful to obtain a necessary condition 
for the extremal problems with only one equality constraint. A generalization 
of the Dubovitskii-Milyutin method in the case of n equality constraints in 
any form and under some assumptions on the cones is obtained in [14]. 
This generalization is applied to problems of optimal control with equaiity 
constraints on the phase coordinates in [15] and to a problem with no-operator 
equality constraint in [13]. In [10] some specification of the Dubovitskii
-Milyutin method is given without any additional assumption about the cones 
but for the case of n equality constraints given in the operator form. This 
specification is applied in [11] to obtain a necessary condition for the 
problem of optimal control with equality constraints on the phase co
ordinates and the control. 

In the paper the problem of optimal control with ·equality and inequality 
constraints 1s considered. This problem 1s more gene_ral than that in [11] 
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because it contains inequality constraints, and more general than the 
problem from [6} because it contains the no-operator constraint u ( · )E V 
where V- some set. The local extremum principle for this problem is obtained 
in a more general and simpler form than in [11]. 

1. Fundamental definitions 

DEFINITION 1. Denote by Wt"1 (0, 1) the space of absolutely continuous 
functions whose derivatives xe.r:1 (0, 1). The norm in Wt1 (0, 1) is defined 
by the formula 

1 

llxll =lx(O)I+J ix(t)idt. 
0 

Let Wt"1 (0, 1) be the subspace of the space W{'1 (0, 1) which contains 
functions satisfying the condition x (0) = 0. 

DEFINITION 2. Let (!', J.,L) stand for a space with a Lebesgue measure defined 
on the !'-field of subsets of the interval [0, 1]: Denote by b.a. (0, 1) the 
family of additive functions cp:!'--. R satisfying the conditions: 
a) if A e!' and Jl (A)= 0, then cp (A)= 0, 
b) the variation of the function cp is bounded, i.e. lcpl(o,t> < oo . 

The space b.a. (0, 1) is a Banach space with the norm llcpll = lcpl!o.t> 
(cf. [9], Part VI, §2). 

Let b~a (0, 1) be the space of functions cp:!'--. RP in the form 

cp (A)= (cp 1 (A), Cf>2 (A), ... , Cf>p (A)) 

with Ae!', cpieb.a (0, 1) for i = 1, 2, ... , p. 
It is easy to show that the space bl!a (0, 1) is a Banach space with the norm 

n 

llcpll = L ICf>il (0,1)· 
i = 1 

DEFINITION 3. Let X be a Banach space of integrable functions defined on 
the interval [0, 1]. Each functional f defined on X of the form 

1 

f(x) = f .f(t) x (t) dt where .feL 1 (0, 1), 
0 

will be called absolutely continuous. 
LEMMA 1. Any linear and continuous functional f can be written in the form 

f=r+r (1) 

where f"- an absolutely continuous functional, f'- a singular ftmctional. 
This representation is univalent. 
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2. ;Problem formulation and basic assumptions 

·\ · Let us consider the following problem: 
''I ' 

under the constraints 

' ,, 

1 

I (x, u) = f f 0 (x , u, t) dt ~ min 
0 

.X= f(x , u, t), 

x(1)=x1 , 

q (x , u, t) = 0, 
h;(x , u,t)~O, i=1,2 , ... ,l, 

u(·)EU , 
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(2) 

(3) 

(4) 
(5) 

(6) 

(7) 
where x (- )E Wi'dO, 1), u ( · )E'l~·oo (0, 1 ); the set U = { u ( · )E t"00 (0 , 1): u (t)E M}; 

the functions f0 :R11 xRr~R~R , f: .. RnxRrxR~Rn, q:RnxRrxR~Rk, 
h;: :R_nxR'"xR~R fori= 1,2 , ... , /; x 1 is a fixed point of R11

• 

We assume that there exist derivatives 

(8) 

which are bounded for any (x , u)E Wt1 x t"00 , t!te functions 

(9) 

are continuous with respect to (x, u) for any tE[O, 1] and measurable with 
respect to t, and the Frechet deriv~tive (qx (x, u, t) , q, (x, u, t)) is continuous 
with respect to (x, u) in the topology of the space 

(10) 

(cf. [8], §0.1), the set M is closed, convex and possesses a non-empty interior. 

REMARK 1. Problem (2H7) under assumptions (8Hl0) will be called problem 
PI. We consider problem PI under the assumption k ~ r. 

Let us put X= Wt1 x t"00 . 

Denote by F 2 : X~ W{'1 the operator defined by the formula 

t 

Fz (x , u) (t) = x (t)- f f(x (t), u (t), t) dt. 
. 0 

By F3 :X ~!!:eo let us denote the operator of the form 

F3 (x, u) (t) = g (x (t), u (t), t). 

Denote by F4 : X~ R" the operator defined by the formula 

F4 (x , u){t) = x (1)-x 1 . 

(11) 

(12) 

(13) 
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3. The local extremum principle 

Making use of the specification of the Dubovitskii-Milyutin method 
(cf. [10], th. 1) in the case of n equality constraints given in the operator 
form, we shall prove the following. 

THEOREM 1 (The local extremum principle). If 
1 o (x0

, u0
) is an optimal process in problem PI, 

2° the operator A: Wt1 x E 00 --+ W;'1 x J!;oo x R" in the form 
t 

A (.X, U) (t) = (x (t)- J (f" (x0
, U

0
, t) .X (t) + fu (x0

, u0
, t) ii (t)) dt, 

0 . 

gx (x0
, u0

, t) .X (t)+gu (x0
, u0

, t) ii (t), .X (1)) 
is such that its image is closed in Wt1 x J!;oo x R", 

h;x (x0 (t), u0 (t), t) # 0 or h;u (x 0 (t), u0 (t), t) # 0 

for any t ER; where 

R; = {tE[O, 1]:h; (x 0 (~) •. u0 (t), t) = 0} (14) 

fori= 1, 2, ... , l then there exist A.0 ;;;:;; 0 and functions rjJE£'00 (0, 1), wEb~a(O, 1), 
·y;Eb.a (0, 1) concentrated on the sets R; for i = 1, 2, ... , l, such that 

l 

1o llwii +IJ,ol+llr/lll+lal+ L IIY;II > 0, 
i= 1 l 

2° cp = - Aofx0 (x0
, u0

, t)-fx* (x 0
, u0

, t) <p +g: (x0
, u0

, t)f:- L h6c(x0
, u0 ,t).f; 

• I . •= I 
where <p = - rjJ J:, .!;, are the integrable functions corresponding to the func
tionals fw and f Y;' respectively, in the sense of Lemma 1 and Definition 3. Func
tionals fw and fy,, i = 1, 2, .. . , l are given in the form 

1 1 

fw (x (t)) = J x (t) dw, fy, (x (t)) = J x (t) dy;, i = 1, 2, ... ,l. (15) 
0 0 

1 I 

3° ,{0 J fu0 (x0
, u0

, t) u0 (t) dt + J .f.. ((x0
, u0

, t) u0 (t) <p (t) dt-
0 0 

1 l 1 

- J g .. (x 0
, u0

, t) u0 (t) dw+ L J h;u (x0
, u0

; t) u0 (t) d'Y; = 
0 i= 1 0 

1 1 

= min (A.0 J fu0 (x0
, u0

, t) u (t) dt+ J fu (x 0
, u0

, t) u (t) <p (t) dt-
~u o o 

1 l 1 

- f gu (x0
, u0

, t) u (t) dw+ L J h;u (x0
, u0

, t) u0 (t) dy;}. 
0 i= 1 0 

Proof. Let us define the following sets: 

z1 = {(x, u)EX:uE U}, 
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Z; = {(x, u)EX:.F; (x, u) = 0} 

for i = 2, 3, 4, where the operators F2 , F3 , F4 are defined by formulae (11), 
(12) and (13), respectively. 

Z 4 +j = {(x, u)EX:hi (x , u, t) ~ 0} for j = 1, 2, ... , l. 

Hence, problem PI may be represented in the form: 
Determine the minimal value of the functional I (x, u) defined on X , 

under the condition 
4+1 

(x, u)E n Z;. 
i= 1 

In the proof we shall make use of a specification of the Dubovitskii-Milyutin 
method (cf. [10], th. 1 and 2) . 

Hence we shall find the following cones: 

C0 = DC (I (x0
, u0

)) - the cone of directions of decrease of the functional I 
at (x0

, u0 ); 

C; = FC (Z; , (x0
, u0

)) for i = 1, 5, ... , 4+ l- the cone of feasible. directions of 
the set z. at (x0 u0

) · ' ' ' 
C; = TC (Z;, (x0

, u0
)) for i = 2, 3, 4 - the cone of tangent directions of the 

set Z; at (x0
, u0

); 

as well as their dual cones er , i = 0 , 1, ... , 4 + l. 
Proceeding identically as in [7], §7, 8, we can find the cones 

1 

Co = {(.x, ii)EX: s Ux0 (x0
' u0

, t) x+ fu0 (x0
, u0

, t) it) dt < 0}, 
0 

cl = ((x, ii)EX: u = A (u - u0
) where A~ 0 , UEint U}, 

and we assume temporarily that C0 ¥= p. 
The cones C~ and C! are given by the formulae (cf. [7] , § 10) : 

1 

c~ = Uo EX* :fo (x, ii) = - Ao s Ux0 (x0
, u0

' t) X+ 
0 

+!,,0 (x0
, u0

, t) it) dt, A0 ~ 0}, (16) 
er = {!1 EX*: ft (.X' U) = ./{ (U) where f{ is a functional supporting 

the set Z 1 at the point (x0
, u0

)}. (17) 

The set Z 2 is an equality constraint. Proceeding identically as in [11], 
we shall find the cones C 2 and C~ of the forms 

Cz = {(x, U) = X: X (t)- f x(x0
, u0

, t) x+J,, (x0
, u0 ,'t) U= 0}, (18) 

1 

C~ = {fz EX*:fz (x, U) = J (x - fx (x0
, u0

, t) x-
o 

-fu (x0 , u0 , t) it) 1/1 (t) dt where ljJEE00 (0, 1)}. (19) 
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The set Z 3 is an equality constraint, too. The operator F3 given by 
formula (12) is 'strongly continuo'usly differentiable (cf. assumption (9)) and 
its differential is given in the form 

F~ (x0
, u0

) (x, U) (t) = 9x (x0 (t), u0 (t), t) x (t)+ 
+g., (x0 (t) , u0 (t), t) ii (t). (20) 

Let us assume temporarily that the operator F3 given in form (12) is regular 
at (x0

, u0
), i.e. the operator F'3 (x0

, u0
): X---+ E00 given by formula (20) is 

"onto". It is easy to show that the sufficient condition for the regularity of 
the operator F3 is the following: there exist a minor rank k and a> 0 
such that 

lm ([g,J)I > a for t E [0, 1] a.e. 

Hence the operator F 3 satisfies the assumption of the Lusternik theorem 
(cf. [8], § 0.2), and the cone C 3 is of the form: 

C3 = {(x, ii)EX:gx (x0
, u0

, t) x+q, (x0
, u0

, t) ii= 0}. 

Proceeding identically as in [ 11 ], we shall calculate the cone 

1 

Cj = {f3EX*:j3 (x, ii) = J (gx (x0
, u0

, t) x+ 
0 

+q,. (x0
, u0

, t) u) dco where eo= b~a (0 , 1)}. (21) 

The set Z 4 is an equality constraint, too. 
It is easily shown that cones C4 and Cl are of the forms (cf. [7], § 12) 

C4 = {(x, U)EX:x (1) = o} 
C! = {f4 EX* :f4 (x , ii) = (x (1), a) where a ER"}. 

(22) 

Now, let us consider the inequality constraints Z 4 + i • i = 1, 2, ... , I. Let 
us denote by H i, i = 1 .. .. , I, the functionals 

Hi (x, u) = vrai max h; (x (t) , u (t), t). 
te [O, I ] 

(23) 

In view of example 6.6 from [7], the cone of directions of decrease of the 
functionals H; at the point (x0

, u0
) is of the form 

DC (H;, (x0
, u0

)) = {(x, ii)EX:H; (x0
, u0

) (x, ii) < 0} = 
= max ( h;x (x 0

, u0
, t) x + h;, (x 0

, u0
, t) u) < 0} (24) 

tER; 

where R; are given by the formula (14)} for i = 1, 2 , ... , l . · 
Taking account of assumptions (8}--(9) concerning functions h; ·and 

assumption 3° of this theorem, we shall use the co rollary from theorem 8.1 
[7]. This co rolla ry implies that the cones C4 + i • 'i = 1, 2 , . . I have the form 
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C4+i = {(x, ii)EX: h;x (x0
, u0

, t) x+ h;11 (x
0

, u0
, t) u < 0 

for t ER;}, i = 1, 2, ... , l. (25) 

Now, we shall obtain the formula for cones C~+;. i = ~1, 2, ... , l. 
Let us consider the operators A;: wr1 X ~00 ~ ~00 given below 

A; (.X, ii) (t) = h;x (x0
, u0

, t) x+h;u (x0
, u0

, t) u 
for i = 1, 2, ... , l and define the cones 

(26) 

C4+i = {j!E~00 :jl(t) < 0 for tER;} for i = 1, 2, ... , l. (27) 

Hence, from (25), (26) and (27) we obtain that 

C4 +; = ,AC4 +; for i = 1, 2, ... , l. 

It is easy to check that the cones C4 +i satisfy the assumptions of the 
Minkowski-Farkasz theorem (cf. [7], § 10), hence 

C*. A* C-* 4+i = 4+i for i = 1 , 2, ... , l. 

Let f~+i be an arbitrary element of the cone C4t;. Hence, for any 
(x, ii)EX, 

(!4+;, (x, U)) =(A* h-+i • (x, U)) = (}~+ i• A (x, U)) = · 
= (h.+i • h;x (x0

' u0
' t) x+h;u (x0

' u0
, t) u) (28) 

where h.+;EC~+i for i = 1, 2, ... , l. 
Making use of the formula for a linear and continuous functional defined 

on ~oo (cf. [9], Part VI, §2), from (28) we obtain that 
1 

C~+i = u:+;E(~oo)*:h-+i (Y) = - J y (t) dy; (29) 
0 

where the function Y;Eb.a (0, 1) is concentrated on the set R; given in form 
(14) for i = 1, 2, ... , l, 

Combining (28) and (29), we get the formula for C4t;: 

C4ti = {!4+1 EX*:f4+i (.X, U) = 
1 

= - J (hix (x0
, U

0
, t) x+h;11 (x

0
, U

0
, t) it) dy; (30) 

0 

where the function Y;Eb,a (0, 1) is concentrated on the set R;}, i = 1, 2, ... , l. 
Let us introduce the operator F:X ~ Wt1 x I!:oo x Rn by the formula 

F (x, u) = (F2 (x, u), F3 (x, u) , F4 (x, u)) 

where the operators F2 , F3 , F4 are given by equalities (11), (12) and (13), 
respectively. 

It is easy to demonstrate that the operator F IS strongly differentiable 
at point {x0 , u0

) and its differential at this point IS the operator A from 

Control and C'yb~:rnetics - 4 
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assumption 2° of the theorem. Then, in view of assumption 2c the differential 
of the operator F has the closed image in wrl X ero X R". 

We can now apply theorem 1 from [10]. Making use, of the formulae 
for the cones C{, i=0,1, ... ,4+l ((16), (17), (19), (21), (22) and (30), 
respectively), we obtain 

1 1 

-Ao J Ux0 x+fu0 UJdt+f{(U)+ J (x-f,x-fxx-J;,U)lj;(t)dt+ 
0 0 

1 I I 

+ s (gx x+g!l ii) dw+(a, X (1)}- I s (hix x+h;u U) dy; = 0 (31) 
0 i= 1 0 

where },0 ~ 0 , lj;E"E00 , wEb~a (0, 1), aER", Y;Eb.a (0, 1) are concentrated on 
the sets R; of he form (14) for i = 1, 2, ... , l. 

Let us apply formula (15) and put (x, U) = (x, O)EX in (31). We get the 
following equation 

1 1 

-Ao J fx0 xdt+ j'(x-fxx)lj;(t)dt+fw(qxx)+ 
0 0 

l 

+(a, x (1)}- .I j~i (h;;. x) = 0 for any xE W{\. (32) 
I = I 

Now, we shall apply Lemma 1 and Definition 3 of this paper to the 
functionals fw and f yi· From (32) we obtain 

1 1 

-Ao J fx0 xdt+ J (x-fxx)lj;(t)dt+(a,x(1))+ 
0 0 

1 l 1 

+ S (qx x)L dt - I S (h;x x)[;i dt = 
0 i= I 0 

l 

= - f~ (gx x)+ I fy~ (h;x x) for any X E Wt,. (33) 
i = I 

The left-hand side of the last equation is a functional absolutely continuous 
with respect to x, the right-hand side is a functional singular with respect 
to x. We apply the fact that the functional which is simultaneously singular 
and absolutely continuous is equal to zero (cf. [ 4]), i.e. 

I 

- f"S ((/ ;-; ) + ' j"·' (/1 ,;) --- 0 
• ( IJ x . \.- L , (')i ix . \ --~ for any ;( F W{\ . 

Taking account of the last equation, and (33), after simple calculations we 
obtain 

1 1 I 

J (.f ()_ of.~0 -f/ <p -q~ J:, + L h(x .( dr- (p) .X (t) dt + 
0 0 i= I 

1 l 

+(a-J (,l.0 f~0 -.f-*<p-q~_i:+ I h~_~)dt,x(l)}=O 
0 i= 1 
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for any .XEWt1 , where cp=-l/JEI':1 ,f:'EE1 , fr;EL 1 for i=1 , 2, ... ,1. 
From the last equation, in view of the Dubois-Reymond lemma (cf. [8]), 
we obtain equation 2° of the proposition. 

Let us consider equation (31) for (x, U) = (0, U)EX. We obtain 

1 1 I 

-A0 J };,0 u dt- J j~ urj; (t) dt+ J !lu u dw-
o 0 0 

l 1 

-I J hiu U dyi+J' (U) = 0 (34) 
i= I 0 

for any ii= I':.00 , where A0 ~ 0, rj;EI':00 , wEbka, YiEb.a (0, 1) are concentrated 
on the sets Ri fori= 1,2, ... ,1. 

By the use of the definition of the functional supporting a set (cf. [7], 
§4), the last equation implies condition 3° of the proposition. 

Now, let us assume _that operator F3 given by formula (12) is not 
regular at point (x 0

, u0
) EX. Then, in view of theorem 2 from [10], 

proceeding analogously as in theorem 1 from [11], we obtain conditions 
2° and 3° of the proposition. 

l 

We shall now show that l.lc01 +Ill/I ll + llwll +I IIYdl + lal > 0. This condition 
i= I 

follows from equality (31). If A0 = 0, l/1 = 0, w = 0, a= 0 , Yi = 0 fori= 1, 2, ... 
... ,I, then};= 0 for i = 0, 2, ... , 4+1 and, by e_quality (31)~ f 1 = 0, which 
contradicts theorem 1 from [10]. 

We have thus proved this theorem under the assumption that C0 =1= \!). 
In the opposite case, proceeding analogously as in theorem 1 from [11], we 
obtain the proposition. 

REMARK 2. Let us· consider problem PI without the condition uE U, as in 
[1] , [2] , [6] and others. Let us denote this problem by P Il. It is easy to 
show that, for problem P II, the local extremum principle is the following : 

If assumptions 1°-3° of theorem 1 are satisfied, then there exist some Ao ~ 0, 
an absolutely continuous function cp: [0, 1] --t R" , functions vEE" PiEL 1 for 
i = 1, 2, ... , l , not vanishing simultaneously and satisfying the equation 

· _ , fo ( o o t) f* ( o o t) + cp - - / eo x X , U , - . x X , U , cp 
11 

+q:(x0 ,u0 ,t) ·v- I hb:(x0 , u0 ,t)·pi 
i= I 

and such that 

Aofu0 (x0
, u0

, t)+};,* (x 0
, u0

, t) cp-q~ (x 0
, u0

, t) · v+ 
l 

+ I h~, (x 0
, u0

, t) ·Pi= 0, 
i=l 

p;hi(x0 ,u0 ,t)=0 for tE[O, 1] a.e. 
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Warunek konieczny dla zadania sterowania optymalnego 
z ograniczeniami rownosciowymi i nierownosciowymi 

Pewna specyfikacja melody Dubowickiego-Milutina stosowana jest do badania zadan 
sterowania optymalnego z ograniczeniami typu nier6wnoki i nier6wnosci na wsp61rz~dne stanu 
i sterowanie. Otrzymany jest warunek konieczny w postaci lokalnej zasady ekstremum. 

Heo6xoLJ.nMoe ycnoBue LJ.JIH 3aLJ.a'lu onTHMaJihnoro 
ynpaBJieHHH C orpaHH'IeHIIHMH THUa paBeHCTB 
H nepaBeHCTB 

B pa6oTe paccMoTpeHa 3a):1a'fa OTITMManhHOro ynpaBneHMll c orpaHw!eHHliMM HaJ10)!(eH
HhiMH Ha yTipaBJ1eHllll ll COCTOl!HHll. 3TH OrpaHWieHHll THlla paBeHCTB 11 HepaBeHCTB. 
,[(JUI peweHHll 3a):1a"!H I1p11MeHeHO 'IaCTHhiM CJ1y'faii MeT0):1a ,[(y60BHUKOro-MwnyTMHa. llo
J1Y'IeHO Heo6x0):1HMoe ycnoswe ):1J1ll OTITHMyMa. YcJIOBHe :no c<!JopMynwposaHo B <jlopMe no
Ka.%HOro npHHUHlla 3KCTpeMyMa. 


